遥感气体探测技术在地震监测中的应用
崔月菊1, 李静2, 王燕艳3, 刘永梅4, 陈志1, 杜建国1
1.中国地震局地震预测重点实验室(中国地震局地震预测研究所),北京100036
2.防灾科技学院地震科学系,河北 燕郊065201
3.甘肃省地震局平凉地震中心台,甘肃 平凉744000
4. 内蒙古自治区地震局西山咀地震台,内蒙古 巴彦淖尔 014400

作者简介:崔月菊(1985-),女,河北鹿泉人,助理研究员,主要从事遥感地球化学研究.E-mail:cehuicuiyueju@126.com

摘要

扼要介绍了卫星高光谱红外大气遥感的原理,气体组分探测技术、反演技术和研究应用的发展历程,着重介绍了该技术在地震监测中的研究应用。遥感气体地球化学在地震监测方面的应用大致可以分为间接观测和直接观测2个方面:①利用卫星红外遥感间接监测地震断裂带脱气;②利用卫星探测大气成分的传感器直接监测地震前后的气体地球化学异常。通过分析地下气体逸散引起的物理化学异常与地震活动的关系,提取地震气体地球化学信息。介绍了典型震例的气体地球化学异常特征及其可能的形成机理,提出了存在的问题以及未来的研究重点。

关键词: 高光谱; 热红外; 大气红外探测仪; 地球化学异常
中图分类号:P315 文献标志码:A 文章编号:1001-8166(2015)02-0284-11
Application of Gas Remote Sensing Technique in Earthquake Monitoring
Cui Yueju1, Li Jing2, Wang Yanyan3, Liu Yongmei4, Chen Zhi1, Du Jianguo1
1. CEA Key Laboratory of Earthquake Prediction (Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China
2 .Department of Seismology, Institute of Disaster Prevention, Yanjiao 065201, China
3. Pingliang Seismic Station, Gansu Bureau of Seismology, Pingliang 744000, China
4. Xishanzui Seismological Station, Inner Mongolia Bureau of Seismology, Bayannaoer City 014400, China
Abstract

The principle of satellite hyperspectral remote sensing technique for atmosphere detection, development of the satellite atmospheric infrared sensors and the retrieval method of gaseous components with hyperspectral remote sensing data were briefly reviewed. The application of hyperspectral remote sensing gas-geochemistry in earthquake monitoring was emphasized, which can be divided into two aspects: ①Degassing from the seismic fracture zone was indirectly retrieved with the thermal infrared sensor; ②Gas-geochemical anomaly associated with the earthquake was directly detected by the atmospheric gas sensors. Gas-geochemical anomalies were obtained by correlating the physical and chemical anomalies caused by gas emission from the underground with the seismic activities. The possible mechanism of anomalies was discussed by analyzing the gas-geochemical anomalies related to the typical earthquake cases. Additionally, the developing aspects in seismic remote-sensing for gas-geochemistry were proposed.

Keyword: Hyperspectrum; Thermal Infrared; Atmospheric infrared sensor; Geochemistry anomaly.
1 引言

近年来, 全球进入地震活跃期, 7级以上地震年发生频率超过了20世纪年平均发生率(18.3次/a)。中国位于环太平洋地震带和欧亚地震带的交汇部位, 地震活动频度高、强度大、分布广, 是地震灾害严重的国家。因此, 提高地震前兆监测能力和地震预测水平, 对减轻地震灾害具有重要意义。在过去的一个世纪中, 各国学者开展了大量测震学[1~3]、地球物理[4~8]、地球化学[9~15]、地壳形变[16~18]等方面的地面定点和流动观测, 在探索预测地震方面做出了巨大努力, 获得了可喜的进展。随着卫星遥感技术的发展, 地震观测相继应用了红外遥感[19~21]、InSAR[22, 23]、气体反演[24]等技术[25, 26]; 这些技术宏观性强、精度高、重复观察周期短、不受地面条件限制, 成为研究断裂活动性及发现地震前后异常现象的重要观测手段, 一定程度上提高了地震监测的能力。本文主要介绍了卫星高光谱气体组分探测技术及其在地震监测中的研究进展。

2 气体组分探测技术
2.1 遥感探测气体的原理

不同物质对不同波长的电磁波具有不同的吸收、反射或辐射特性。早期, King[27]和Kaplan[28]论述了卫星红外大气探测大气温度的原理。O3, CO2, CH4, CO等痕量气体具有各自固有的辐射和吸收光谱特征, 利用星载高光谱分辨率的传感器可以探测气体特有的光谱特征, 进而识别不同的气体组分及其浓度。因为痕量气体的光谱特征主要在红外波段(尤其是热红外波段), 所以识别、反演大气中的痕量气体组分主要是利用热红外高光谱数据[29, 30]

2.2 大气组分探测仪

遥感探测气体组分的主要技术是卫星载荷的测量技术, 依赖于载荷的光谱分辨率和探测能力的发展。20世纪70年代, 美国设计了高分辨率的红外探测器(HIRS)有19个红外通道, 覆盖4.3和15μ m的CO2吸收带以及6.7μ m的水汽吸收带, 光谱分辨率3~60 cm-1, 可用于监测同温层臭氧, 标志着卫星遥感大气探测的开始[31]。1992年3月发射了大气痕量分子光谱仪(ATMOS), 其采用太阳掩星模式对大气化学成分进行全球探测, 是第一个采用临边探测方式的高分辨率傅里叶变换星载传感器, 它的问世和使用促进了太空探测大气的发展[32]。1996年8月发射的ADEOS卫星上搭载的温室气体干涉测量计(IMG)是第一个采用天底观测方式的高分辨率近红外对流层探测仪, 可以精确测定地表温度, CH4, H2O, N2O, CO2和O3混合比廓线, 遗憾的是ADEOS卫星运行不到1年, 1997年6月由于太阳能电板问题结束使命[33, 34]。21世纪以来, 各国相继开展了针对温室气体监测的星载红外高光谱技术研究, 发射了多颗高光谱探测卫星, 丰富了大气组分监测数据资源。目前, 在轨运行的用于大气气体探测的主要卫星及传感器参数有关文献做过较详细的介绍(表1[35~38]

表1 具有大气成分探测功能的传感器 Table 1 Sensors for detecting gas components of atmosphere

国内卫星遥感技术发展较晚, 在FY-3系列卫星中将要携带的红外高光谱大气探测仪及温室气体探测仪将为开展卫星温室气体遥感监测和研究提供实测数据, 利用卫星高光谱传感器观测CO, CH4, CO等的研究还处于试验阶段。高分5号卫星预期在2016年升空, 携带有气体组分探测仪。

2.3 气体反演技术

气体浓度反演技术有傅里叶变换红外光谱技术[50, 51]和差分吸收光谱技术(differential optical absorption spectroscopy, DOAS)[52, 53]。DOAS是大气实时遥感探测最重要、最常用的方法, 在DOAS理论基础上通过修正、改进, 形成现有的一些利用卫星数据反演气体成分的方法, 并越来越多地应用于大气中痕量气体和污染气体组分的探测。如改进的DOAS算法WFM-DOAS从SCIAMACHY数据反演CH4[54, 55], CO[54]和CO2[54, 56, 57]浓度、从SCIAMACHY数据利用IMAP-DOAS反演CH4和CO2浓度[42]和从AIRS数据利用消失偏导数法(Vanishing Partial Derivatives , VPD)反演CO2廓线[24, 58]等。

此外, 还有波段残差法(Band Residual Difference, BRD)[59]、人工神经网络等反演方法[60, 61]。使用残差技术由OMI数据反演了对流层O3柱含量[62]和SO2浓度[59]。Turquety等[63]从IASI数据利用非线性人工神经网络反演对流层O3和CO浓度。神经网络通过构造合适的网络结构, 构造精确快速的前向模式和精确性好的反演算法, 用来仿真复杂的非线性关系, 快速提取卫星大气参数, 适宜于业务运行[64]

3 遥感气体地球化学应用
3.1 常规研究应用

具有大气组分探测功能的传感器(MOPITT, AIRS, OCO, IASI, TANSO等)的发射获取了丰富的痕量气体监测数据。这些数据被广泛应用于各个领域, 在区域性和全球性环境问题、大气污染来源和大气环境监测等方面发挥了重要作用。

在区域性和全球性大气环境污染问题方面, 利用卫星传感器监测全球大气CO[65, 66]、CH4[67]和CO2[68]等的季节变化、时空分布特征等, 研究其变化与全球变化的关系; GOME监测到每周周末对流层NO2柱浓度在城市地区显著降低[69]

在大气污染来源方面, 通过监测大气污染物的浓度, 推断污染源的排放强度[70, 71]。利用GOME, SCIAMACHY和GOME-2等传感器可以定量反演火山喷发的SO2, 监测和跟踪火山SO2污染区[72]。利用AIRS对火山SO2进行反演, 获得其浓度的时空变化[73, 74]。Khokhar等[75]利用GOME数据反演高精度SO2斜柱浓度, 用以研究火山爆发和主要污染源。Justice[76]利用水蒸气(H2O)- CO2混合物在1.4 μ m附近的吸收峰值, 作为描述火灾前缘的指标来确定火灾前缘和火烧迹地, 进行火灾监测。

大气环境监测主要是利用卫星遥感监测大气中二氧化硫、氮氧化物、O3、温室气体等痕量气体的变化, 进行环境质量评价等。Martin[77]总结了卫星遥感数据应用于大气环境监测的应用现状, 分析了其发展趋势。

3.2 遥感气体地球化学地震监测

3.2.1 遥感气体探测技术在地震监测中的应用基础

地球内部有大量的气体(CO2, CH4, H2, CO, 水汽等), 如岩石挤压破裂过程中产生的气体和地热储中的气体, 通过脱气作用沿板块边界、断裂带等地壳薄弱地带释放到大气中[9, 26, 78], 所以地球脱气大多受断层和构造的控制。地震是碳氢化合物渗漏的潜在诱因, 是地球内部应力释放、调整的体现, 伴随有地球内部气体的排放。在地震孕育过程中, 岩石受到的应力改变, 导致地壳中发生某些瞬时运动, 如裂缝扩张、断层蠕动等, 在压力驱动下深部的流体沿着断裂及薄弱地带在岩石圈内迁移、聚集或分散, 释放到大气中, 在大气中经过物理作用(沉降作用、对流传输作用)和化学反应最终形成地球化学异常。因此, 气体地球化学异常特征在某种程度上可以反应地球内部应力的释放过程。

地震引起的地球脱气研究有助于研究地震活动的构造背景、寻找隐伏断裂、地震活动性监测和探讨地震活动对大气圈污染气体的贡献等。20世纪60年代中期, 前苏联、中国、日本开始将断层气作为地震前兆研究的重要内容, 应用于地震监测预报方面。大量的地面观测数据和震例研究[13, 14, 79~85], 表明断层气体(CH4, CO2, He, Rn, Hg等)对地震响应敏感, 气体地球化学异常与地震活动、构造有关[79, 84, 86], 且异常点的时空变化多样。但是, 异常点一般分布在震中区及距震中几百公里的范围内, 而且震级越大, 异常范围越大, 8级以上地震可以达到1000 km[87]。异常持续时间从几个小时到几个月。断层气逸出量与地震烈度大小呈正比, 但是与震级和震中距没有相关性[9, 10, 88~90]。地面观测手段(定点观测或流动观测)具有局限性, 很难获得大面积、动态连续的地震前兆场信息, 加之异常成因机理还不清楚, 因此制约了地震监测预报的发展。

随着高光谱遥感技术和气体反演技术的发展, 国内外学者将痕量气体探测技术引进到地震监测领域。目前, 利用遥感技术对地震引起的气体监测主要发现了CO, O3和水汽异常[20, 91~98]

3.2.2 地震监测方面的应用研究

遥感气体地球化学在地震监测方面的应用主要是利用卫星遥感数据监测地震前后各种气体物理化学异常, 通过分析其与地震发生的关系, 以期应用于地震监测与预测, 大致可以分为2个方面:间接观测和直接观测。

(1)间接观测

利用遥感技术进行地震断裂带气体地球化学异常监测的研究始于卫星红外遥感间接监测地震断裂带脱气。研究表明大震前后地下水体系改变[99], 地下气体(如CO2, CH4)排放速率增大[100~102], 排放到大气中的气体发生温室效应造成地震前后(几周到几天)的热红外(TIR)卫星影像的时空异常[19, 20, 103, 104]。Qiang等[19]提出的“ 地球放气说” 解释了这些异常现象, 并得到了试验验证[105, 106]。此外, 在多个地震前后同时监测到了气体异常和热异常, 认为热异常与断裂带脱气有关(表2), 如2010年4月14日青海省玉树MS 7.1地震震后在断裂带附近出现的亮温增高现象与震后地下气体大量释放有关[107, 108], 2000年6月6日甘肃景泰MS5.9地震和2000年6月8日缅甸北部MS 6.9地震[109]、2001年1月26日印度GujaratMS7.8地震[93]、2002年3月31日台湾MS7.5地震[110]前, 卫星遥感数据均反映出CO含量异常现象, 且气体浓度异常与热红外异常吻合较好。屈春燕等[111]尝试利用卫星热红外观测地球排气现象, 他们用热红外数据监测昆仑山口西8.1级地震前后沿断裂带的冒气现象。Tank等[112]提出了一种利用高空间分辨率和高光谱分辨率的红外遥感影像通过探测地表热异常来确定脱气孔的空间位置和量化地表CO2脱气量的方法。

(2)直接观测

利用卫星遥感技术直接监测地震前后的气体地球化学异常依赖于具有大气成分探测功能的传感器的发展。丰富的大气成分监测数据为地震遥感气体地球化学监测提供了有效工具。国内外学者进行了多个震例的研究表明可以利用现有的卫星高光谱数据监测到地震前后大气中的CO, O3, CH4和水汽等气体异常[26]表2)。对2003— 2012全球113个7级以上地震的统计研究表明, 一半以上的地震会引起大气中的气体地球化学异常[95, 113]

地震引起的气体地球化学异常通常会出现多个参数的异常(表2)。如在2001年1月26日印度MS 7.8 Gujarat地震前后利用卫星资料发现了O3浓度[26]、水汽含量[91]和CO含量[93]3个参数的增高异常; 卫星高光谱观测结果显示汶川地震后CO浓度变化与余震分布有较好的对应关系, 且地震前2个月CO2浓度明显升高(图1[98], 水汽含量出现升高异常[114]

图1 2005~2008年汶川地震前后月平均CO2体积分数变化[98]Fig.1 Variations of CO2volume mixing ratio(VMR) associated Wenchuan earthquake during 2005 to 2008[98]

遥感气体地球化学异常出现的时间变化多样, 在震前几个月、地震当月、震后几个月都有可能, 且异常持续时间也长短各异。通常震级越大, 异常持续时间越长, 但是又不完全呈成正比关系。2004年12月26日苏门答腊北部8.9级地震前4个月开始出现CO总量异常, 异常持续时间达9个月; 在震前8个月出现O3异常, 异常持续时间达12月[115]。然而, 2002年3月31日台湾M 7.5地震前1天(3月30日)才出现CO异常[110]; 也有一些震例前后异常持续时间较短, 如2012年4月12日墨西哥7级地震CO异常持续时间仅有1个月[113]。在比月更短的时间尺度(每天的变化)上, 多数地震前后的O3变化趋势相似, 在地震发生当天O3浓度突然降低, 震后逐渐升高, 7~14天达到最高值, 然后慢慢降至正常水平[92, 94, 115~116]

地球脱气过程在很大程度上受地壳中众多破裂的分布和应力作用的控制, 因此遥感气体地球化学异常在空间上一般分布在震中及其附近, 异常范围可达到上千公里。其中, CO异常多呈团块状大面积分布, 或沿断裂展布。2010年4月5日墨西哥下加利福尼亚7.1级地震前后CO异常在震前2个月时呈分散状, 震前1个月时集中, 呈沿断裂分布的带状, 震后又分散减弱(图2[95]。该地震前后CO异常的空间分布特征, 与地表温度演化过程[117]一致。O3异常多呈团块状出现, 位置稍偏离震中, 一般在震中区及距震中几百公里的范围, 异常范围大于CO异常范围。一些震例O3异常值在震中位置低, 而在偏离震中的周围区域异常值高。

异常持续形式独立出现(1个月), 连续出现(持续几个月), 间歇出现, 对应了地球内部气体的释放方式为突发式、渐发式(或弥散式)、阵发式, 反映了地球内部压力释放的不同强度[78, 113]

地震是地壳应力调整的一种剧烈形式, 地下气体的各种变化能够反应构造活动过程。不同地震的不同气体参数的出现时间、持续时间、空间分布、异常持续形式不同[88], 反映了地球内部压力的释放过程, 有利于研究不同地震的演化过程。

3.2.3 异常机理

地震引起的遥感地球化学异常机理是一个研究难点。目前, 对地震前后遥感气体地球化学异常的原因解释可以归纳为以下几种:①地震孕育和发生过程中, 岩石在应力作用下破裂, 地下气体通过断层裂隙运移进入大气, 从而导致震中及其附近地区的气体异常。地球内部可以产生大量气体, 岩石破裂试验证明在岩石挤压、破裂过程中会产生气体(CH4, CO2), 产生的这些气体通过脱气作用沿断层和裂隙排出。②大气中的化学反应。地下排出的CH4在大气中氧化会形成过渡产物CO; CO是对流层O3的重要前体物, O3主要来自于CO的氧化。大气中的CO, O3和CH4关系密切、相互依赖[118~121], 都受OH浓度的影响, 当大气中某一组分浓度发生变化都会影响其他组分的浓度。③大气中的核反应。电离层扰动促进14N衰变形成14C, 然后氧化形成CO。④大气对流。大气中各圈层的动力学过程影响O3及其它气体的浓度变化。例如在地震发生时, 震中区大气压力突然降低, 从高纬度富含O3的区域传输到震中区也可引起O3浓度异常。此外, 从周围高压区域水平对流传输过来的NOx可促进O3浓度的升高[92, 122]

图2 墨西哥下加利福尼亚地震前后2~5月CO总量与背景值的差值分布图(单位:mole/cm2[95]Fig.2 Distributions of the differences between CO total columns in monthly from February to May 2010 and the corresponding background values(unit: mole/cm2)

表2 遥感气体探测技术监测的地震异常特征 Table 2 Gas anomaly characters associated with earthquakes by remote sensors

遥感卫星监测到的气体地球化学异常是岩石圈和大气圈共同作用的结果, 因此异常不仅受岩石圈地质构造背景、地表地形地貌和人类活动的影响, 还受大气中气候、气象等因素的影响。地球脱气除了地震引起的排气外, 还有火山排气、上地幔排气、油气藏排气、地表沉积排气和地表过程的排气等, 此外, 大气中的气象变化也会引起气体地球化学异常。因此, 部分气体异常是与地震无关的, 地震异常判定需要一定的准则。目前, 地震异常判定主要基于DTS(Deviation Time Space)准则。DTS准则主要包括显著性(异常幅度)、准同步性(出现时间)和邻近性(空间分布)3个准则。显著性, 即参数值变化显著偏离正常变化量, 震中地区平均值差超过1σ (标准偏差)的即认为是异常区域[95, 123]; 准同步性指多个参数在地震相近数日内出现显著性变化; 邻近性指出现变化的参数空间分布相近, 且靠近活动构造。而对于非震异常的研究还比较少。

4 结语

利用卫星高光谱技术监测地震前后的气体地球化学异常, 可充分发挥遥感不受地面条件限制的优势, 为地震监测工作提供一种新的技术手段, 同时为地震监测预报提供新的监测指标; 有利于促进地震监测和预测的发展, 提高地震预测的可靠性。但是, 急需提高高光谱传感器精度和空间分辨率。

利用卫星遥感影像可以获取地震前后气体组分浓度异常。这种气体地球化学异常主要归因于地应力作用下地下气体沿构造破裂带释放、加大震中区及其附近气体逸出量, 释放的气体在大气中经历大气物理、化学反应过程; 是地球各圈层综合作用的结果。此外, 火山排气、气象变化、人类活动、森林火灾等也会引起气体异常。因此, 研究地震引起的气体地球化学异常需要考虑气候、气象、地形、地貌等因素的影响, 加强非震异常的研究。

岩石圈— 大气圈是个复杂的耦合体系。因此, 研究与地震有关的气体地球化学异常, 应该结合红外遥感数据、电磁数据以及其他气体数据进行多参数的综合研究; 分析不同地区、不同类型地震的前兆种类、幅度、分布范围和持续时间等特征与规律; 深入研究地震有关的气体地球化学异常的形成机制及其与地震活动的关系。

The authors have declared that no competing interests exist.

参考文献
[1] Latchman J L, Morgan F D O, Aspinall W P. Temporal changes in the cumulative piecewise gradient of a variant of the Gutenberg-Richter relationship, and the imminence of extreme events[J]. Earth-Science Reviews, 2008, 87(3/4): 94-112. [本文引用:1] [JCR: 7.339]
[2] Mignan A. Non-Critical Precursory Accelerating Seismicity Theory (NC PAST) and limits of the power-law fit methodology[J]. Tectonophysics, 2008, 452(1/4): 42-50. [本文引用:1] [JCR: 2.684]
[3] Cui Zijian, Li Zhixiong, Chen Zhangli, et al. A study on the new method for determining small earthquake sequence type—Correlation analysis of spectral amplitude[J]. Chinese Journal of Geophysics, 2012, 55(5): 1718-1724.
[崔子健, 李志雄, 陈章立, . 判别小震群序列类型的新方法研究——谱振幅相关分析法[J]. 地球物理学报, 2012, 55(5): 1718-1724. ] [本文引用:1]
[4] Vallianatos F, Triantis D, Tzanis A, et al. Electric earthquake precursors: From laboratory results to field observations[J]. Physics and Chemistry of the Earth, 2004, 29(4/9): 339-351. [本文引用:1] [JCR: 1.037]
[5] Papazachos C B, Karakaisis G F, Scordilis E M, et al. Global observational properties of the critical earthquake model[J]. Bulletin of the Seismological Society of America, 2005, 95(5): 1 841-1 855. [本文引用:1] [JCR: 1.94]
[6] Theoharatos C, Ifantis A, Laskaris N A, et al. Charting of geoelectric potential signal dynamics via geometrical techniques and its possible relation to significant earthquakes in Western Greece[J]. Computers and Geosciences, 2008, 34(6): 625-634. [本文引用:1] [JCR: 1.834]
[7] Ondoh T. Investigation of precursory phenomena in the ionosphere, atmosphere and groundwater before large earthquakes of M>6. 5[J]. Advances in Space Research, 2009, 43(2): 214-223. [本文引用:1] [JCR: 1.183]
[8] Reddy D V, Nagabhushanam P. Groundwater electrical conductivity and soil radon gas monitoring for earthquake precursory studies in Koyna, India[J]. Applied Geochemistry, 2011, 26(5): 731-737. [本文引用:1] [JCR: 1.708]
[9] King C Y. Gas geochemistry applied to earthquake prediction: An overview[J]. Journal of Geophysical Research, 1986, 91(B12): 12269-12281. [本文引用:3]
[10] King C Y, Zhang W, Zhang Z C. Earthquake-induced groundwater and gas changes[J]. Pure and Applied Geophysics, 2006, 163(4): 633-645. [本文引用:1] [JCR: 1.617]
[11] Zhang Wei, Wang Jiyi, E Xiuman. Principles and Methods of Hydrogeochemical Prediction for Earthquakes[M]. Beijing: Education Press, 1988.
[张炜, 王吉易, 鄂秀满. 水文地球化学预报地震的原理与方法[M]. 北京: 教育出版社, 1988. ] [本文引用:1]
[12] Wakita H, Nakamura Y, Sano Y. Short-term and intermediate-term geochemical precursors[J]. Pure and Applied Geophysics, 1988, 125(2/4): 267-278. [本文引用:1] [JCR: 1.617]
[13] Du J, Si X, Chen Y, et al. Geochemical anomalies connected with great earthquakes in China[C]∥Stefánsson O, ed. Geochemistry Research Advances. New York: Nova Science Publishers, 2008: 57-92. [本文引用:1]
[14] Du J, Amida K, Ohsawa S, et al. Experimental evidence on imminent and short-term hydrochemical precursors for earthquake[J]. Applied Geochemistry, 2010, 25(4): 586-592. [本文引用:1] [JCR: 1.708]
[15] Zhang J, Gao R, Zeng L, et al. Relationship between characteristics of gravity and magnetic anomalies and the earthquakes in the Longmenshan range and adjacent areas[J]. Tectonophysics, 2010, 491(1/4): 218-229. [本文引用:1] [JCR: 2.684]
[16] Jiang Zaisen, Zhang Xi, Zhu Yiqing, et al. Regional tectonic deformation setting before the Ms 8. 1 earthquake in the west of the Kunlun Mountains Pass[J]. Science in China(Series D), 2003, 33(Suppl. ): 163-172.
[江在森, 张希, 祝意青, . 昆仑山口西Ms 8. 1地震前区域构造变形背景[J]. 中国科学: D辑, 2003, 33(增刊): 163-172. ] [本文引用:1]
[17] Jiang Zaisen, Zhang Xi, Zhang Jing, et al. Studies of Extracting Dynamic Imageof Crustal Deformation and Technique for Predicting Great Earthquake[M]. Beijing: Seismological Press, 2013.
[江在森, 张希, 张晶, . 地壳形变动态图象提取与强震预测技术研究[M]. 北京: 地震出版社, 2013. ] [本文引用:1]
[18] Wu Yilin. Identification of Characteristics of Seismic Deformation Precursor[M]. Beijing: Seismological Press, 1994.
[吴翼麟. 地震形变前兆特征的识别与研究[M]. 北京: 地震出版社, 1994. ] [本文引用:1]
[19] Qiang Z, Lin C, Li L, et al. Atellitic thermal infrared brightness temperature anomaly image—Short-term and impending earthquake precursors[J]. Science in China(Series D), 1999, 42(3): 313-324. [本文引用:3]
[20] Tronin A A, Hayakawa M, Molchanov O A. Thermal IR satellite data application for earthquake research in Japan and China[J]. Journal of Geodynamics, 2002, 33(4/5): 519-534. [本文引用:2] [JCR: 2.967]
[21] Kang Chunli. Research on relation between the OLR field change and earthquake activity in Chuan-Dian region of China[J]. Earthquake, 2008, 28(3): 43-48.
[康春丽. 川滇地区长波辐射场变化与地震活动关系研究[J]. 地震, 2008, 28(3): 43-48. ] [本文引用:1] [CJCR: 0.863]
[22] Massonnet D, Rossi M, Carmona C. The displacement field of the Land ers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6 433): 138-142. [本文引用:1] [JCR: 38.597]
[23] Shan X J, Ma J, Wang C L, et al. Co-seismic ground deformation and source parameters of Mani M 7. 9 earthquake inferred from spaceborne D-InSAR observation data[J]. Science in China(Series D), 2004, 47(6): 481-488. [本文引用:1]
[24] Olsen E T, Chahine M T, Chen L L, et al. Retrieval of Mid-tropospheric CO2 Directly from AIRS Measurements[R]. Pasadena CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2008. [本文引用:2]
[25] Hayakawa M, Molchanov O A, NASDA/UEC Team. Summary report of NASDA’s earthquake remote sensing frontier project[J]. Physics and Chemistry of the Earth, 2004, 29(4/9): 617-625. [本文引用:1] [JCR: 1.037]
[26] Tronin A A. Remote sensing and earthquakes: A review[J]. Physics and Chemistry of the Earth, 2006, 31(4/9): 138-142. [本文引用:4] [JCR: 1.037]
[27] King J I F. The radiative heat transfer of planet Earth[C]∥Van Allen James A, ed. Scientific Use of Earth Satellites. Michigam: Ann Arbor University of Michigan Press, 1956: 133-136. [本文引用:1]
[28] Kaplan L D. Inference of atmospheric structure from remote radiation measurements[J]. Journal of the Optical Society of America, 1959, 49(10): 1 004-1 007. [本文引用:1]
[29] Cheng Jie, Liu Qinhuo, Li Xiaowen. Review of trace gases inversion utilizing space-borne hyperspectral infrared remote sensor data[J]. Remote Sensing Information, 2007, (2): 90-97.
[程洁, 柳钦火, 李小文. 星载高光谱红外传感器反演大气痕量气体综述[J]. 遥感信息, 2007, (2): 90-97. ] [本文引用:1] [CJCR: 0.7]
[30] Clarisse L, R’Honi Y, Coheur P F, et al. Thermal infrared nadir observations of 24 atmospheric gases[J]. Geophysical Research Letters, 2011, 38: L10802-L10806. [本文引用:1] [JCR: 3.982]
[31] Smith W L, Woolf H M, Hayden C M, et al. TIROS-N operational vertical sounder[J]. Bulletin of the American Meteorological Society, 1979, 60(10): 1177-1187. [本文引用:1] [JCR: 6.591]
[32] Persky M J. A review of spaceborne infrared Fourier transform spectrometers for remote sensing[J]. Review of Scientific Instruments, 1995, 66(10): 4763-4797. [本文引用:1] [JCR: 1.367]
[33] Kobayashi H, Shimota A, Yoshigahara C, et al. Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evalution[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1496-1507. [本文引用:1] [JCR: 3.467]
[34] Kobayashi H, Shimota A, Kondo K, et al. Development and evaluation of the interferometric monitor for green-house gases: A high-throughput Fourier-transform infrared radiometer for nadir Earth observation[J]. Applied Optics, 1999, 38(33): 6801-6807. [本文引用:1] [JCR: 1.689]
[35] Zheng Yuquan. Development status of remote sensing instruments for greenhouse gases[J]. Chinese Optics, 2011, 4(6): 546-561.
[郑玉权. 温室气体遥感探测仪器发展现状[J]. 中国光学, 2011, 4(6): 546-561. ] [本文引用:1] [CJCR: 0.4641]
[36] Liu Yi, Daren, Chen Hongbin, et al. Advances in technologies and methods for satellite remote sensing of atmospheric CO2[J]. Remote Sensing Technology and Application, 2011, 26(2): 247-254.
[刘毅, 吕达仁, 陈洪滨, . 卫星遥感大气CO2的技术与方法进展综述[J]. 遥感技术与应用, 2011, 26(2): 247-254. ] [本文引用:1] [CJCR: 0.749]
[37] Wang Qiao, Li Qing, Chen Liangfu, et al. Technology of Satellite Remote Sensing for Atmospheric Environment Application[M]. Beijing: Science Press, 2011.
[王桥, 历青, 陈良富, . 大气环境卫星遥感技术及其应用[M]. 北京: 科学出版社, 2011. ] [本文引用:1]
[38] Dong Chaohua, Li Jun, Zhang Peng, et al. Principle of Hyperspectral Infrared Satellite Remote Sensing for Atmospheric Application[M]. Beijing: Science Press, 2013.
[董超华, 李俊, 张鹏, . 卫星高光谱红外大气遥感原理和应用[M]. 北京: 科学出版社, 2013. ] [本文引用:1]
[39] Gille J C, Pan L, Smith M W, et al. Retrieval of carbon monoxide profiles and total methane columns from MOPITT measurements[C]∥Geoscience and Remote Sensing Symposium, 1994. [本文引用:1]
[40] Aumann H H, Pagano R J. Atmospheric Infrared Sounder on the Earth Observing System[J]. Optical Engineering, 1994, 33(3): 776-784. [本文引用:1] [JCR: 0.88]
[41] Aumann H H, Chahine M T, Gautier C, et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 253-264. [本文引用:1] [JCR: 3.467]
[42] Frankenberg C, Platt U, Wagner T. Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases: Model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT[J]. Atmospheric Chemistry and Physics, 2005, 5(6): 9-22. [本文引用:1] [JCR: 5.51]
[43] Ahmad S P, Levelt P F, Bhartia P K, et al. Atmospheric products from the Ozone Monitoring Instrument (OMI)[C]∥Barnes W L, ed. Earth Observing Systems VIII. Proceedings of SPIE. California, 2003, 5 151: 619-631. [本文引用:1]
[44] Richter A, Burrow J P. Tropospheric NO2 from GOME measurements[J]. Advances in Space Research, 2002, 29(11): 1 673-1 683. [本文引用:1] [JCR: 1.183]
[45] Blumstein D, Chalon G, Carlier T, et al. IASI instrument: Technical overview and measured performances[C]//Infrared Spaceborne Remote Sensing XII Proceedings of SPIE. Denver, Colorado, 2004, 5543: 196-207. [本文引用:1]
[46] Razavi1 A, Clerbaux C, Wespes C, et al. Characterization of methane retrievals from the IASI space-borne sounder[J]. Atmospheric Chemistry and Physics, 2009, 9(20): 7889-7899. [本文引用:1] [JCR: 5.51]
[47] Clerbaux C, Boynard A, Clarisse L, et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder[J]. Atmospheric Chemistry and Physics, 2009, 9(16): 6041-6054. [本文引用:1]
[48] Shimoda H. . Overview of Japanese earth observation programs[C]∥ Meynart R, Neeck S P, Shimoda H, eds. Sensors, Systems, and Next-Generation Satellites XVII. Germany: SPIE Proceedings, 2013, doi: DOI:10.1117/12.2029454. [本文引用:1]
[49] Deron S, Gail B, Chad F, et al. Calibration and validation on-orbit plan of the NPOESS Crosstrack Infrared Sounder (CRIS)[C], IEEE International, 2011: 3 388-3 390. [本文引用:1]
[50] Bell A, Daum R. Remote sensing of atmospheric pollution by passive FTIR spectrometry[C]∥Schäfer K, ed. Spectroscipic Atmospheric Environmental Monitoring Tedniq Proceedings of SPIE. Barcelona, 1998, 3 493: 32-43. [本文引用:1]
[51] Petersen A K, Warneke T, Frankenberg C, et al. First ground-based FTIR observations of methane in the inner tropics over several years[J]. Atmospheric Chemistry and Physics, 2010, 10(15): 7 231-7 239. [本文引用:1] [JCR: 5.51]
[52] Platt U, Perner D, Pätz H W. Simultaneous measurements of atmospheric CH2O, O3 and NO2 by differential optical absorption[J]. Journal of Geophysical Research, 1979, 84(C10): 6 329-6 335. [本文引用:1]
[53] Platt U, Perner D. Direct measurements of atmospheric CH2O, HNO2, O3 and SO2 by differential optical absorption in the near UV[J]. Journal of Geophysical Research, 1980, 85(C12): 7 453-7 458. [本文引用:1]
[54] Buchwitz M, de Beek R, Noёl S, et al. Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: Year 2003 initial data set[J]. Atmospheric Chemistry and Physics, 2005, 12(5): 3 313-3 329. [本文引用:3] [JCR: 5.51]
[55] Schneising O, Buchwitz M, Burrows J P, et al. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite-Part 2: Methane[J]. Atmospheric Chemistry and Physics, 2009, 9(2): 443-465. [本文引用:1] [JCR: 5.51]
[56] Barkley M P, Frie β U, Monks P S. Measuring atmospheric CO2 from space using Full Spectral Initiation (FSI) WFM-DOAS[J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3 517-3 534. [本文引用:1] [JCR: 5.51]
[57] Schneising O, Buchwitz M, Burrows J P, et al. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite. Part 1: Carbon dioxide[J]. Atmospheric Chemistry and Physics, 2008, 8(14): 3 827-3 853. [本文引用:1] [JCR: 5.51]
[58] Chahine M, Barnet C, Olsen E T, et al. On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2[J]. Geophysical Research Letters, 2005, 22(32), doi: DOI:10.1029/2005GL024165. [本文引用:1] [JCR: 3.982]
[59] Krotkov N A, Carn S A, Krueger A J, et al. Band residual difference algorithm for retrieval of SO2 from the Aura Ozone Monitoring Instrument (OMI)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1 259-1 266. [本文引用:2] [JCR: 3.467]
[60] Liu Yang, Cai Bo, Ban Xianxiu, et al. Research progress of retrieving atmosphere humidity profiles from AIRS data[J]. Advances in Earth Science, 2013, 28(8): 890-896.
[刘旸, 蔡波, 班显秀, . AIRS红外高光谱资料反演大气水汽廓线研究进展[J]. 地球科学进展, 2013, 28(8): 890-896. ] [本文引用:1] [CJCR: 1.388]
[61] Carvalho A R, Carvalho J C, Da Silva J D, et al. Neural network based models for the retrieval of methane concentration vertical profiles from remote sensing data[C]// Anais XIII Simpósio Brasileiro de Sensoriamento Remoto. Florianópolis, Brasil, 2007, 21/26: 6 437-6 442. [本文引用:1]
[62] Schoeberl M R, Ziemke J R, Bojkov B, et al. A trajectory-based estimate of the tropospheric ozone column using the residual method[J]. Journal of Geophysical Research, 2007, 112: D24S49, doi: DOI:10.1029/2007JD008773. [本文引用:1]
[63] Turquety S, Hadji-Lazaro J, Clerbaux C, et al. Operational trace gas retrieval algorithm for the Infrared Atmospheric Sounding Interferometer[J]. Journal of Geophysical Research, 2004, 109: D21301, doi: DOI:10.1029/2004JD004821. [本文引用:1]
[64] Bai Wenguang. Preliminary Study of Satellite Remote Sensing of Greenhouse Gases Methane of Chinese Academy of Meteorological Sciences[D]. Beijing: Chinese Academy of Meteorological Sciences, 2010.
[白文广. 温室气体CH4卫星遥感监测初步研究[D]. 北京: 中国气象科学研究院, 2010. ] [本文引用:1]
[65] Frankenberg C, Platt U, Wagner T. Retrieval of CO from SCIAMACHY onboard ENVISAT: Detection of strongly polluted areas and seasonal patterns in global CO abundances[J]. Atmospheric Chemistry and Physics, 2005, 5(6): 1 639-1 644. [本文引用:1] [JCR: 5.51]
[66] McMillan W W, Barnet C, Strow L, et al. Daily global maps of carbon monoxide from NASA’s atmospheric infrared sounder[J]. Geophysical Research Letters, 2005, 32(11): L11801, doi: DOI:10.1029/2004GL021821. [本文引用:1] [JCR: 3.982]
[67] Bousquet P, Ciais P, Miller J B, et al. Contribution of anthropogenic and natural sources to atmospheric methane variability[J]. Nature, 2006, 443(7 110): 439-443. [本文引用:1] [JCR: 38.597]
[68] Hou Yanfang, Wang Shixin, Zhou Yi, et al. Analysis of the carbon dioxide concentration in the lowest atmospheric layers and the factors affecting China based on satellite observations[J]. International Journal of Remote Sensing, 2013, 34(6): 1 981-1 994. [本文引用:1]
[69] Beirle S, Platt U, Wenig M, et al. Weekly cycle of NO2 by GOME measurements: A signature of anthropogenic sources[J]. Atmospheric Chemistry and Physics, 2003, 3(6): 2 225-2 232. [本文引用:1] [JCR: 5.51]
[70] Kasibhatla P, Heimann M, Rayner P, et al. Inverse Methods in Global Biogeochemical Cycles[M]. US: American Geophysical Union, 2000. [本文引用:1]
[71] Bovensmann H, Buchwitz M, Burrows J P, et al. A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications[J]. Atmospheric Measurement Techniques, 2010, 3(4): 781-811. [本文引用:1] [JCR: 3.205]
[72] Loyola D, van Geffen J, Valks1 P, et al. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America[J]. Advances in Geosciences, 2008, 1(2): 35-40. [本文引用:1]
[73] Carn S A, Strow L L, de Souza-Machado S, et al. Quantifying tropospheric volcanic emissions with AIRS: The 2002 eruption of Mt. Etna (Italy)[J]. Geophysical Research Letters, 2005, 32: L02301, doi: DOI:10.1029/2004GL021034. [本文引用:1] [JCR: 3.982]
[74] Prata A J, Bernardo C. Retrieval of volcanic SO2 column abundance from atmospheric infrared sounder data[J]. Journal of Geophysical Research, 2007, 112(D20), doi: DOI:10.1029/2006JD007955. [本文引用:1]
[75] Khokhar M F, Frankenberg C, Van Roozendael M, et al. Satellite observations of atmospheric SO2 from volcanic eruptions during the time-period of 1996-2002[J]. Advances in Space Research, 2005, 36(5): 879-887. [本文引用:1] [JCR: 1.183]
[76] Justice C O. The MODIS fire products[J]. Remote Sensing of Environment, 2002, 83(1): 244-262. [本文引用:1] [JCR: 5.103]
[77] Martin R V. Satellite remote sensing of surface air quality[J]. Atmospheric Environment, 2008, 42(34): 7 823-7 843. [本文引用:1] [JCR: 3.11]
[78] Zheng Leping. Another source of greenhouse gas CO2 : The Earth’s interior[J]. Research of Environmental Sciences, 1998, 11(2): 21-24.
[郑乐平. 温室气体CO2的另一源——地球内部[J]. 环境科学研究, 1998, 11(2): 21-24. ] [本文引用:2] [CJCR: 1.295]
[79] Salazar J M L, Perez N M, Hernand ez P A, et al. Precursory diffuse carbon dioxide degassing signature related to a 5. 1 magnitude earthquake in El Salvado, Central America[J]. Earth and Planetary Science Letters, 2002, 205(1): 81-89. [本文引用:2] [JCR: 4.349]
[80] Weinlich F H, Faber E, Bouškov A, et al. Seismically induced variations in Mariánské Láznē fault gas composition in the NW Bohemian swarm quake region, Czech Republic—A continuous gas monitoring[J]. Tectonophys, 2006, 421(1/2): 89-110. [本文引用:1]
[81] Walia V, Virk H S, Bajwa B S. Radon precursory signals for some earthquakes of magnitude >5 occurred in NW Himalaya: An overview[J]. Pure and Applied Geophysics, 2006, 163(4): 711-721. [本文引用:1] [JCR: 1.617]
[82] Walia V, Yang T F, Hong W L, et al. Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan[J]. Applied Radiation and Isotopes, 2009, 67(10): 1 855-1 863. [本文引用:1] [JCR: 1.179]
[83] Zhou X, Du J, Chen Z, et al. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan MS 8. 0 earthquake, southwestern China[J]. Geochemical Transactions, 2010, 11(5), doi: DOI:10.1186/1467-4866-11-5. [本文引用:1] [JCR: 1.5]
[84] Quattrocchi F, Galli G, Gasparini A, et al. Very slightly anomalous leakage of CO2, CH4 and radon along the main activated faults of the strong L’Aquila earthquake (Magnitude 6. 3, Italy). Implications for risk assessment monitoring tools & public acceptance of CO2 and CH4 underground storage[J]. Energy Procedia, 2011, 4: 4 067-4 075. [本文引用:1]
[85] Li Y, Du J, Wang X, et al. Spatial variations of soil gas geochemistry in the Tangshan area of Northern China[J]. Terrestrial, Atmospheric & Oceanic Sciences, 2013, 24(3): 323-332. [本文引用:1]
[86] Voltattorni N, Quattrocchi F, Gasparini A, et al. Soil gas degassing during the 2009 L’Aquila earthquake: Study of the seismotectonic and fluid geochemistry relation[J]. Italian Journal of Geosciences, 2012, 131(3): 440-447. [本文引用:1] [JCR: 0.875]
[87] Uysal I T, Feng Yuexing, Zhao Jianxin, et al. Hydrothermal CO2 degassing in seismically active zones during the late Quaternary[J]. Chemical Geology, 2009, 265(3/4): 442-454. [本文引用:1] [JCR: 3.154]
[88] Kasimov N S, Kovin M I, Proskuryakov Y V, et al. Geochemistry of the soils of fault zones (exemplified by Kazakhstan)[J]. Soviet Soil Science, 1978, 10(4): 397-406. [本文引用:2]
[89] Zhu Hongren, Wang Chengmin, Wan Dengbao, et al. A preliminary study on the scale of gaseous geochemistry for determining Seismic intensity[J]. Earthquake Research in China, 1991, 7(1): 59-64.
[朱宏任, 汪成民, 万登堡, . 地震烈度的气体地球化学标度初探[J]. 中国地震, 1991, 7(1): 59-64. ] [本文引用:1] [CJCR: 0.657]
[90] Toutain J P, Baubron J C. Gas geochemistry and seismotectonics: A review[J]. Tectonophys, 1999, 304(1): 1-27. [本文引用:1]
[91] Dey S, Sarkar S, Singh R P. Anomalous changes in column water vapor after Gujarat earthquake[J]. Advances in Space Research, 2004, 33(3): 274-278. [本文引用:2] [JCR: 1.183]
[92] Ganguly N D. Variation in atmospheric ozone concentration following strong earthquakes[J]. International Journal of Remote Sensing, 2009, 30(2): 349-356. [本文引用:2]
[93] Singh R P, Kumar S J, Zlotnicki J, et al. Satellite detection of carbon monoxide emission prior to the Gujarat earthquake of 26 January 2001[J]. Applied Geochemistry, 2010, 25(4): 580-585. [本文引用:2] [JCR: 1.708]
[94] Amani A, Mansor S, Pradhan B, et al. Coupling effect of ozone column and atmospheric infrared sounder data reveal evidence of earthquake precursor phenomena of Bam earthquake, Iran[J]. Arabian Journal of Geosciences, 2013, 7(4): 1 517-1 527. [本文引用:1] [JCR: 0.74]
[95] Cui Y, Du J, Zhang D, et al. Anomalies of total column CO and O3 associated with great earthquakes in recent years[J]. Natural Hazards and Earth System Sciences, 2013, 13(10): 2 513-2 519. [本文引用:3] [JCR: 1.751]
[96] Ganguly N D. The impact of transported ozone-rich air on the atmospheric ozone content following the 26 January 2001 and 7 March 2006 Gujarat earthquake[J]. Remote Sensing Letters, 2011, 2(3): 195-202. [本文引用:1] [JCR: 1.615]
[97] Cui Yueju, Du Jianguo, Zhou Xiaocheng, et al. Geochemical anomaly of CO remote sensing associated with Baja California Mw 7. 2 earthquake in Mexico[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(4): 458-464.
[崔月菊, 杜建国, 周晓成, . 墨西哥下加利福尼亚Mw7. 2地震前后CO遥感地球化学异常[J]. 矿物岩石地球化学通报, 2011, 30(4): 458-464. ] [本文引用:1] [CJCR: 0.946]
[98] Cui Yueju.  Satellite Hyper-Spectrum Information of Gas Geochemistry Related to Earthquakes[D]. Beijing: Institute of Earthquake Science, China Earthquake Administration, 2011.
[崔月菊. 地震相关的卫星高光谱气体地球化学信息[D]. 北京: 中国地震局地震预测研究所, 2011. ] [本文引用:2]
[99] Hamza V M. Tectonic leakage of fault bounded aquifers subject to non-isothermal recharge: A mechanism generating thermal precursors to seismic events[J]. Physics of the Earth and Planetary Interiors, 2001, 126(3): 163-177. [本文引用:1] [JCR: 2.383]
[100] Qiang Z J, Xu X D, Dian C G. Thermal infrared anomaly precursor of impending earthquakes[J]. Chinese Science Bulletin, 1991, 36(4): 319-323. [本文引用:1] [CJCR: 0.95]
[101] Tramutoli V, Di Bello G, Pergola N, et al. Robust satellite techniques for remote sensing of seismically active areas[J]. Annals of Geophysics, 2001, 44(2): 295-312. [本文引用:1] [JCR: 1.138]
[102] Tramutoli V, Aliano C, Corrado R, et al. Abrupt change in greenhouse gases emission rate as a possible genetic model of TIR anomalies observed from satellite in Earthquake active regions[C]∥Proceedings of 33rd International Symposium on Remote Sensing of Environment (ISRSE33). Italy: Stresa, Lago Maggiore, 2009: 4-8. [本文引用:1]
[103] Gorny V I, Salman A G, Tronin A A, et al. The Earth outgoing IR radiation as an indicator of seismic activity[J]. Doklady Akademii Nauk USSR, 1988, 301(1): 67-69. [本文引用:1]
[104] Ouzounov D, Freund F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data[J]. Advances in Space Research, 2004, 33(3): 268-273. [本文引用:1] [JCR: 1.183]
[105] Xu Xiudeng, Xu Xiangmin, Ma Shengdeng, et al. A preliminary understand ing of the imminent atmospheric temperature anomaly genesis[J]. Acta Seismologica Sinica, 1995, 17(1): 123-137.
[徐秀登, 徐向民, 马升灯, . 临震大气增温异常成因的初步认识[J]. 地震学报, 1995, 17(1): 123-137. ] [本文引用:1] [CJCR: 0.771]
[106] Lu Zhenquan, Qiang Zuji, Wu Bihao. A tentative interpretation of the formation of high temperature anomaly in Satellite-based Thermal Infrared Scanning Images(STISI) of the South China Sea before earthquake[J]. Acta Geoscientia Sinica, 2002, 23(1): 42-46.
[卢振权, 强祖基, 吴必豪. 南海临震前卫星热红外增温异常原因初探[J]. 地球学报, 2002, 23(1): 42-46. ] [本文引用:1] [CJCR: 1.268]
[107] Cui Yueju, Du Jianguo, Chen Zhi, et al. Remote sensing signals of atmospheric physics and chemistry related to 2010 Yushu MS 7. 1 Earthquake[J]. Advances in Earth Science, 2011, 26(7): 787-794.
[崔月菊, 杜建国, 陈志, . 2010年玉树MS7. 1地震前后大气物理化学遥感信息[J]. 地球科学进展, 2011, 26(7): 787-794. ] [本文引用:1] [CJCR: 1.388]
[108] Jing Feng, Shen Xuhui, Zhang Tiebao, et al. Variation characteristics in infrared radiation of active fault zone related to earthquakes[J]. Remote Sensing for Land & Resources, 2013, 25(1): 56-60.
[荆凤, 申旭辉, 张铁宝, . 与地震相关的活动断裂带红外辐射变化特征[J]. 国土资源遥感, 2013, 25(1): 56-60. ] [本文引用:1]
[109] Yao Qinglin, Qiang Zuji, Wang Yiping. CO release from the Tibetan Plateau before earthquake and increasing temperature anomaly showing in thermal infrared images of satellite[J]. Advances in Earth Science, 2005, 20(5): 505-510.
[姚清林, 强祖基, 王弋平. 青藏高原地震前CO的排放与卫星热红外增温异常[J]. 地球科学进展, 2005, 20(5): 505-510. ] [本文引用:1] [CJCR: 1.388]
[110] Guo Guangmeng, Cao Yungang, Gong Jianming. Monitoring anomaly before earthquake with MODIS and MOPITT data[J]. Advances in Earth Science, 2006, 2(7): 695-698.
[郭广猛, 曹云刚, 龚建明. 使用MODIS和MOPITT卫星数据监测震前异常[J]. 地球科学进展, 2006, 2(7): 695-698. ] [本文引用:2] [CJCR: 1.388]
[111] Qu Chunyan, Ma Jin, Shan Xinjian. An attempt to observe gas releasing phenomena of the earthquake by using satellite thermal infrared technique[J]. Seismology and Geology, 2004, 26(3): 539-547.
[屈春燕, 马瑾, 单新建. 利用卫星热红外观测地球排气现象的一次尝试[J]. 地震地质, 2004, 26(3): 539-547. ] [本文引用:1] [CJCR: 0.855]
[112] Tank V, Pfanz H, Kick H. New remote sensing techniques for the detection and quantification of Earth surface CO2 degassing[J]. Journal of Volcanology and Geothermal Research, 2008, 177(2): 515-524. [本文引用:1] [JCR: 2.193]
[113] Cui Yueju. CO, O3 and CH4 Anomalies of Remote Sensing Geochemistry Occurred before and after Great Earthquakes[D]. Beijing: China University of Geosciences (Beijing), 2014.
[崔月菊. 大地震前后CO, O3和CH4遥感地球化学异常特征[D]. 北京: 中国地质大学(北京), 2014. ] [本文引用:3]
[114] Singh R P, Mehdi W, Gautam R, et al. Precursory signals using satellite and ground data associated with the Wenchuan earthquake of 12 May 2008[J]. International Journal of Remote Sensing, 2010, 31(13): 3 341-3 354. [本文引用:1]
[115] Sun Yutao, Cui Yueju, Liu Yongmei, et al. Remote sensing anomalies of CO and O3 related to two giant Sumatra earthquakes occurred in 2004 and 2005[J]. Remote Sensing Information, 2014, 29(2): 49-55.
[孙玉涛, 崔月菊, 刘永梅, . 苏门答腊2004、2005年两次大地震前后CO和O3遥感信息[J]. 遥感信息, 2014, 29(2): 49-55. ] [本文引用:2] [CJCR: 0.7]
[116] Singh R P, Cervone G, Singh V P, et al. Generic precursors to coastal earthquakes: Inferences from Denali fault earthquake[J]. Tectonophys, 2007, 431(1/4): 231-240. [本文引用:1]
[117] Chen Yang. Study on Earthquake-related Anomalous Features of Infrared Remote Sensing[D]. Beijing: Institute of Earthquake Science, China Earthquake Administration, 2011.
[陈杨. 地震红外遥感异常特征综合研究: [D]. 北京: 中国地震局地震预测研究所, 2011. ] [本文引用:1]
[118] Thompson A M, Cicerone R J. Possible perturbations to atmospheric CO, CH4, and OH[J]. Journal of Geophysical Research, 1986, 91(D10): 10 853-10 864. [本文引用:1]
[119] Levy H. Photochemistry of the lower troposphere[J]. Planetary and Space Science, 1972, 20(6): 919-935. [本文引用:1] [JCR: 2.109]
[120] Crutzen P J. A discussion of the chemistry of some minor constituents in the stratosphere and troposphere[J]. Pure and Applied Geophysics, 1973, 106(5/7): 1 385-1 399. [本文引用:1] [JCR: 1.617]
[121] Wofsy S C. Interactions of CH4 and CO in the Earth’s atmosphere[J]. Annual Review Earth and Planetary Science, 1976, 4: 441-469. [本文引用:1] [JCR: 8.833]
[122] Guo Fengxia, Ju Xiaoyu, Chen Cong. Review and progress of estimate on nitrogen oxide production by lightning[J]. Advances in Earth Science, 2013, 28(3): 305-317.
[郭凤霞, 鞠晓雨, 陈聪. 估算闪电产生氮氧化物量的研究回顾与进展[J]. 地球科学进展, 2013, 28(3): 305-317. ] [本文引用:1] [CJCR: 1.388]
[123] Ouzounov D, Liu D, Chunli K, et al. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes[J]. Tectonophysics, 2007, 431(1/4): 211-220. [本文引用:1] [JCR: 2.684]