非平稳风沙运动研究进展
王萍1,2, 郑晓静1,2
1. 兰州大学西部灾害与环境力学教育部重点实验室, 甘肃 兰州 730000
2. 兰州大学土木工程与力学学院力学系, 甘肃 兰州 730000

作者简介:王萍(1978-),女,辽宁沈阳人,讲师,主要从事风沙环境力学研究. E-mail:wping@lzu.edu.cn

摘要

风蚀输沙起动条件与输沙率预测是风蚀预报、沙尘数值预报与风沙地貌演化以及防沙治沙工程研究所需的关键参数,因而一直是风沙物理学研究的重点课题。早期的研究主要关注稳态输沙过程,对野外实际输沙过程的预测存在相当大的误差。近年高频的实时同步输沙、风速测量显示:大气边界层近地表风速脉动强烈,因而导致野外实际输沙具有高度的时空变化。研究发现:风沙输运的非平稳特性与边界层湍流结构密切相关,因而会对沙粒起动条件判断、输沙率预测等产生影响。回顾了近20年中非平稳输沙研究在实验、理论以及数值模拟方面的进展,并提出了目前存在的问题和今后发展的趋势。

关键词: 输沙率时空变化; 湍流结构; 风速脉动
中图分类号:P931.3 文献标志码:A 文章编号:1001-8166(2014)07-0786-09
Development of Unsteady Windblown Sand Transport
Wang Ping1,2, Zheng Xiaojing1,2
1. Key Laboratory of Mechanics on Disaster and Environment in Western China, MEC, Lanzhou University, Lanzhou 730000, China
2. Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China
Abstract

The threshold condition and mass flux of aeolian sediment transport are the essential quantities for wind erosion prediction, dust storm modeling and geomorphological evolution, as well as the sand control engineering design. As a consequence, they have long been the key issues of windblown sand physics. Early researches on aeolian sediment transport focus mainly on steady transport process. While recently, synchronous, high frequency measurements show that wind field in atmospheric boundary layer is always unsteady, showing up as intense fluctuation of wind speed, which thus results in the intense spatial-temporal variability of aeolian sand transport. It has been proven that unsteady sand/dust transport is closely related with boundary layer turbulence and affects significantly the determination of threshold condition and the prediction of aeolian transport rate. The researches of experiment, theory analysis and numerical simulation on unsteady sand/dust transport in recent two decades are reviewed. Finally, open questions and future developments are suggested.

Keyword: Spatiotemporal ariability of transport rate; Turbulence structure; Wind fluctuation.
1 引 言

气流卷起的沙粒在地表的跃移和在高空的悬移、输送,导致土壤风蚀、沙尘暴等风沙环境问题,并形成各种风成地貌,如沙波纹、沙丘等[ 1]。自Bagnold[ 2]以来,开展了大量有关复杂条件下沙粒起动与输送的研究,并取得了许多重要的进展[ 3],获得了许多基于流动参数(主要是平均速度、剪切速度或剪切应力)和沙粒性质进行输沙率预测的模型[ 4~ 16]。但是,这些模型已被证明仅在某些理想条件下(如风洞实验或均匀无限大地表)才能获得相对可靠的预测结果[ 17],对野外实际输沙率的预测存在相当大的误差[ 18]。这使得建立模型的各种基本条件开始受到质疑,如稳态输沙假设的自平衡关系是否能充分代表野外非均匀非稳态风场条件下输沙的动力过程[ 17]

大气边界层的雷诺数一般可高达107~108,大风时湍流度可达20%以上,沙尘暴期间近地表风速脉动强烈[ 19],地表条件也并非均匀平坦,因而导致野外实际输沙在空间、时间上的非均匀性与随机性[ 20~ 23]。目前,风沙运动研究的焦点更多集中于风沙流的非平稳特征,相关的问题如:起沙条件与输沙率的时空变化、湍流结构与输沙之间的关系,以及流场脉动特征对输沙率预测结果的影响等。本文主要回顾了近年来非平稳输沙研究在实验观测与理论模拟方面的最新进展,并针对研究的现状对未来的发展趋势进行了讨论。

2 风沙流的平衡与非平衡

目前已经被广泛接受的风沙跃移模型包含4个基本的子过程:①沙粒的流体起动;②单颗沙粒在空中的运动;③沙粒与床面碰撞产生的反弹和溅射;④沙粒群对风场的反作用。流体起动沙粒数正比于流体剪切应力与床面沙粒临界剪切应力之差,进入气流中的沙粒由于重力作用,经过典型的抛物线轨迹后以10°~15°的角度冲击床面,部分反弹并溅起床面上的其他沙粒,但这一过程中形成的跃移“级串”并不会无限制增加,而是由于风—沙耦合作用导致跃移层内风速降低,最终达到一种动态平衡,即:进入风沙流中的沙粒数与落回床面的沙粒数近似相等,此时,流体剪切应力等于临界剪切应力,流体起动沙粒数为零。

Anderson等[ 24, 25]和 McEwan等[ 26]最早实现了风沙流随时间演化过程的模拟。此后,Zheng等[ 27~ 29],和 Zhang等[ 30] 结合风洞实验研究所获得的沙粒带电和风沙电场规律,建立了考虑风—沙—电—热多场耦合的风沙流模型,分析了热对流和风沙电场对输沙率的影响。Kok等[ 31] 提出了COMSALT (comprehensive numerical model of steady state saltation, 稳态输沙综合数值模型),考虑了混合粒径床面以及更为细致的击溅过程。Shao 等[ 32]及Ma等[ 33]的二维模型给出了输沙率的空间演化规律。数值模型的结果表明,跃移对流体突然加速的响应时间约为1 s,输沙率在1~2 s后出现极大值,而后逐渐减小至稳定状态,沿流向存在与时间类似的过程,输沙率经过初始的发展阶段后将达到稳定的饱和状态,与风洞实验[ 34]的结果吻合。相比于更早建立的稳态模型[ 10, 35],尽管风沙流演化模型考虑跃移系统对风速变化的响应并可以模拟风速廓线的变化过程,但模型的一个重要假定是:流动充分发展,不考虑边界层的时空变化,因而才能最终获得风场与跃移沙粒之间的平衡状态。

McEwan等[ 26, 36]认为:对于流体加速过程,跃移层与其上部自由流之间的平衡存在两级响应。第一级响应时间近似为1 s,即输沙率与跃移层内风速达到平衡;第二级响应是跃移层外流动对于跃移沙粒引起地表有效粗糙度增加的调整过程,数值模型发现二级响应时间约为40 s。Butterfield[ 20, 37]的风洞实验证实了两级响应的存在,发现第二级响应时间可达100 s。此外,Jackson[ 38]提出由于惯性作用,风速降至流体起动条件以下时输沙仍会持续一段时间。Butterfield[ 39]的风洞实验和Spies等[ 40]的数值模拟均发现,风沙流对流体减速过程的响应时间要长于对加速过程的响应时间。可见,风速廓线与输沙率之间的调整过程远比定常来流假设条件下的结论复杂的多。实际上,大气边界层湍流的含能频率范围通常为0.01~1 Hz[ 41, 42],而在中性近地层中,风速脉动为每分钟1~10个周期[ 43]。因此,在常见的频率范围内,由于沙粒系统总是处于对风速变化的不断调整过程中,野外输沙与脉动流场间很难达到真正的平衡状态。

3 湍流结构与沙粒的起动、输送

剪切湍流边界层中普遍存在着相干结构,也称拟序运动或拟序结构。Robinson[ 44]概要性地给出了相干结构的统一的定义:“三维流场中的一个区域,在这个区域内至少有一个流动物理量(如速度分量、密度、温度等)在远大于当地流动最小尺度的时空范围内与自身或其他物理量显著相关”。一般认为相干结构是在时间和空间上持续的有序运动,且对热量、质量和动量的传输起重要作用。最近,在湍流结构的研究上取得的许多重要的新进展[ 45, 46]。依目前的湍流研究结果,可以确定4种主要的拟序结构:近壁条带、发卡涡或马蹄涡、大量的发夹涡以相同的对流速度运动时首尾相连形成的发卡涡包(Large Scale Motions. LSMs)以及最近在壁湍流对数区和尾迹区中发现的尺度为6~10倍边界层厚度(或更大)的超大尺度结构(Very Large Scale Motions, VLSMs)。事实上,从流体力学发展初始,von Kármán[ 47]和Malina[ 48]等就已经认识到湍流大尺度涡结构对流体流动和相关物质输送至关重要性,但在Prandtl-von Kármán的剪切应力—速度廓线的流动描述方法中无法考虑这一特性。

相应的,在早期静态测量进而寻求平均输沙率与剪切应力(或平均流速)之间关系的研究方法的基础上,近年来,更多瞬态测量仪器[ 39, 49~ 56]在风沙观测尤其是野外观测中的应用,使得研究人员可以定量的分析(而非现象描述)风蚀输沙的时空变化[ 21, 57~ 59],进而分析湍流结构和沙粒起动与输送之间的关系。

Bauer等[ 60]使用热线风速仪测量风速时间序列,结合条件取样与平均(Variable_Interval Time Averaging, VITA)技术分析海滩沙地表的流动结构。Stout等[ 21]根据风杯风速计和Sensit跃移探测仪进行野外观测发现,几乎所有的输沙都伴有零星的猝发事件,实际检测到输沙的时间很少超过测量时间的50%,甚至可能仅占2%。Sterk 等[ 61]根据其测量的三维风速和输沙强度,采用象限分析法发现,在风沙流中由低速流体的上抛和高速流体的下扫所描述的湍流猝发事件贡献了约60%的平均剪切应力,仅发生在约20%的时间内,但跃移输沙与典型的上抛—下扫的猝发事件并不一致。Schönfeldt等[ 62]和Leenders等[ 63]也给出了类似的结论,同时证实跃移输沙主要发生在sweep与outward interactions期间,二者对雷诺应力的贡献有正有负,但共同点是流向风速脉动大于零。这也意味着风速比剪切应力更适合作为预测输沙率的参数。

最近的观测表明:输沙率变化的时间尺度为1~120 s[ 57],近地表常见的跃移条带 (streamer,又被称为“沙蛇”)的展向宽度为0.1~1 m、流向长度为数十米、高度为跃移层厚度,随机分布于风沙层,在向下游输送的过程中,沙流蜿蜒向前,并在侧向不断碰并、分叉[ 57, 64]。已形成了许多不同的对这种条带结构的形成及时空行为的解释,如:条带结构是由于沙床表面存在微小突起、不平整造成的,受与床面碰撞的干沙粒的纵向条纹引导,或者条带结构由湍流触发,受流向涡引导[ 64]。根据谱分析,Baas[ 65, 66]的野外观测结果(距地表0.04 m)揭示出湍流至少3个时空尺度上与跃移输沙存在复杂的相互作用:﹥60 s的外尺度代表连续输沙的平均剪切应力条件,﹤20 s的积分时间尺度相应于跃移条带的3种不同模式[ 67],以及对应于单个条带的﹤1 s的惯性尺度。同时认为,近壁流向条带和上抛—下扫型的猝发事件与输沙模式之间不相关,从侧面表明,跃移风沙流的条带结构可能与发源于外区的大尺度结构或超大尺度结构密切相关(尽管有关大尺度结构的自下而上或自上而下的产生机制仍存在争论[68])

图1 跃移输沙的条带结构[ 22]Fig.1 Saltation streamers[ 22]

需要指出的是,尽管依据目前的研究结果,在大气近地层湍流中,由壁面诱导的条带和猝发事件与持续强跃移并无显著相关性,但对沙粒的流体起动和接近起动条件的输沙,却具有潜在的重要性。众所周知,在平均廓线—剪切应力的稳态输沙模型框架下,干燥平坦床面上沙粒的流体起动条件(通常是起动摩阻风速)是由重力、黏性黏性力、拖曳力与升力之间的平衡关系获得的[ 4, 69],其中,流体作用力正比于壁面剪切应力(在对数风速廓线下正比于摩阻风速的平方)。Einstein等[ 70]根据实验发现粗糙床面附近,近壁压力瞬时脉动将导致升力在与其平均值量级相当的范围内脉动。Mollinger等[ 71]的直接测量结果显示,作用于光滑床面球形颗粒上的升力脉动强度(均方根与平均值的比值)可以达到2.8。显然,升力的脉动在某种程度上直接体现了近壁流动的不稳定性。根据湍流事件的特征参数,如黏性底层条带的流向和展向尺度、发生频率、持续时间等,Cleaver等[ 72]提出了计算颗粒流体起动率的一种概念模型,Descamps等[ 73]利用类似的参数并考虑升力脉动,提出计算沙尘释放通量的随机方法,解释了混合粒径床面上沙尘释放通量随时间衰减的现象。此外,Valyrakis等[ 74]根据理论分析与实验发现:流体作用力的大小和持续作用的时间共同决定了跃移颗粒是否能起动,因而提出冲量 (作用力对积分) 更适合作为起动的判别条件。

此外,根据中国科学院大气物理所‘北京325 m气象塔’上分别安装于47,120和280 m高度处的超声风速仪的风速观测[ 75, 76]发现:冷锋后的大风常叠加有周期为3~6分钟的阵风,依所绘出速度合成矢量的时间—高度剖面图:沙尘的输送采用的是一股一股上扬的形式,阵风的波谷期有上升气流,对应沙尘的上扬,波峰期有下沉气流,沙尘受抑制。因此认为,阵风期间的上升气流使得风沙层内的沙尘能够向上抬升至大气边界层的中上层,进而被远距离输送[ 77, 78],是沙尘上扬的关键。兰州大学风沙研究小组自2010年以来于甘肃民勤地区开展的近地表47 m高度范围内沙尘暴中各物理量(三维流场、PM10浓度、温度、湿度、电场强度等)的实时、同步观测,获得了不同条件下沙尘暴的观测数据,并对沙尘暴期间不同高度风速的脉动特征与相干结构[ 19, 79]、虚温特征[ 80]、水平与垂向电场[ 81]的变化规律进行了系统的分析。特别值得一提的是,在对流动结构的分析中发现:在沙尘暴的平稳阶段,流向风场和温度场在16和47 m高度处均存在着流向尺度达10倍量级边界层厚度的超大尺度结构,且流向风场的归一化能谱峰值对应的频率与PM10浓度的基本一致。同时还发现:在这2个高度处的PM10浓度功率谱具有‘-1’次方的标度区特征,其存在的频率范围与该高度处的风速的‘-1’次方标度区范围一致[ 79]。这不仅揭示了流向风场的超大尺度结构对沙尘输运所起的关键作用,同时其研究结果也为湍流场中自相似标度区的存在性提供了一个新的例证。

总体来说,尽管湍流结构对沙粒起动与输送的重要性越来越受到重视,但相应的研究仍处于定性或半定量描述阶段,这一方面是因为高雷诺数,尤其是在大气边界层这种极端高雷诺数、复杂地形(沙波纹、沙丘)与粗糙壁面(地表)条件下,湍流相干结构的起源、特征、演化等规律的认识本身并不清晰。另一方面,实际野外条件的复杂性也给如何甄别影响输沙时空变化的因素带来困难。例如,现有对导致跃移输沙率时空变化原因的解释,不仅包括跃移条带和相干结构,也涉及地表含水率[ 82, 83]、风向和风区长度[ 84~ 86]、地形[ 87, 88]、植被[ 89]来流上游的沙源变化[ 90]等,或者可以归结为多种因素的共同作用[ 91]

4 非平稳输沙率

输沙率Q-剪切应力 τ(或摩阻风速 u *)预测公式的前提条件是来流统计平稳。在这种“理想”条件下,在足够长时间(通常为积分尺度)内,输沙与流场在互反馈作用下达到“平衡状态”,风速廓线与输沙率基本不变。可以由平均对数廓线拟合出摩阻风速,获得Q-τ关系。在大气边界层中,湍流积分时间尺度为O(103s),因此,实际测量中,风速平均时间一般为10~30 min。而在风洞中,由于其特征长度尺度(~1 m)远小于大气边界层的长度尺度(~103m),湍流积分时间尺度为O(1 s),实验数据的平均时间往往仅为O(1 min) 。

对高频测量数据时间序列的分析表明:瞬时跃移输沙率与流体剪切应力之间的相关性很差,但随着对测量数据进行平均的时间尺度的增大,二者相关性显著增加[ 92]。当空间多点同步测量时,输沙率变化系数(均方根与平均输沙率的比值[ 57]) 随空间尺度的增加而增大,随时间尺度的增大而减小[ 58, 59]。这意味着:平均时间越长,越容易获得可靠的Q-τ关系。但是,在大气边界层中,统计时间越长,风速受其他气象条件(如热力条件)影响越不易统计稳定。结果,Q-τ关系中的拟合参数随时间尺度的增加并不能收敛到一个稳定的值[ 92]。显然,这又导致了另外的问题:如何选择时间尺度?或者,能否由观测数据真正找到风速统计稳定、风沙流平衡的合适的时间尺度?

另一方面,对风速进行平均类似于“平滑滤波”处理,某些大于起动风速的短时“阵风”将被过滤。因此,平均时间尺度越长,计算的风力侵蚀力越小,预测输沙率越小[ 93]。对平均风速接近起动风速的间歇性输沙,这一影响尤其明显。如:Rasmussen等[ 94]对其野外测量结果的分析表明,按10 s平均风速计算的输沙率仅为5s平均风速计算输沙率的85%~90%。由于跃移的主要机制—碰撞—导致输沙的起动、停止过程分别对应不同的流动条件(流体起动、冲击起动),因此,需考虑与跃移“惯性”时间尺度相当的小尺度风速脉动的影响。考虑到多数风蚀输沙均发生在起动条件附近[ 95],分析沙粒运动对不同尺度(从跃移惯性尺度至大气湍流积分时间尺度)的风速脉动的响应过程就显得更为重要。

迄今为止,关于考虑流向风速脉动对输沙率预测影响的研究相当少。Sørensen[ 96]的理论分析发现:若假定瞬时输沙率与流向风速的三次方公式成立,由正态分布随机风速计算出的脉动输沙率的平均值大于相同平均风速下的平稳输沙率,二者的相对误差与湍流度(风速脉动标准差 σ与平均值 U的比值)的平方成正比。在输沙率方程中考虑起动风速和跃移响应时间会减弱这一影响。尽管最新的测量数据回归分析表明瞬时输沙率/输沙强度与流向风速之间幂函数关系的幂指数范围可从< 2变化至> 6[ 97~ 99],而非经典的平均输沙率公式中的值3,但Sørensen的理论对研究影响输沙率的风速参数仍具有启发意义。稍晚,Butterfield[ 37, 39, 100]的一系列风洞实验证实了风速脉动对输沙率的增强作用,发现在6~20 s周期性阵风条件下,风沙流的输沙率远大于相同平均风速下的输沙率。最近,在Spies et al[ 40]模型的基础上,彭晓庆和王萍[ 101], Wang等[ 102]模拟了来流风速正弦变化时的非平稳跃移输沙,讨论输沙率随风场参数的变化,发现,相同平均风速下,非平稳输沙率高于平稳输沙率,平均风速越小,预测误差越大,在接近起动风速的来流条件下,预测误差可超过200%。风速脉动的振幅、周期均影响输沙率。同时,模拟结果也显示,即使平均风速小于跃移的流体起动风速,在一定的脉动参数下,也会存在输沙。这与野外观测结果[ 38, 94]一致。同时也将有助于解释“火星地表观测到沙丘和沙波纹及其演化,但风速极少超过跃移起动风速”的矛盾[ 103]

此外,在数值模型中考虑风速垂向脉动将导致跃移层高度增加[ 104],更多沙粒易于进入悬移状态[ 105, 106]。同时,跃移冲击被认为是细小粉尘上扬的主要机制[ 107]。Cheng 等[ 108] 依据所提出的阵风模型[ 76]重构了风速的时间序列,模拟沙尘从地表向高空的上扬过程,认为:强风期间,在大气低层伴随有系统下沉气流,沙尘的上扬受到抑制,仅能停留在低层;只有考虑阵风和相干结构,沙尘粒子才能被输送至大气边界层的中、上层。

显然,无论地表沙粒跃移的输沙率还是高空的沙尘输送通量的预测都不应仅局限于摩阻风速或平均风速。实际上,Anderson等[ 109]指出:“大气近地层通常是处于对大尺度大气扰动或地形不规则性的调整过程中,结果,大气湍流并不是具有相同 u *的均匀平稳气流的本质特征……野外尺度气流的描述不应该仅仅是一个平均的摩阻风速 u *”。

5 存在的文题及发展趋势

对非平稳输沙已取得了初步的认识,但目前还远未达到改变传统平稳风沙研究框架、深入认识风沙与湍流作用机制、并在风蚀预报和沙尘模拟中具体应用的程度。在非稳态输沙测量手段、湍流参数化、以及定量预测等方面存在着很多不足:

(1) 能精确测量瞬态输沙率的仪器的研制。尽管输沙仪器的测量频率已经可以达到千赫兹[ 55, 110],但常见的用于测量“输沙强度”的时间变化的瞬态测量仪器如Sensit,Saltphone,Safire,Miniphone等,无论基于碰撞原理或是声学原理,其信号的物理意义尚不明确。如对Sensit,不同的研究人员做出不同的解释,有冲击数[ 21], 也有冲击动量或输沙率[ 111],最近的对比研究发现,各种不同传感器的效率有很大差别[ 112, 113],因而可能影响起动风速与输沙率的计算;而采用集沙仪加测力传感器的输沙测量方式在进行瞬态测量时,由于沙粒在集沙仪和漏斗中的运动时间、测力传感器上的风载荷、缓慢的传感器元件响应、质量滞后以及传感器元件的共振等多种作用严重影响了数据的精度和可靠性[ 115],风洞中所采用的PIV、光学测量系统[ 39, 100]等非干扰测量方法则无法用于野外沙尘天气环境中的输沙测量。

最近,基于激光粒子计数的仪器如Wenglor laser particle counters[ 114]开始被应用到野外输沙测量中,其测量结果意义明确且一致性好,是瞬态测量仪器未来发展的一个重要方向。另外,检验并对比已有各种仪器在不同地表与气象条件下的效率,也是亟待解决的一个重要问题。

(2) 近地层风场湍流特征及沙尘输送的长期、实时、同步观测。实际野外条件下,受天气系统(温度层结、热对流)、地表特性(含水率、植被、沙丘)的影响,风场的脉动强度、湍流特征会随时间和空间变化。而风场的统计特性及其时空演变规律将影响沙尘的输运和浓度分布。但相应的实时、同步观测与分析还非常少。一方面是因为获得高质量的大气边界层数据的实验难度大,另一方面是因为理论模型中无限大、平坦、均匀的理想地表条件的限制很难被满足。而严格可控的风洞实验由于尺寸限制无法获得与野外条件相同的尺度充分分离的高雷诺数湍流流场也是众所周知的难题。

无论如何,野外条件下的实时、同步观测似乎更为可行。因为这种测量可以提供中尺度气象模式无法模拟出的与地表起沙、沙尘输运紧密相关的小尺度湍流信息。考虑到发生风沙流和沙尘暴时的极高风速条件(大气边界层湍流是目前已知最高雷诺数流动,特征时间尺度~103s,特征长度尺度可达~103m),观测需要在多点进行并持续足够长的时间,以包含最大尺寸涡并分辨多种因素的影响。从测量结果中提炼出相应规律,不仅是对湍流物理研究的一个重要补充,将其引入到沙尘模式中,也将大大提高数值预测的可靠性与准确性。

(3) 风沙输运过程的模拟与输沙通量的参数化。风沙流和沙尘暴是典型的多相流,粒径分布范围大,固相浓度高;由于电场、热对流的存在,又是一个典型的多场耦合系统。当问题涉及到沙粒与湍流的相互作用时,数值模拟将更为棘手。

在现有的一维和二维稳态风沙流模型的基础上,发展三维风沙流的大涡模拟[ 116]可能是分析风沙流输运模式和输沙率时空变化的有效途径之一。更为重要的是,依据野外观测和数值模拟,提炼影响输沙率的风场参数,给出定量的影响规律,改进现有的输沙率—摩阻风速关系,进而提高输沙率预测的精度。Sherman等[ 117]在模拟海岸输沙时尝试采用剪切风速标准差作为参数,Wang等[ 102]提出了将阵风周期(或湍流相干结构的特征时间尺度)和振幅(或风速脉动强度)引入到输沙率预测公式中。尽管尚缺少实验的验证,这种将脉动(而非仅平均流动)信息引入输沙率预测中的方法将是改进现有模型的重要途径。

6 结 语

由于脉动风场和输沙之间的复杂相互作用,风沙流输沙率很难达到稳态模型所假设的平稳状态。简单的考虑平均场的观测、实验和理论模拟无法深入理解野外实际条件下沙粒起动、输运的机理。实时、同步的风速与输沙强度测量表明,大气边界层湍流的相干结构对沙粒的起动与输送起到关键作用。野外实际输沙率的强烈时空变化意味着需要建立风沙流的三维模型和长期、多点、同步、实时观测,以提炼关键参数对野外实际条件下的非平稳输沙率进行准确预测。

The authors have declared that no competing interests exist.

参考文献
[1] Zheng X J. Mechanics of Wind-blown Sand Movement[M]. German: Springer-Verlag, 2009. [本文引用:1]
[2] Bagnold R A. The movement of desert sand [C]∥Proceedings of the Royal Society of London. Series A. London: Mathematical and Physical Sciences, 1936, 157: 594-620. [本文引用:1]
[3] Zhu Hao, Zhang Hongsheng. Review of the threshold for dust emission during dust event[J]. Advances in Earth Science, 2011, 26(1): 30-38.
[朱好, 张宏升. 沙尘天气过程临界起沙因子的研究进展[J]. 地球科学进展, 2011, 26(1): 30-38. ] [本文引用:1] [CJCR: 1.388]
[4] Bagnold R A. The Physics of Blown Sand and Desert Dune[M]. London: Methuen, 1941. [本文引用:2]
[5] Zingg A W. Some Characteristics of Aeolian Sand Movement by Saltation Process[C]. Edition du Center National de la Recherche Scientifique. Paris: Quai Anatole, 1953, 7e: 197-208. [本文引用:1]
[6] Owen P R. Saltation of uniform grains in air[J]. Journal of Fluid Mechanics, 1964, 20(2): 225-242. [本文引用:1] [JCR: 2.183]
[7] Hsu S A. Wind stress criteria in eolian sand transport[J]. Journal of Geophysical Research, 1971, 76: 8684-8686. [本文引用:1]
[8] Lettau K, Lettau H H. Experimental and micrometerological field studies of dune migration[C]∥Lettau K, ed. Exploring the World’s Driest Cilmate. Wisconsim: University of Wisconsin Madison, 1978: 110-147. [本文引用:1]
[9] White B R. Soil transport by winds on Mars[J]. Journal of Geophysical Research, 1979, 4(B9): 4643-4651. [本文引用:1]
[10] Ungar J E, Haff P K. Steady-state saltation in air[J]. Sedimentology, 1987, 34(2): 289-299. [本文引用:1] [JCR: 2.611]
[11] Sauermann G, Kroy K, Herrmann H J. A continuum saltation model for sand dunes[J]. Physics Review E, 2001, 64: 031305, doi: DOI:10.1103/PhysRevE.64.03B05. [本文引用:1] [JCR: 2.313]
[12] Srensen M.  An analytic model of wind-blown sand transport[J]. Acta Mechanica, 1991, 1(Suppl. ): 67-81. [本文引用:1] [JCR: 1.247] [CJCR: 0.423]
[13] Srensen M. On the rate of aeolian sand transport[J]. Geomorphology, 2004, 59: 53-62. [本文引用:1] [JCR: 2.552]
[14] Iversen J D, Rasmussen K R. The effect of wind speed and bed slope on sand transport[J]. Sedimentology, 1999, 46(4): 723-731. [本文引用:1] [JCR: 2.611]
[15] Zhou Y H, Guo X, Zheng X J. Experimental measurement of wind-sand flux and sand transport for naturally mixed sand s[J]. Physics Review E, 2002, 66(2): 021305, doi: DOI:10.1103/PhysRevE.66.021305. [本文引用:1] [JCR: 2.313]
[16] Almeida M P, Parteli E J R, Andrade Jr J S, et al. Giant saltation on Mars[J]. PNAS, 2008, 105(17): 6222-6226. [本文引用:1] [JCR: 9.737]
[17] Bauer B O. Contemporary research in aeolian geomorphology[J]. Geomorphology, 2009, 105: 1-5. [本文引用:2] [JCR: 2.552]
[18] Sherman D J, Bauer B O, Gares B O, et al. Wind-blown sand at Castroville, California[C]∥Proceedings, 25th International Conference on Coastal Engineering. Orland o, FL: American Society of Civil Engineers, 1996: 4214-4226. [本文引用:1]
[19] Zheng X J, Zhang J H. Characteristics of near-surface turbulence during a dust storm passing Minqin on March 19, 2010[J]. Chinese Science Bulletin, 2010, 55(27/28): 3107-3112. [本文引用:2] [CJCR: 0.95]
[20] Butterfield G R. Grain transport rates in steady and unsteady turbulent airflows[J]. Acta Mechanica, 1991, 1(Suppl. ): 97-122. [本文引用:2] [JCR: 1.247] [CJCR: 0.423]
[21] Stout J E, Zobeck T M. Intermittent saltation[J]. Sedimentology, 1997, 44: 959-972. [本文引用:3] [JCR: 2.611]
[22] Baas A C W. Complex systems in aeolian geomorphology[J]. Geomorphology, 2007, 91: 311-331. [本文引用:1] [JCR: 2.552]
[23] Wang Ping, Zheng Xiaojing. Fluctuating of wind-blown sand flux in field wind condition[J]. Journal of Desert Research, 2013, 11(6): 1622-1628.
[王萍, 郑晓静. 野外近地表风沙流脉动特征分析[J]. 中国沙漠, 2013, 11(6): 1622-1628. ] [本文引用:1] [CJCR: 2.099]
[24] Anderson R S, Haff P K. Simulation of eolian saltation[J]. Science, 1988, 241: 820-823. [本文引用:1]
[25] Anderson R S, Haff P K. Wind modification and bed response during saltation of sand in air[J]. Acta Mechanica, 1991, 1(Suppl. ): 21-25. [本文引用:1] [JCR: 1.247] [CJCR: 0.423]
[26] McEwan I K, Willetts B B. Numerical model of the saltation cloud[J]. Acta Mechanica, 1991, 1(Suppl. ): 53-66. [本文引用:2] [JCR: 1.247] [CJCR: 0.423]
[27] Zheng X J, Huang N, Zhou Y H. Laboratory measurement of electrification of wind-blown sand s and simulation of its effect on and saltation movement[J]. Journal of Geophisical Research, 2003, 108: D104322. [本文引用:1]
[28] Zheng X J, Huang N, Zhou Y H. The effect of electrostatic force on the evolution of sand saltation cloud[J]. The European Physical Journal E, 2006, 19: 129-138. [本文引用:1] [JCR: 1.824]
[29] Yue G W, Zheng X J. Electric field in windblown sand flux with thermal diffusion[J]. Journal of Geophysical Research: Atmospheres, 2006, 111: D16106, doi: DOI:10.1029/2005JD006972. [本文引用:1]
[30] Bo T L, Zhang H, Zhu W, et al. Theoretical prediction of electric fields in wind-blown sand [J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 4494-4502. [本文引用:1]
[31] Kok J F,  Renno N O. A comprehensive numerical model of steady state saltation (COMSALT)[J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D17204. [本文引用:1]
[32] Shao Y P, Li A. Numerical modeling of saltation in the atmospheric surface layer[J]. Boundary Layer Meteorology, 1999, 91: 199-225. [本文引用:1] [JCR: 2.291]
[33] Ma G S, Zheng X J. The fluctuation property of blown sand particles and the wind-sand flow evolution studied by numerical method[J]. The European Physical Journal E, 2011, 34(5): 54. [本文引用:1] [JCR: 1.824]
[34] Shao Y P, Raupach M R. The overshoot and equilibration of saltation[J]. Journal of Geophysical Research, 1992, 97: 20559-20564.  [本文引用:1]
[35] Werner B T. A steady-state model of wind-blown sand transport[J]. Journal of Geology, 1990, 98: 1-17. [本文引用:1] [JCR: 2.692]
[36] McEwan I K, Willetts B B. Adaptation of the near-surface wind to the development of sand transport[J]. Journal of Fluid Mechanics, 1993, 252: 99-115. [本文引用:1] [JCR: 2.183]
[37] Butterfield G R. Sand transport response to fluctuating wind velocity[C]∥Clifford N J, Trench J R, Hardisty J, eds. Turbulent: Perspectives on Flow and Sediment Transport. New York: John Wiley & Sons, 1993: 305-335. [本文引用:2]
[38] Jackson D W T. Potential inertial effects in aeolian sand transport: Preliminary results[J]. Sedimentary Geology, 1996, 106: 193-201. [本文引用:2] [JCR: 1.802]
[39] Butterfield G R. Transitional behaviour of saltation: Wind tunnel observations of unsteady winds[J]. Journal of Arid Environments, 1998, 39: 377-394. [本文引用:4] [JCR: 1.772]
[40] Spies P J, McEwan I K, Butterfield G R. One-dimensional transition behaviour in saltation[J]. Earth Surface Processes and Land forms, 2000, 25: 505-518. [本文引用:2] [JCR: 2.49]
[41] Berman S. Estimating the longitudinal wind spectrum near the ground[J]. Quarterly Journal of the Royal Meteorological Society, 1965, 91: 302-317. [本文引用:1] [JCR: 3.327]
[42] Kaimal J C, Wyngaard J C, Izumi Y, et al. Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98: 563-589. [本文引用:1] [JCR: 3.327]
[43] Wyngaard J C. Atmospheric turbulence[J]. Annual Review of Fluid Mechanics, 1992, 24: 205-234. [本文引用:1]
[44] Robinson S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23: 601-639. [本文引用:1]
[45] Marusic I, McKeon B J, Monkewitz P A, et al. Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues[J]. Physics of Fluids, 2010, 22: 065103, doi: DOI:10.3/1.3453711. [本文引用:1] [JCR: 1.942]
[46] Smits A, McKeon B, Marusic I. High reynolds number wall turbulence[J]. Annual Review of Fluid Mechanics, 2011, 43: 353-375. [本文引用:1]
[47] Von Krmn T. Some aspects of the turbulence problem[C]∥Proceeding of 4 th International Congress on Applied Mechanics. Cambridge, 1935: 54-91. [本文引用:1]
[48] Malina F J. Recent developments in the dynamics of wind erosion[J]. Transactions American Geophysical Union, 1941, 22: 262-284. [本文引用:1]
[49] Gillette D A, Stockton P H. Mass, momentum and kinetic energy fluxes of saltating particles[C]∥Nickling W G, ed. Aeolian Geomorphology. Boston: Allen and Unwin, 1986: 35-56. [本文引用:1]
[50] Spaan W P, van den Abeele G D. Wind borne particle measurements with acoustic sensors[J]. Soil Technology, 1991, 4: 51-63. [本文引用:1]
[51] Jackson D W T. A new, instantaneous aeolian sand trap design for field use[J]. Sedimentology, 1996, 43: 791-796. [本文引用:1] [JCR: 2.611]
[52] Bauer B O, Namikas S L. Design and field test of a continuously-weighing, tipping bucket assembly for aeolian sand traps[J]. Earth Surface Processes and Land forms, 1998, 23(13): 1171-1183.  [本文引用:1] [JCR: 2.49]
[53] Namikas S L. Field evaluation of two traps for high-resolution aeolian transport measurements[J]. Journal of Coastal Research, 2002, 18(1): 136-148. [本文引用:1] [JCR: 0.496]
[54] Baas A C W. Evaluation of saltation flux impact responders (Safires) for measuring instantaneous aeolian sand transport intensity[J]. Geomorphology, 2004, 59: 99-118. [本文引用:1] [JCR: 2.552]
[55] Ellis J T, Morrison R F, Priest B H. Detecting impacts of sand grains with a microphone system in field conditions[J]. Geomorphology, 2009, 105: 87-94. [本文引用:1] [JCR: 2.552]
[56] Hugenholtz C H, Barchyn T E. Laboratory and field performance of a laser particle counter for measuring aeolian sand transport[J]. Journal of Geophysical Research, 2011, 116: F01010, doi: DOI:10.1029/2010JF001822. [本文引用:1]
[57] Bauer B O, Davidson-arnott R G D, Ordstrom N K F, et al. Indeterminacy in aeolian sediment transport across beaches[J]. Journal of Coastal Research, 1996, 12(3): 641-653. [本文引用:4] [JCR: 0.496]
[58] Baas A C W, Sherman J S. Spatiotemporal variability of aeolian sand transport in a coastal dune environment[J]. Journal of Coastal Research, 2006, 22(5): 1198-1205. [本文引用:1] [JCR: 0.496]
[59] Ellis J T, Sherman D J, Farrell E J, et al. Temporal and spatial variability of aeolian sand transport: Implications for field measurements[J]. Aeolian Research, 2012, 3(4): 379-387. [本文引用:2] [JCR: 2.52]
[60] Bauer B O, Yi J, Namikas S L, et al. Event detection and conditional averaging in unsteady aeolian systems[J]. Journal of Arid Environments, 1998, 39: 345-375. [本文引用:1] [JCR: 1.772]
[61] Sterk G, Jacobs A F G, Van Boxel J H. The effect of turbulent flow structures on saltation[J]. Earth Surface Processes and Land forms, 1998, 23: 877-887. [本文引用:1] [JCR: 2.49]
[62] Schnfeldt H J, von Lwis S. Turbulence-driven saltation in the atmospheric surface layer[J]. Meteorologische Zeitschrift, 2003, 12: 257-268. [本文引用:1] [JCR: 1.084]
[63] Leenders J K, van Boxel J H, Sterk G. Wind forces and related saltation transport[J]. Geomorphology, 2005, 71: 357-372. [本文引用:1] [JCR: 2.552]
[64] Baas A C W. The Formation and Behavior of Aeolian Streamers[D]. Los Angeles: University of Southern California, 2003. [本文引用:2]
[65] Baas A C W. Wavelet power spectra of aeolian sand transport by boundary layer turbulence[J]. Geophysical Research Letters, 2006, 33(5): L05403, doi: DOI:10.9/2005GL025547. [本文引用:1] [JCR: 3.982]
[66] Baas A C W. Complex systems in aeolian geomorphology[J]. Geomorphology, 2007, 91: 311-331. [本文引用:1] [JCR: 2.552]
[67] Baas A C W, Sherman D J. Formation and behavior of aeolian streamers[J]. Journal of Geophysical Research, 2005, 110: F03011, doi: DOI:10.1029/2004JF000270. [本文引用:1]
[68] Hunt J C R, Carlotti P. Statistical structure at the wall of the high Reynolds number turbulent boundary layer[J]. Flow, Turbulence and Combustion, 2001, 66: 453-475. [本文引用:1] [JCR: 1.274]
[69] Shao Y. Physics and Modeling of Wind Erosion[M]. Boston: Kluwer Academic Publishers, 2000. [本文引用:1]
[70] Einstein H A, ElSamni E S A. Hydrodynamic forces on a rough wall[J]. Review of Modern Physics, 1949, 21(3): 520-527, doi: DOI:10.1103/RevModPhys.21.520. [本文引用:1] [JCR: 44.982]
[71] Mollinger A M, Nieuwstadt F T M. Measurement of the lift force on a particle fixed to the wall in the viscous sublayer of a fully developed turbulent boundary layer[J]. Journal of Fluid Mechanics, 1996, 316: 285-306. [本文引用:1] [JCR: 2.183]
[72] Cleaver J W, Yates B. Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow[J]. Journal of Colloid and Interface Science, 1973, 44(3): 464-474. [本文引用:1] [JCR: 3.172]
[73] Descamps I, Harion J L, Baudoin B. Taking-off model of particles with a wide size distribution[C]∥Chemical Engineering and Processing: Process Intensification, 2005, 44(2): 159-166. [本文引用:1]
[74] Valyrakis M, Diplas P, Dancey C L, et al. Role of instantaneous force magnitude and duration on particle entrainment[J]. Journal of Geophysical Research, 2010, 115(F2): F02006, doi: DOI:10.1029/2008JF001247. [本文引用:1]
[75] Cheng Xueling, Zeng Qingcun, Hu Fei, et al. Gustness and coherent structure of strong wind in the atmospheric boundary layer[J]. Climatic and Environmental Research, 2007, 12(3): 227-243.
[程雪玲, 曾庆存, 胡非, . 大气边界层强风的阵性和相干结构[J]. 气候与环境研究, 2007, 12(3): 227-243. ] [本文引用:1] [CJCR: 1.166]
[76] Cheng X L, Zeng Q C, Hu F. Characteristics of gusty wind disturbances and turbulent fluctuations in windy atmospheric boundary layer behind cold fronts[J]. Journal of Geophysical Research, 2011, 116: D06101, doi: DOI:10.1029/2010JD015081. [本文引用:2]
[77] Zeng Q, Cheng X, Hu F, et al. Gustiness and coherent structure of strong winds and their role in dust emission and entrainment[J]. Advances in Atmospheric Sciences, 2010, 27(1): 1-13. [本文引用:1] [JCR: 1.338] [CJCR: 0.9244]
[78] Zeng Qingcun, Cheng Xueling, Hu Fei. The mechanism of soil erosion and dust emission under the action of nonsteady strong wind with fescending motion and gusty wind[J]. Climatic and Environmental Research, 2007, 12(3): 244-250.
[曾庆存, 程雪玲, 胡非. 大气边界层非常定下沉急流和阵风的起沙机理[J]. 气候与环境研究, 2007, 12(3): 244-250. ] [本文引用:1] [CJCR: 1.166]
[79] Zheng X J, Zhang J H, Wang G H, et al. Investigation on Very Large Scale Motions (VLSMs) and their influence in a dust storm[J]. Science in China (Series G), 2013, 56(2): 306-314. [本文引用:2] [JCR: 1.413]
[80] Xie Liang, Zhang Jinghong. Analysis of temperature fluctuations during a dust storm[J]. Journal of Desert Research, 2011, 31(3): 649-654.
[谢亮, 张静红. 沙尘暴期间的温度脉动特征分析[J]. 中国沙漠, 2011, 31(3): 649-654. ] [本文引用:1] [CJCR: 2.099]
[81] Bo T L, Zheng X J. A field observational study of electrification within a dust storm in Minqin, China[J]. Aeolian Research, 2013, 8: 39-47. [本文引用:1] [JCR: 2.52]
[82] Wiggs G F S, Atherton R J, Baird A J. Thresholds of aeolian sand transport: Establishing suitable values[J]. Sedimentology, 2004, 51: 95-108. [本文引用:1] [JCR: 2.611]
[83] Udo K, Kuriyama Y, Jackson D W T. Observations of wind-blown sand under various meteorological conditions at a beach[J]. Journal of Geophysical Research, 2008, 113: F04008, doi: DOI:10.1029/2007JF000936. [本文引用:1]
[84] Bauer B O,  Davidson-Arnott R G D. A general framework for modeling sediment supply to coastal dunes including wind angle, beach geometry, and fetch effects[J]. Geomorphology, 2003, 49(1/2): 89-108. [本文引用:1] [JCR: 2.552]
[85] Bauer B O, Davidson-Arnott R G D, Hesp P A, et al. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport[J]. Geomorphology, 2009, 105(1): 106-116. [本文引用:1] [JCR: 2.552]
[86] Bauer B O, Davidson-Arnott R G D, Walker I J, et al. Wind direction and complex sediment transport response across a beach-dune system[J]. Earth Surface Processes and Land forms, 2012, 37(15): 1661-1677. [本文引用:1] [JCR: 2.49]
[87] McKenna Neuman C, Lancaster N, Nickling W G. Effect of unsteady winds on sediment transport intermittency along the stoss slope of a reversing dune[J]. Sedimentology, 2000, 47: 211-226. [本文引用:1] [JCR: 2.611]
[88] Walker I J, Davidson-Arnott R G D, Hesp P A, et al. Mean flow and turbulence responses in airflow over foredunes: New insights from recent research[J]. Journal of Coastal Research, 2009, 56: 366-370. [本文引用:1] [JCR: 0.496]
[89] Davidson-Arnott R G D, Bauer B O, Walker I J, et al. High-frequency sediment transport responses on a vegetated foredune[J]. Earth Surface Processes and Land forms, 2012, 37(11): 1227-1241.  [本文引用:1] [JCR: 2.49]
[90] Bauer B O, Davidson-arnott R G D, Ordstrom N K F, et al. Indeterminacy in aeolian sediment transport across beaches[J]. Journal of Coastal Research, 1996, 12(3): 641-653. [本文引用:1] [JCR: 0.496]
[91] Bauer B O, Davidson-Arnott R G D, Walker I J, et al. Wind direction and complex sediment transport response across a beach-dune system[J]. Earth Surface Processes and Land forms, 2012, 37(15): 1661-1677. [本文引用:1] [JCR: 2.49]
[92] Martin R L, Barchyn T E, Hugenholtz C H, et al. Timescale dependence of aeolian sand flux observations under atmospheric turbulence[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(16): 9078-9092. [本文引用:2]
[93] Guo Z, Zobeck T M, Stout J E, et al. The effect of wind averaging time on wind erosivity estimation[J]. Earth Surface Processes and Land forms, 2012, 37(7): 797-802. [本文引用:1] [JCR: 2.49]
[94] Rasmussen K R, Srensen M. Aeolian mass transport near the saltation threshold[J]. Earth Surface Processes and Land forms, 1999, 24: 413-422. [本文引用:2] [JCR: 2.49]
[95] Jerolmack D J, Reitz M D, Martin R L. Sorting out abrasion in a gypsum dune field[J]. Journal of Geophysical Research: Earth Surface, 2011, 116, doi: DOI:10.1029/2010JF001821. [本文引用:1]
[96] [JP3]Srensen M. On the effect of time variability of the wind on rates of aeolian sand transportJP3]Srensen M. On the effect of time variability of the wind on rates of aeolian sand transport[J]. Aarhus Geoscience, 1997, 7: 73-77. [JP] [本文引用:1]
[97] Jackson D W T, McCloskey J. Preliminary results from a field investigation of aeolian sand transport using high resolution wind and transport measurements[J]. Geophysical Research Letters, 1997, 24(2): 163-166. [本文引用:1] [JCR: 3.982]
[98] Davidson-Arnott R G D, McQuarrie K, Aagaard T. The effects of wind gusts on aeolian sediment transport on a beach[J]. Geomorphology, 2005, 68: 115-129. [本文引用:1] [JCR: 2.552]
[99] Davidson-Arnott R G D, Bauer B O, Walker I J, et al. Instantaneous and mean aeolian sediment transport rate on beaches: An intercomparison of measurements from two sensor type[J]. Journal of Coastal Research, 2009, 56: 297-301. [本文引用:1] [JCR: 0.496]
[100] Butterfield G R. Application of thermal anemometry and high frequency measurement of mass flux to aeolian sediment transport research[J]. Geomorphology, 1999, 29: 31-58. [本文引用:2] [JCR: 2.552]
[101] Peng Xiaoqing, Wang Ping. Numerical simulation of unsteady sand saltation under sinusoidal wind variations[J]. Journal of Desert Research, 2011, 31(3): 588-592.
[彭晓庆, 王萍. 正弦风速下的非平稳跃移风沙运动模拟[J]. 中国沙漠, 2011, 31(3): 588-592. ] [本文引用:1] [CJCR: 2.099]
[102] Wang P, Zheng X J. Saltation transport rate in unsteady wind variations[J]. The European Physical Journal E, 2014, 37: 40. [本文引用:2] [JCR: 1.824]
[103] Kok J F. Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: Implications for dunes and dust storms[J]. Physical Review Letters, 2010, 104(7): 074502, doi: DOI:10.1103/PhysRerLett.104.074502. [本文引用:1] [JCR: 7.943]
[104] Shao Y P. A similarity theory for saltation and application to aeolian mass flux[J]. Boundary-Layer Meteorology, 2005, 115: 319-338. [本文引用:1] [JCR: 2.291]
[105] Anderson R S. Eolian sediment transport as a stochastic process: The effects of a fluctuating[J]. Journal of Geology, 1987, 95: 497-512. [本文引用:1] [JCR: 2.692]
[106] Wang P, Zheng X J, Hu W W. Saltation and suspension of wind-blown particle movement[J]. Science in China (Series G), 2008, 51(10): 1586-1596. [本文引用:1] [JCR: 1.413]
[107] Huang Ning, Gu Yand an. Review of the mechanism of dust emission and deposition[J]. Advances in Earth Science, 2009, 24(11): 1175-1184.
[黄宁, 辜艳丹. 粉尘释放和沉积机制的研究进展[J]. 地球科学进展, 2009, 24(11): 1175-1184. ][JP] [本文引用:1] [CJCR: 1.388]
[108] Cheng X L, Zeng Q C, Hu F. Stochastic modeling the effect of wind gust on dust entrainment during sand storm[J]. Chinese Science Bulletin, 2012, 57(27): 3595-3602. [本文引用:1] [CJCR: 0.95]
[109] Anderson R S, Srensen M, Willetts B B. A review of recent progress in our understand ing of aeolian sediment transport[J]. Acta Mechanica, 1991, 1(Suppl. ): 1-19. [本文引用:1] [JCR: 1.247] [CJCR: 0.423]
[110] Yang Bin, Wang Yuan, Liu Jiang, et al. High-frequency measurement of the sand phase’s concentration in wind-sand flow[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(5): 47-50.
[杨斌, 王元, 刘江, . 风沙流中沙粒相浓度的高频测量[J]. 实验流体力学, 2010, 24(5): 47-50. ] [本文引用:1] [CJCR: 0.3398]
[111] Stockton P, Gillette D A. Field measurements of the sheltering effect of vegetation on erodible land surfaces[J]. Land Degradation & Rehabilitation, 1990, 2: 77-85. [本文引用:1]
[112] Van Pelt R S, Peters P, Visser S. Laboratory wind tunnel testing of three commonly used saltation impact sensors[J]. Aeolian Research, 2009, 1: 55-62. [本文引用:1] [JCR: 2.52]
[113] Barchyn T E, Hugenholtz C H. Field comparison of four piezoelectric sensors for detecting aeolian sediment transport[J]. Geomorphology, 2010, 120(3/4): 368-371. [本文引用:1] [JCR: 2.552]
[114] Hugenholtz C H, Barchyn T E. Laboratory and field performance of a laser particle counter for measuring aeolian sand transport[J]. Journal of Geophysical Research, 2011, 116, doi: DOI:10.1029/2010JF001822. [本文引用:1]
[115] Yang Bin, Wang Yuan, Wang Dawei. Development of wind-sand flow measurement techniques[J]. Advances in Mechanics, 2006, 36(4): 580-590.
[杨斌, 王元, 王大伟. 风沙两相流测量技术研究进展[J]. 力学进展, 2006, 36(4): 580-590. ] [本文引用:1] [CJCR: 1.226]
[116] Dupont S, Bergametti G, Marticorena B, et al. Modeling saltation intermittency[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(13): 7109-7128. [本文引用:1]
[117] Sherman D J, Lyons W. Beach-state controls on aeolian sand delivery to coastal dunes[J]. Physical Geography, 1994, 15(4): 381-395. [本文引用:1] [JCR: 0.947]