致密储层油气成藏机理研究现状及其关键科学问题*
曾溅辉1,2, 杨智峰1,2, 冯枭1,2, 乔俊程1,2, 张忠义3
1. 油气资源与探测国家重点实验室, 北京 102249
2. 中国石油大学(北京)地球科学学院, 北京 102249
3. 中石油长庆油田勘探开发研究院, 陕西 西安 710018

作者简介:曾溅辉(1962-),男,江西新干人,教授,主要从事盆地流体与油气运聚成藏方面的研究.E-mail:zengjh@cup.edu.cn

摘要

致密油气是世界上近20年来勘探、开发和研究的热点。在大量文献资料调研的基础上,首先总结了前人对致密储层特征及成因、致密储层油气形成和分布特征以及致密储层油气运移和聚集机理等方面的研究现状;然后分析了目前国内外有关致密储层油气成藏研究的主要特点;最后提出微米—纳米级孔喉网络系统油气充注、运移和聚集机理是致密储层油气成藏机理的核心科学问题,具体体现为油气由烃源岩向致密储层的充注机理、致密储层微米—纳米级孔喉网络系统油气运移的渗流机理以及致密储层微米—纳米级孔喉网络系统油气的赋存和聚集(滞留)机理3个具体的关键科学问题,而这将是致密储层油气成藏机理下一步研究的重点。

关键词: 致密储层; 石油运移与聚集; 充注; 微米—纳米孔喉网络
中图分类号:P618.3 文献标志码:A 文章编号:1001-8166(2014)06-0651-11
Study Status and Key Scientific Issue of Tight Reservoir Oil and Gas Accumulation Mechanism
Zeng Jianhui1,2, Yang Zhifeng1,2, Feng Xiao1,2, Qiao Juncheng1,2, Zhang Zhongyi3
1. State Key Laboratory of Petroleum Resource and Prospecting,Beijing 102249
2. College of Geosciences, China University of Petroleum, Beijing 102249, China
3. Exploration & Development Research Institute of PetroChina Changqing Oilfield Company, Xi’an 710018, China
Abstract

Tight oil and tight gas have been a hot area of petroleum exploration, development and research for the past 20 years. Based on extensive research of literature, the study status of tight reservoir characteristics and geneses, petroleum formation and distribution characteristics in tight reservoirs, and petroleum migration and accumulation mechanism in tight reservoirs are firstly summarized in this article. Secondly, the main features of domestic and international tight oil and gas accumulation researches are analyzed. At last, the article point out that the key scientific issue of tight oil and gas pool formation is petroleum injection, migration and accumulation in micro-nano pore network systems, which refers to petroleum injection mechanism from source rocks to tight reservoirs, petroleum migration and percolation mechanism in micro-nano pore network systems and petroleum occurrence and accumulation (detention) mechanism in micro-nano pore network systems. Investigation on tight reservoir oil and gas accumulation mechanism should pay attention to three key scientific problems.

Keyword: Tight reservoir; Petroleum migration and accumulation; Injection; Micro-Nano pore network.
1 引 言

致密油气一般是指储集在覆压基质渗透率≤0.1 mD(约相当于空气渗透率≤1.0 mD)的致密储层、致密碳酸盐岩等岩层中的油气。单井一般无自然产能或自然产能低于工业产能下限,在一定经济条件和技术措施下可获得工业产量[ 1, 2, 3]。考虑到石油和天然气相态的差异、运移和聚集的差异,我们认为,致密油储层一般为覆压基质渗透率≤1.0 mD的储层。由于致密储层和致密碳酸盐岩与页岩本身具有很大的差别,加上致密储层和致密碳酸盐岩与页岩油气赋存和运聚存在着很大的差异性,因此致密油气不包括页岩油和页岩气。

致密储层气的勘探和开发始于20世纪80年代左右,开始主要发现于西加拿大阿尔伯达盆地(Alberta)、新墨西哥州(New Mexico)和科罗拉多州的圣胡安盆地(San Juan)以及科罗拉多州的丹佛(Denver)盆地发现的致密储层气藏。致密储层气藏具有深盆气藏的特征[ 4, 5, 6, 7]、被称为致密储层气藏[ 8, 9, 10]及连续型气藏[ 11, 12, 13]。2011年世界非常规天然气产量为7805×108 m3,占世界天然气产量的24%,其中绝大多数为致密气,其产量为5320×108 m3 [ 14]。近几年来,世界致密气的产量增长更快。

近几年来,伴随北美威利斯顿盆地Bakken、德克萨斯南部Eagle Ford致密油的成功勘探开发,致密油己成为继北美页岩气之后又一战略性突破领域。2000年,Bakken致密油产量实现7000 t/d;2008年,Bakken致密油实现规模开发,成为当年全球十大发现之一[ 1]。目前北美己发现致密油盆地19个,主力致密油产层4套,已探明可采储量6.4×108 t,美国致密油2011年产量达3000×104t左右,预计到2020年产量达1.5×108t[ 1, 2]

致密油气在我国松辽盆地、鄂尔多斯盆地、四川盆地、准噶尔盆地、渤海湾盆地、塔里木盆地、柴达木盆地、吐哈盆地和酒泉盆地等分布广泛,初步评价结果显示,中国致密油有利勘探面积达18×104km2,地质资源量为74×108~80×108t,可采资源量为13×108~14×108t[ 2, 3],具有非常大的资源潜力。近年来,在鄂尔多斯盆地三叠系延长组、四川盆地侏罗系、松辽盆地白垩系中深层青山口组和泉头组、准噶尔盆地二叠系等,发现了大量的致密储层油,显示了我国具有广阔的致密油勘探前景[ 2, 3]

大量的研究结果表明,致密储层油气藏形成和分布特征与常规砂岩油气藏具有很大的差别,因此传统的石油地质理论和方法难于指导致密储层油气勘探,迫切需要建立新的石油地质理论和技术,揭示非常规油气藏的形成演化机制,从而有效地指导致密油气的勘探和开发实践。本文首先综述了国内外致密储层油气成藏机理的研究现状,总结了其研究特点,然后提出了致密储层油气成藏机理的3个关键科学问题。

2 致密储层油气成藏机理的研究现状和研究特点
2.1 致密储层油气成藏机理的研究现状

(1)致密储层特征及成因

与常规储层不同,致密储层为覆压基质渗透率≤0.1mD(或空气渗透率≤1.0 mD),孔隙度≤10%的砂岩、灰岩储层,孔喉以微孔、纳米孔为主,微孔直径均小于2 μm,主体直径40~900 nm,主要为微米-纳米级孔喉(孔喉直径在2.0~0.03 µm之间)网络系统[ 1, 2, 15, 16, 17, 18, 19]。中国致密储层77. 2%中值孔喉半径小于1 μm,属于纳米级孔喉(图1),特别是在鄂尔多斯盆地苏里格地区致密储层气储集层孔喉半径在1 μm以下的占到了83.6%[ 20]

图1 中国致密砂岩孔喉分布图(据文献[20]修改)
资料来源:塔里木盆地、四川盆地、松辽盆地、鄂尔多斯盆地延长组、吐哈盆地与渤海湾盆地1478个样品
Fig.1 Pore and throat distribution of tight sandstones in China(modified from reference[20])
Data derived from 1478 rock samples of Tarim basin, Sichuan basin, Songliao basin, Yan chang formation of Ordos basin, Turpan-Hami basin and Bohai bay basin

致密储层微米级孔隙类型为粒间溶孔与颗粒溶蚀孔与微裂缝,孔隙直径主体介于10~200 μm之间,纳米级孔隙类型为原生粒间孔与自生矿物晶间孔,孔隙直径主体介于70~400 nm之间;致密灰岩孔隙类型有方解石粒内溶孔、粒间溶孔与微裂缝,孔隙直径主体介于50~500 nm之间[ 20]

致密储层形成的主要原因有沉积作用和成岩作用,目前致密储层成岩作用的研究尚不够深入[ 21]。沉积作用主要表现在冲积扇沉积和三角洲前缘相带的细粒沉积。冲积扇致密储层的主要成因是颗粒杂基支撑、分选差、泥质含量高,而湖盆三角洲前缘相致密储层的主要成因是岩石颗粒细、分选差和泥质含量高[ 22]。致密储层形成的主要成岩作用为压实作用和胶结作用。大多数致密储层均经历了早期和中期强烈的压实作用,使原生孔隙损失了近90%左右。致密储层的胶结作用很强,表现在胶结作用类型多、期次多和成岩次生矿物类型多。鄂尔多斯盆地延长组致密储层晚成岩阶段胶结作用非常强烈,表现为斜长石的钠长石化和高岭石化非常明显,高岭石、伊利石和绿泥石等自生粘土矿物含量较高,亮晶方解石和钠长石重结晶现象明显,其含量与储层孔隙度具明显的负相关关系,致密储层形成的主要原因有沉积和成岩作用[ 22]

许多学者的研究结果表明,绝大多数致密储层油气藏的储层致密化过程发生在源岩生、排烃高峰期的油气充注之前,即油气大规模充注时砂岩储层致密化已形成,表现为储层先致密后成藏[ 23, 24, 25, 26, 27, 28, 29, 30]。该类致密储层油气藏具有典型的致密储层油气藏的重要特征:区域性普遍含油气、无统一的气水界面及统一的圈闭界限,油气藏并不受构造与地层圈闭的限制[ 8, 9, 10, 13, 31, 32, 33, 34]。此外,近30年来,很多学者的研究成果已证实,油气充注能够有效阻止储层成岩作用或者极大程度地减小石英等自生矿物的成岩反应速率[ 35, 36, 37, 38, 39, 40, 41]。因此,如果储层在油气大规模充注时期尚未致密,那么储层的成岩作用会受到较大程度地抑制,含油气层的储层难以通过成岩作用,形成现今的致密储层。但是,也有很少部分的致密储层油气藏的储层致密化过程发生在源岩生排烃高峰期油气充注之后,即表现为储层先成藏后致密,该类致密储层油气藏的油气和水的分布及产出与常规的油气藏相近,受构造和地层圈闭的控制,不连续分布,如美国绿河盆地和我国塔里木盆地库车坳陷中的一些致密储层气藏[ 42, 43, 44]

(2)致密储层油气形成和分布特征

大量的研究结果表明,致密储层油气具有特殊的形成和分布特征,主要表现为[ 3, 16, 17, 18, 21, 45, 46, 47, 48, 49, 50, 51]:①大面积连续分布,局部富集,不受构造控制。致密储层油气平面上主要分布于盆地斜坡和坳陷中心区,或后期挤压构造的褶皱区,含油面积很大,可达几百至几万平方公里,整体含油气,油气的储量丰度和产量不受构造控制,局部“甜点”(相对高孔高渗砂体)富集;②源—储共生。剖面上主要分布于与成熟或高过成熟的Ⅰ、Ⅱ类烃源岩以及Ⅲ类煤系烃源岩共生的致密储层中,源—储一体或上下紧密接触。致密油气发育于优质成熟烃源岩内部、或与其紧密接触的致密储层组成有效生储组合;③含油(气)边界主要受岩性和物性控制,圈闭边界不明显。流体分异差,无统一的油(气)水界面,无统一的压力系统,可存在多个油(气)水界面和压力系统,甚至出现油(气)水倒置;④致密油以轻质油或凝析油为主,也可为中质或重质油,致密气具有轻烃含量高、重烃含量低的特点。地层水以束缚水为主,可动水不发育。含油(气)饱和度差异大。

(3)致密储层油气运移和聚集机理

①致密储层油气运移动力

致密储层微米—纳米级孔喉网络系统中的毛细管阻力远大于油气的浮力,导致浮力不起作用或者所起的作用很小,油气运移动力主要为异常压力等[ 3, 16, 17, 18, 21, 45]

近20多年来,国内外石油地质学家对致密储层天然气的充注动力进行了大量的研究,认为源—储剩余压差为致密储层天然气充注的主要动力,浮力的作用很小[ 6, 8, 25, 42, 47, 52, 53]。近年来,随着致密储层油的不断勘探和开发,一些学者探讨了致密储层油的充注动力,认为致密储层以超压充注为主,源—储剩余压差(超压强度)为致密储层石油充注的主要动力,是致密储层石油成藏的决定性因素[ 2, 3, 45, 46, 48, 49, 54, 55, 56, 57, 58, 59, 60]。除此之外,一些学者的研究结果表明,致密储层天然气的运移亦可表现为扩散运移,故天然气的浓度差亦为致密气的主要运聚动力[ 10]

②致密储层油气运移方式

致密储层油气以短距离运移为主,垂向运移为主,侧向运移为辅。微米-纳米级孔喉网络系统中强大的毛管压力限制了浮力在油气聚集中的作用,油气主要在源储压差的作用下就近发生层状运移,运移距离一般较短,主要为初次运移或短距离二次运移[ 2, 17, 18, 45, 46, 47, 48, 49]。对于致密油,其运移主要表现为沿孔隙、裂隙发育的、物性较好的通道集中式垂向运移,但是对于致密气,除了集中式的垂向运移之外,大量的天然气在浓度差的作用下,发生大面积的、分散状的运移。

③致密储层油气运移的渗流特征

近20多年来,许多学者从油气开发的角度研究了采油过程中即水驱油过程中低渗透(致密)砂层油、气、水的渗流特征。研究结果表明,低渗透油气藏中存在着流体低速非达西渗流现象,油、气、水的渗流表现为非达西流,存在着“启动压力梯度”[ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]。大量的油气勘探和研究结果表明,在油气成藏过程中,低渗透(致密)砂岩中流体(油、气、水)的运移亦表现为非达西流特征[ 16, 42, 46, 65, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88]。近年来,笔者通过油气成藏过程中的低渗透(致密)砂岩油气运移模拟实验研究,确定了油气成藏(油驱水)条件下,低渗透(致密)砂岩油气的运移表现为非达西渗流特征,油气运移存在着启动压力梯度[ 87, 88](图2)。

图2 致密砂岩石油运移的压力梯度与流速的关系(非达西渗流特征)Fig.2 Relationship between flow rate and pressure gradient in tight sandstone oil migration (non-Darcy flow characteristics)

④致密储层油气聚集特征

由于致密储层主要为微米—纳米级孔隙和孔喉,毛细管力很大,限制了浮力在油气运移和聚集中的作用,导致由烃源岩充注至致密储层的油气就近发生聚集。致密储层油气聚集主要以3种形式赋存:第一种为孔隙空间的游离油气(可动油气);第二种为矿物颗粒表面的吸附油气;第三种为介于上述两者之间的过渡油气[ 50, 51, 89, 91]。扩散作用对致密气的聚集具有重要的影响。

大多数致密油气具有多期充注聚集的特点。致密油气平面上能形成油气区,资源丰度一般较低,但是在储层厚度较大,物性相对较好或裂缝、微裂缝发育的“甜点”,含油(气)饱和度和储量丰度相对较高,是致密油气勘探和开发的主要目标。

2.2 致密储层油气成藏的研究特点

目前国内外有关致密储层油气成藏研究的主要特点是:①主要集中在致密储层油气成藏条件、成藏特征及其宏观控制因素和分布规律研究,对致密储层油气运移和聚集机理研究得很少;②主要集中于致密储层油气藏的静态描述,对致密储层油气成藏的动态过程研究得少;③近年来通过各种先进的测试分析手段,开展了大量的致密储层微观特征的研究,但是对致密储层油气成藏微观机理研究比较少,缺乏致密储层微米-纳米级孔喉网络系统油气运移动力、渗流特征、赋存状态以及聚集机理的研究;④ 理论研究滞后于勘探实践。目前致密储层油气成藏的理论研究成果相对较少,导致致密储层油气的勘探和开发大多偏重于依赖工程手段和技术;⑤相对于致密气,对致密油的形成条件、分布规律以及运移和聚集机理的研究研究得比较少,研究程度也很低。由于油、气的相态差别很大,加上致密油藏和致密气藏的基本特征、形成条件、分布规律及其运移和聚集机理均存在着很大的差别,因此致密气的运移和聚集机理难于有效指导致密油的勘探和开发。

3 致密储层油气成藏机理的关键科学问题

控制致密储层油气藏具有特殊的形成和分布特征的核心因素是致密储层中广泛分布的纳米—微米孔喉网络系统[ 2, 3, 17, 19, 25, 42, 92],其根本原因在于:致密储层微米—纳米级孔喉网络系统具有与常规砂岩毫米—微米级孔喉网络系统不同的油气充注、运移和聚集机理,其结果导致致密储层油气藏具有不同于常规砂岩油藏的、特殊的形成和分布特征。因此,微米—纳米级孔喉网络系统油气充注、运移和聚集机理是致密储层油气成藏机理的核心科学问题,具体体现在3个方面的关键科学问题:

3.1 油气由烃源岩向致密储层的充注机理

(1)源—储结构对油气由烃源岩向致密储层充注的影响

致密储层油气藏的一个显著特征就是源—储共生,烃源岩生成的油气直接充注进入致密储层(图3),因此源—储结构和充注动力对致密储层油气藏的形成具有重要的作用[ 2, 3, 47, 48, 49]

图3 致密储层油气藏的源—储共生关系Fig.3 Petroleum accumulation in coexisting source and tight reservoir

源—储结构是指烃源岩与储集岩之间的接触关系、岩性组合(烃源岩与其上下或者内部接触的渗透性砂体配置关系)、厚度差异、物性差异和通道类型(孔隙型通道、裂隙型通道或孔隙—裂隙型通道)。不同的源—储结构,烃源岩与储集岩之间具有不同的接触关系、岩性组合、厚度大小以及通道类型和物性特征,直接影响着油气由烃源岩向致密储层的充注动力、充注方式、充注强度、充注范围以及充注量,从而对致密储层中的油气运移和聚集构成重要的影响。一些学者研究了源—储结构对常规储层油气充注的影响,取得了大量的研究成果,深化了常规储层油气运聚机理的认识,有效地指导了常规储层的油气勘探[ 93, 94, 95, 96, 97, 98]。但是,目前国内外对于致密储层油气的源—储结构对油气充注影响的研究开展的比较少。

(2)油气由烃源岩向致密储层充注动力的形成演化特征及其影响因素

近年来,一些学者的研究结果表明,致密储层以超压充注为主,源-储剩余压差(超压强度)为致密储层油气充注的主要动力,是致密储层油气成藏的决定性因素[ 2, 3, 45, 48, 49, 54, 55, 56, 57, 58, 59, 60, 87]。但是,有关源—储剩余压差的形成演化及其对致密储层油气充注的影响机制研究得不够,例如,不同源—储结构中的源—储剩余压差的形成和演化特征如何?源—储剩余压差的形成和演化与油气充注期的匹配关系?源—储剩余压差对致密储层油气充注的作用过程和作用机制等都需要进一步开展研究。

(3)油气由烃源岩向致密储层有效充注的孔喉下限及其充注机理

储层油气充注物性下限是指排烃期油气由烃源岩向储层充注过程中,在特定的流体动力条件下,油气进入储层必须满足的物性下限标准。虽然前人对有效储层物性下限研究较多,但对油气充注物性下限还缺乏系统的研究。

对于致密储层,油气充注物性下限更多地反映在油气充注的孔喉下限上。孔喉大小、孔隙与孔喉之间的连通性对油气的充注具有重要的影响。因此,致密储层油气有效充注的孔喉下限是致密储层油气成藏的一个重要参数,但是长期以来,对低渗透致密储层油气充注下限的取值,许多学者的认识尚不统一[ 99, 100, 101, 102]

油气由烃源岩向致密储层有效充注的孔喉下限是储层孔喉大小、孔隙和孔喉之间的连通性、充注动力和油气的物理性质(密度和粘度)几个方面耦合作用的结果,需要通过地质、地化和测井等方面的研究,探讨储层孔隙度演化史、成岩史和油气充注期,通过统计分析和各类模拟实验,综合研究储层孔隙-孔喉特征、充注动力和原油物性对油气由烃源岩向致密储层有效充注的孔喉下限的耦合控制作用及其充注机理。

3.2 致密储层微米—纳米级孔喉网络系统油气运移的渗流机理

总体来说,流体在致密储层中的低速流动具有非线性特征已成为共识,许多学者一直在探索启动压力梯度的机理和非达西渗流的影响因素,并从孔隙结构、孔隙结构与流体之间的相互作用和流体性质等3个方面来分析低速非线性渗流机理,但至今仍存在很多分歧, 没有形成统一的认识。此外,目前对非线性渗流机理的研究绝大多数都基于岩心渗流实验,而岩心渗流实验结果仍然是岩心中流体流动的统计平均,是反映岩心孔隙结构、岩石矿物组成及表面性质、流体性质等综合因素的宏观结果。在这种实验中观察到的渗流规律,不能反映致密储层微米—纳米级孔喉网络系统油气运移的渗流特征及其影响因素,难以刻画致密储层油气运移的微观特征和渗流机理,必须借助微米-纳米级孔隙结构尺度下的研究技术和方法,开展微米-纳米级孔隙尺度下油气运移和聚集的模拟实验研究,综合研究成藏条件下,油气在微米—纳米级孔隙微尺度下的非线性渗流特征和渗流机理,探讨孔隙结构、流体性质和固液作用对油气非达西渗流的影响。

3.3 致密储层微米—纳米级孔喉网络系统油气的赋存和聚集(滞留)机理

微米—纳米级孔隙和孔喉网络系统导致致密储层油气具有复杂的赋存形式和状态,而油气赋存形式和状态的差异性,对油气的运移和聚集动力学过程和特征以及油(气)水分布具有非常重要的影响,对油气勘探和开发及致密油气的资源评价至关重要。目前的研究只是根据致密储层孔隙特征和表面物理化学理论认识到致密储层中的油气的赋存状态,并应用基于高分辨率纳米CT扫描系统与FIB扫描电镜的方法,从静态的角度观察到游离油的存在[ 103, 104, 105, 106, 107, 108, 109],但是对不同级别孔喉系统的致密储层中油气的赋存状态、赋存特征及其影响因素;运移动力与赋存状态之间的关系;矿物—油气—地层水之间的有机和无机作用(润湿性及其变化)及其对油气赋存状态的影响等问题基本没有涉及。

致密储层油气藏具有整体含油气、“甜点”(相对高孔高渗的砂体)富油气的特征,油气主要聚集于相对高孔高渗的“甜点”中[ 7, 10, 42, 92, 110]。致密储层油气的聚集机理主要涉及到致密储层微米—纳米级孔喉系统油气聚集的动力学机制(动力与阻力)及其影响因素,具体包括:含油(气)饱和度的增长过程及其动力学特征,微米—纳米级孔喉系统油气聚集动力学,“甜点”油气聚集机理及动力学机制,油、气、水界面的分布和迁移特征、影响因素及其动力学机制等等。但是,这些方面的研究普遍比较薄弱。

4 结 论

致密储层广泛分布的纳米-微米孔喉网络系统导致致密储层油气藏形成和分布特征与常规砂岩油气藏具有很大的差别,近20多年来,前人对致密储层特征及成因、致密储层油气形成和分布特征、以及致密储层油气运移和聚集机理开展了大量的研究,取得了一系列研究成果。

目前国内外有关致密储层油气成藏研究的主要特点是主要集中在致密储层油气成藏条件、成藏特征及其宏观控制因素和分布规律研究,对致密储层油气运移和聚集机理研究得很少;静态描述多,动态过程研究少;对致密储层微观特征研究多,致密储层油气成藏微观机理研究比较少,缺乏致密储层微米-纳米级孔喉网络系统油气运移和聚集机理的研究;理论研究滞后于勘探实践;致密气成藏机理研究比致密油深入。

微米—纳米级孔喉网络系统油气充注、运移和聚集机理是致密储层油气成藏机理的核心科学问题,具体体现为油气由烃源岩向致密储层的充注机理、致密储层微米-纳米级孔喉网络系统油气运移的渗流机理以及致密储层微米-纳米级孔喉网络系统油气的赋存和聚集(滞留)机理3个具体的关键科学问题。

The authors have declared that no competing interests exist.

参考文献
[1] Pollastro R M, Cook T A, Roberts L N R, et al. Assessment of Undiscovered Oil Resources in the Devonian-Mississippian Bakken Formation, Williston Basin Province, Montana and North Dakota[R]. US: Geological Survey Fact Sheet, 2008. [本文引用:4]
[2] Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187.
[邹才能, 朱如凯, 吴松涛, . 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187. ] [本文引用:10] [CJCR: 1.437]
[3] Jia Chengzao, Zheng Min, Zhang Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136.
[贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. ] [本文引用:9] [CJCR: 2.573]
[4] Masters J A. Deep basin gas trap, Western Canada[J]. AAPG Bulletin, 1979, 63(2): 152-181. [本文引用:1] [JCR: 1.768]
[5] Rose P R, Everett J R, Merin I S. Possible basin centered gas accumulation, Roton basin, Southern Colorado[J]. Oil & Gas Journal, 1984, 82(40): 190-197. [本文引用:1] [CJCR: 0.281]
[6] Law B E, Dickinson W W. Conceptual model for origin of abnormally pressured gas accumulation in low permeability reservoirs[J]. AAPG Bulletin, 1985, 69(8): 1295-1304. [本文引用:2] [JCR: 1.768]
[7] Berkenpas P G. The Milk River shallow gas pool: Role of the up dip water trap and connate water in gas production from the pool[C]∥SPE Annual Technical Conference and Exhibitio. Dallas, Texas, USA, 1991 [本文引用:2]
[8] Weimer R J, Sonnenberg S A, Young G B, et al. Geology of tight-gas reservoirs[J]. AAPG Studies in Geology, 1986, 24: 143-164. [本文引用:3]
[9] Spencer C W. Review of characteristics of low permeability gas reservoirs in Western United States[J]. AAPG, 1989, 73(5): 613-629. [本文引用:2]
[10] Law B E. Basin-centered gas systems[J]. AAPG Bulletin, 2002, 86(11): 1891-1919. [本文引用:4] [JCR: 1.768]
[11] Schmoker J W. Method for assessing continuous-type (unconventional) hydrocarbon accumulations[C]∥Gautier D L, Dolton G L, Takahashi K I, et al, eds. National Assessment of United States Oil and Gas Resources-Results, Methodology and Supporting Data. U. S. Colorado: Digital Data Series, 1995. [本文引用:1]
[12] Schmoker J W, Fouch T D, Carpentier R R. Gas in the Uinta basin, Utah resources in continuous accumulations[J]. Mountain Geology, 1996, 33(4): 95-104. [本文引用:1]
[13] Schmoker J W. Resource-assessment perspectives for unconventional gas systems[J]. AAPG Bulletin, 2002, 86(11): 1993-1999. [本文引用:2] [JCR: 1.768]
[14] British Petroleum Company. BP Statistical Review of World Energy 2011[R]. London: British Petroleum Company, 2011. [本文引用:1]
[15] Jiang Lingzhi, Gu Jiayu, Guo Bincheng. Characteristics and mechanism of low permeability clastic reservoir in Chinese petroliferous basin[J]. Acta Sedimentologica Sinica, 2004, 22(1): 13-18.
[蒋凌志, 顾家裕, 郭彬程. 中国含油气盆地碎屑岩低渗透储层的特征及形成机理[J]. 沉积学报, 2004, 22(1): 13-18. ] [本文引用:1] [CJCR: 1.227]
[16] Nelson P H. Pore-throat sizes in sand stones, tight sand stones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340. [本文引用:4] [JCR: 1.768]
[17] Zou Caineng, Tao Shizhen, Yuan Xuanjun, et al. The formation conditions and distribution characteristics of continuous petroleum accumulations[J]. Acta Petrolei Sinica, 2009, 30(3): 324-331.
[邹才能, 陶士振, 袁选俊, . 连续型油气藏形成条件与分布特征[J]. 石油学报, 2009, 30(3): 324-331. ] [本文引用:5] [CJCR: 1.437]
[18] Zou Caineng, Tao Shizhen, Yuan Xuanjun, et al. Global importance of “continuous” petroleum reservoirs: Accumulation, distribution and evaluation[J]. Petroleum Exploration and Development, 2009, 36(6): 669-682.
[邹才能, 陶士振, 袁选俊, . “连续型”油气藏及其在全球的重要性: 成藏、分布与评价[J]. 石油勘探与开发, 2009, 36(6): 669-682. ] [本文引用:4] [CJCR: 2.573]
[19] Cui Jingwei, Zou Caineng, Zhu Rukai, et al. New advances in shale porosity research[J]. Advances in Earth Science, 2012, 27(12): 1319-1325.
[崔景伟, 邹才能, 朱如凯, . 页岩孔隙研究新进展[J]. 地球科学进展, 2012, 27(12): 1319-1325. ] [本文引用:2] [CJCR: 1.388]
[20] Zhu Rukai, Bai Bin, Cui Jingwei, et al. Research advances of microstructure in unconventional tight oil and gas reservoirs[J]. Journal of Palaeogeography, 2013, 15(5): 615-623.
[朱如凯, 白斌, 崔景伟, . 非常规油气致密储集层微观结构研究进展[J]. 古地理学报, 2013, 15(5): 615-623. ] [本文引用:2]
[21] Zhang Jinliang, Zhang Penghui, Xie Jun, et al. Diagenesis of clastic reservoirs: Advances and prospects[J]. Advances in Earth Science, 2013, 28(9): 957-967.
[张金亮, 张鹏辉, 谢俊, . 碎屑岩储集层成岩作用研究进展与展望[J]. 地球科学进展, 2013, 28(9): 957-967. ] [本文引用:3] [CJCR: 1.388]
[22] Zou Caineng. Unconventional Petroleum Geology (Second Edition)[M]. Beijing: Geological Publishing House, 2013: 37-126.
[邹才能. 非常规油气地质(第二版)[M]. 北京: 地质出版社, 2013: 37-126. ] [本文引用:2]
[23] Hanson W B, Carrillo V, Ritger S. Evolution of the Wamsutterarch, Wyoming foreland , U. S. A. : Influence on formation of stratigraphic traps in Upper Cretaceous Almond shoreline sand stones (abs. )[J]. AAPG Annual Meeting Program, 1994, 3: 163. [本文引用:1]
[24] Burch D N, Cluff R M. A volumetric analysis of Almond Formation (Cretaceous, Mesaverde Group) gas production in the Coal Gulch-Echo Springs-stand ard draw field complex, Washakie basin, southwest Wyoming[C]∥Society of Petroleum Engineers Rocky Mountain Regional Meeting. Wyoming: Society of Petroleum Engineers, 1997: 38-68. [本文引用:1]
[25] Law B E, Curtis J B. Introduction to unconventional petroleum systems[J]. AAPG Bulletin, 2002, 86(11): 1851-1852. [本文引用:3] [JCR: 1.768]
[26] Wang Tao. Deep Basin Gas Fields in China[M]. Beijing: Petroleum Industry Press, 2002.
[王涛. 中国深盆气田[M]. 北京: 石油工业出版社, 2002. ] [本文引用:1]
[27] Zhang L, Luo X, Cai C. The Diagenesis of the Main Reservoir of Suligamiao and Yulin Gas Fields in the Ordos Basin[R]. Petrochina Research Report, 2004: 46-50. [本文引用:1]
[28] Coskey R J. Burial history modeling of the Jonah field area: An unusual and possibly unique gas accumulation in the Green River basin, Wyoming[C]∥ Robinson J R, Shanley K W, eds. Jonah Field: Case Study of a Giant Tight-gas Fluvial Reservoir. Colorado: AAPG Studies in Geology, 2004, 52: 93-125. [本文引用:1]
[29] Zhu Guangyou, Gu Lijing, Su Jin, et al. Sedimentary association of alternated mudstones and tight sand stones in China’s oil and gas bearing basins and its natural gas accumulation[J]. Journal of Asian Earth Sciences, 2012, 50: 88-104. [本文引用:1] [JCR: 2.379]
[30] Chen Dongxia, Pang Xiongqi, Yang Keming, et al. Porosity evolution of tight gas sand of the second member of Xujiahe Formation of Upper Triassic, Western Sichuan Depression[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(Suppl. 1): 42-51.
[陈冬霞, 庞雄奇, 杨克明, . 川西坳陷中段上三叠统须二段致密砂岩孔隙度演化史[J]. 吉林大学学报: 地球科学版, 2012, 42(增刊1): 42-51. ] [本文引用:1] [CJCR: 0.881]
[31] Law B E, Spencer C W. Gas in tight reservoirs: An emerging major source of energy[C]∥ Howell D G, Wiese K, Fanelli M, eds. The Future of Energy Gases. U. S. : Geological Survey Professional Paper, 1993: 233-252. [本文引用:1]
[32] Surdam R C, Jiao Z S, Heasler H P. Anomalously pressured gas compartments in Cretaceous rocks of the Laramide Basins of Wyoming: A new class of hydrocarbon accumulation[C]∥ Surdam R C, ed. Seals, Traps, and the Petroleum System. AAPG Memoir 67. Tulsa: AAPG, 1997: 199-222. [本文引用:1]
[33] Jin Zhijun, Zhang Jinchuan, Wang Zhixin. Some remarks on deep basin gas accumulation[J]. Geological Review, 2003, 49(4): 400-407.
[金之钧, 张金川, 王志欣. 深盆气成藏关键地质问题[J]. 地质论评, 2003, 49(4): 400-407. ] [本文引用:1] [CJCR: 2.048]
[34] Schenk C J, Pollastro R M. Natural Gas Production in the United States[R]. U. S: Geological Survey Fact Sheet, 2002. [本文引用:1]
[35] Dixon S A, Summers D M, Surdam R C. Diagenesis and preservation of porosity in Norphlet Formation (Upper Jurassic), southern Alabama[J]. AAPG Bulletin, 1989, 73(6): 707-728. [本文引用:1] [JCR: 1.768]
[36] Wilkinson M, Darby D, Haszeldine R S, et al. Secondary porosity generation during deep burial associated with overpressure leak-off: Fulmar Formation, United Kingdom Central Graben[J]. AAPG Bulletin, 1997, 81(5): 803-813. [本文引用:1] [JCR: 1.768]
[37] Worden R H, Smalley P C, Oxtoby N H. Can oil emplacement stop quartz cementation in sand stones?[J]. Petroleum Geoscience, 1998, 4: 129-138. [本文引用:1] [JCR: 1.5]
[38] Marchand A M E, Haszeldine R S, Smalley P C, et al. Evidence for reduced quartz-cementation rates in oil-filled sand stones[J]. Geology, 2001, 29: 915-918. [本文引用:1]
[39] Marchand A M E, Smalley P C, Haszeldine R S, et al. Note on the importance of hydrocarbon fill for reservoir quality prediction in sand stones[J]. AAPG Bulletin, 2002, 86(9): 1561-1571. [本文引用:1] [JCR: 1.768]
[40] Bloch S, Land er R H, Bonnell L. Anomalously high porosity and permeability in deeply buried sand stone reservoirs: Origin and predictability[J]. AAPG Bulletin, 2002, 86(2): 301-328. [本文引用:1] [JCR: 1.768]
[41] Haszeldine R S, Cavanagh A J, England Gavin L. Effects of oil charge on illite dates and stopping quartz cement: Calibration of basin models[J]. Journal of Geochemical Exploration, 2003, 78/79: 373-376. [本文引用:1] [JCR: 1.952]
[42] Shanley K W. Fluvial reservoir description for a Giant, Low-permeability Gas Field: Jonah field, Green River Basin, Wyoming, U. S. A. [C]∥Robinson J W, Shanley K W, eds. Jonah Field: Case Study of A Tight-Gas Fluvial Reservoir: AAPG Studies in Geology 52 and Rocky Mountain Association of Geologists 2004 Guidebook. Colorado, U. S. A: The American Association of Petroleum Geologists, 2004. [本文引用:5]
[43] Jiang Zhenxue, Lin Shiguo, Pang Xiongqi, et al. The comparisonof two types of tight sand gas reservoir[J]. Petroleum Geology & Experiment, 2006, 28(3): 210-214.
[姜振学, 林世国, 庞雄奇, . 两种类型致密砂岩气藏对比[J]. 石油实验地质, 2006, 28(3): 210-214. ] [本文引用:1]
[44] Li Zhuo, Jiang Zhenxue, Pang Xiongqi, et al. Genetic types of the tight sand stone gas reservoirs in the Kuqa Depression, Tarim Basin, NW China[J]. Earth Science—Journal of China University of Geosciences, 2013, 38(1): 156-164.
[李卓, 姜振学, 庞雄奇, . 塔里木盆地库车坳陷致密砂岩气藏成因类型[J]. 地球科学: 中国地质大学学报, 2013, 38(1): 156-164. ] [本文引用:1] [CJCR: 1.705]
[45] Hou Qijun, Wei Zhaosheng, Zhao Zhanyin. Deep basin reservoir in Songliao Basin[J]. Petroleum Exploration and Development, 2006, 33(4): 406-411.
[侯启军, 魏兆胜, 赵占银, . 松辽盆地的深盆油藏[J]. 石油勘探与开发, 2006, 33(4): 406-411. ] [本文引用:5] [CJCR: 2.573]
[46] Wu Heyong, Liang Xiaodong, Xiang Caifu, et al. Discussion on the syn-cline reservoir characteristics and forming mechanism of the Songliao Basin[J]. Science in China (Series D), 2007, 31(2): 185-191.
[吴河勇, 梁晓东, 向才富, . 松辽盆地向斜油藏特征及成藏机理探讨[J]. 中国科学: D辑, 2007, 31(2): 185-191. ] [本文引用:4]
[47] Yurewicz D A, Bohacs K M, Kendall J. Controls on gas and water distribution, Mesaverde basin-centered gas play, Piceance Basin, Colorado[J]. AAPG Hedberg Series, 2008, 3: 105-136. [本文引用:4]
[48] Sonneberg S A, Pramudito A. Petroleum geology of the giant ElmCoulee field, Williston Basin[J]. AAPG Bulletin, 2009, 93(9): 1127-1153. [本文引用:5] [JCR: 1.768]
[49] Nordeng S H. The Bakken petroleum system: An example of a continuous petroleum accumulation[J]. North Dakota Department of Mineral Resources Newsletter, 2009, 36(1): 19-22. [本文引用:5]
[50] Carpentier B, Arab H, Pluchery E, et al. Tar mats and residual oil distribution in a giant oil field offshore Abu Dhabi[J]. Journal of Petroleum Science and Engineering, 2007, 58: 472-490. [本文引用:2] [JCR: 0.997]
[51] Ramirez P, Stocco A, Munoz J, et al. Interfacial rheology and conformations of triblock copolymers adsorbed onto the water-oil interface[J]. Journal of Colloid and Interface Science, 2012, 378: 135-143. [本文引用:2]
[52] Zhang Jinliang, Chang Xiangchun, Zhang Jingong. Deep basin gas trap in the Upper Paleozoic of Ordos Basin[J]. Petroleum Exploration and Development, 2000, 27(4): 30-35.
[张金亮, 常象春, 张金功. 鄂尔多斯盆地上古生界深盆气藏研究[J]. 石油勘探与开发, 2000, 27(4): 30-35. ] [本文引用:1] [CJCR: 2.573]
[53] Zhang Jinchuan, Liu Lifang, Tang Xuan, et al. Abnormal pressure in the source-contacting gas reservoir in western Sichuan Basin[J]. Earth Science Frontiers, 2008, 15(2): 147-155.
[张金川, 刘丽芳, 唐玄, . 川西坳陷根缘气藏异常地层压力[J]. 地学前缘, 2008, 15(2): 147-155. ] [本文引用:1]
[54] Mi Jingkui, Xiao Xianming, Liu Dehan, et al. Determination of paleo-pressure for a natural gas pool formation based on PVT characteristics of inclusion in reservoir rock—A case study of Upper-Plaeozoic deep basin gas trap of Ordos Basin[J]. Science in China(Series D), 2003, 33(7): 679-685.
[米敬奎, 肖贤明, 刘德汉, . 利用储层流体包裹体的PVT特征模拟计算天然气藏形成古压力——以鄂尔多斯盆地上古生界深盆气藏为例[J]. 中国科学: D辑, 2003, 33(7): 679-685. ] [本文引用:2]
[55] Yang Hua, Liu Xianyang, Zhang Caili, et al. The main controlling factors and distribution of low permeability lithologic reservoirs of Triassic Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(3): 1-6.
[杨华, 刘显阳, 张才利, . 鄂尔多斯盆地三叠系延长组低渗透岩性油藏主控因素及其分布规律[J]. 岩性油气藏, 2007, 19(3): 1-6. ] [本文引用:2] [CJCR: 2.2884]
[56] Liu Xinshe, Xi Shengli, Huang Daojun, et al. Dynamic conditions of Mesozoic petroleum secondary migration, Ordos Basin[J]. Petroleum Exploration and Development, 2008, 35(2): 143-147.
[刘新社, 席胜利, 黄道军, . 鄂尔多斯盆地中生界石油二次运移动力条件[J]. 石油勘探与开发, 2008, 35(2): 143-147. ] [本文引用:2] [CJCR: 2.573]
[57] Fu Jinhua, Luo Anxiang, Yu Jian, et al. Geological features of reservoir formation and exploration strategy of Xifeng Oilfield[J]. Acta Petrolei Sinica, 2004, 25(2): 25-29.
[付金华, 罗安湘, 喻建, . 西峰油田成藏地质特征及勘探方向[J]. 石油学报, 2004, 25(2): 25-29. ] [本文引用:2] [CJCR: 1.437]
[58] Fu Xiaofei, Ping Guidong, Fan Ruidong, et al. Research on migration and accumulation mechanism of hydrocarbon “Reversed migration” in Fuyu and Yangdachengzi Formation in Sanzhao Depression[J]. Acta Sedimentologica Sinica, 2009, 21(3): 558-566.
[付晓飞, 平贵东, 范瑞东, . 三肇凹陷扶杨油层油气“倒灌”运聚成藏规律研究[J]. 沉积学报, 2009, 21(3): 558-566. ] [本文引用:2] [CJCR: 1.227]
[59] Li Mingcheng, Li Jian. Dynamic trap: A main action of hydrocarbon charging to form accumulations in low permeability tight reservoir[J]. Acta Petroleisinica, 2010, 31(5): 718-722.
[李明诚, 李剑. “动力圈闭”——低渗透致密储层中油气充注成藏的主要作用[J]. 石油学报, 2010, 31(5): 718-722. ] [本文引用:2]
[60] Meissner F F, Banks R B. Computer simulation of hydrocarbon generation, migration, and accumulation under hydrodynamic conditions-Examples from the Williston and San Juan basins, U. S. A. [C]∥Oral Presentation at AAPG International Conference and Exhibition. Bali, Indonesia, 2000. [本文引用:2]
[61] Pascal J P, Pascal H. Non-linear effects on some unsteady non-darcian flows through porous media[J]. Non-linear Mechanica, 1997, 32(2): 361-376. [本文引用:1]
[62] Prada A, Civan F. Modification of Darcy’s law for the threshold pressure gradient[J]. Journal of Petroleum Science and Engineering, 1999, 22(4): 237-240. [本文引用:1] [JCR: 0.997]
[63] Skjetne E, Auriault J L. New insights on steady, non-linear flow in porous media[J]. European Journal of Mechanics-B/Fluids, 1999, 18: 131-145. [本文引用:1] [JCR: 1.635]
[64] Yan Qinglai, He Qiuxuan, Wei Ligang, et al. A laboratory study on percolation characteristics of single phase flow in low-permeability reservoirs[J]. Journal of Xi’an Petroleum Institute (Natural Science Edition), 1990, 5(2): 1-6.
[闫庆来, 何秋轩, 尉立岗, . 低渗透油层中单相液体渗流特征的实验研究[J]. 西安石油大学学报: 自然科学版, 1990, 5(2): 1-6. ] [本文引用:1]
[65] Huang Yanzhang. Percolation Mechanism of Low-Permeability Reservoirs[M]. Beijing: Petroleum Industry Press, 1999.
[黄延章. 低渗透油层渗流机理[M]. 北京: 石油工业出版社, 1999. ] [本文引用:2]
[66] Ruan Min, He Qiuxuan. Determination of the critical point of nondarcy flow through low permeability porous media and judgement of Darcy flow and non-Darcy flow[J]. Journal of Xi’an Petroleum Institute (Natural Science Edition), 1999, 14(3): 16-17.
[阮敏, 何秋轩. 低渗透非达西渗流临界点及临界参数判别法[J]. 西安石油学院学报: 自然科学版, 1999, 14(3): 16-17. ] [本文引用:1]
[67] Ruan Min, He Qiuxuan. A study of the overall criterion for judging the non—Darcy flow through low permeability porous media[J]. Journal of Xi’an Petroleum Institute (Natural Science Edition), 1999, 14(4): 53-55.
[阮敏, 何秋轩. 低渗透非达西渗流综合判据初探[J]. 西安石油学院学报: 自然科学版, 1999, 14(4): 53-55. ] [本文引用:1]
[68] Yao Yuedong, Ge Jiali. Study on the new pattern and its rules of oil flow in porous media[J]. Journal of Chongqing University (Natural Science Edition), 2000, 23(Suppl. 1): 150-153.
[姚约东, 葛家理. 石油渗流新的运动形态及其规律[J]. 重庆大学学报: 自然科学版, 2000, 23(增刊1): 150-153. ] [本文引用:1] [CJCR: 0.5143]
[69] Yao Yuedong, Ge Jiali. Study on Non-darcy flow pattern in low permeability oil reservoir[J]. Xinjiang Petroleum Geology, 2000, 21(3): 213-215.
[姚约东, 葛家理. 低渗透油层非达西渗流规律的研究[J]. 新疆石油地质, 2000, 21(3): 213-215. ] [本文引用:1] [CJCR: 0.55]
[70] Yao Yuedong, Ge Jiali, Wei Junzhi. Study on the fluid flow in low permeability reservoir[J]. Petroleum Exploration and Development, 2001, 28(4): 73-75.
[姚约东, 葛家理, 魏俊之. 低渗透油层渗流规律的研究[J]. 石油勘探与开发, 2001, 28(4): 73-75. ] [本文引用:1] [CJCR: 2.573]
[71] Chengyuan, Wang Jian, Sun Zhigang. An experimental study on starting pressure gradient of fluids flow in low permeability sand stone porous media[J]. Petroleum Exploration and Development, 2002, 29(2): 86-89.
[吕成远, 王建, 孙志刚. 低渗透砂岩油藏渗流启动压力梯度实验研究[J]. 石油勘探与开发, 2002, 29(2): 86-89. ] [本文引用:1] [CJCR: 2.573]
[72] Hadim H. Non-Darcy natural convection of a non-Newtonian fluid in a porous cavity[J]. International Communications in Heat and Mass Transfer, 2006, 33: 1179-1189. [本文引用:2] [JCR: 2.208]
[73] Larsson J, Ragnar L. Non-linear analysis of nearly saturated porous media: Theoretical and numerical formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191: 3885-3907. [本文引用:2] [JCR: 2.617]
[74] Dmitriyev N M, Maksimov V M. Non-linear laws of fluid flow through anisotropic porous meida[J]. Journal of Applied Mathematics and Mechanics, 2001, 65(6): 935-940. [本文引用:2] [JCR: 0.261]
[75] Ochoa-Tapia J A, Valdes-Parada F J, Alvarez-Ramirez J. A fractional-order Darcy’s law[J]. Physica A-Statistical Mechanics and Its Applications, 2007, 374(1): 1-14. [本文引用:2] [JCR: 1.676]
[76] Li Daopin. Brief introduction to low-permeability oilfield development[J]. Petroleum Geology & Oilfield Development in Daqing, 1997, 16(3): 36-40.
[李道品. 低渗透油田开发概论[J]. 大庆石油地质与开发, 1997, 16(3): 36-40. ] [本文引用:1]
[77] Cheng Shiqing, Chen Mingzhuo. Numerical simulation of two-dimensional two-phase non-Darcy slow flow[J]. Petroleum Exploration and Development, 1998, 25(1): 57-59.
[程时清, 陈明卓. 油水两相低速非达西渗流数值模拟[J]. 石油勘探与开发, 1998, 25(1): 57-59. ] [本文引用:1] [CJCR: 2.573]
[78] Ewing R E, Wang J, Weekes S L. On the simulation of multicomponent gas flow in porous media[J]. Applied Numerical Mathematics, 1999, 31: 405-427. [本文引用:1] [JCR: 1.152]
[79] Nithiarasu P, Seetharamu K N, Sundararajan T. Numerical investigation of buoyancy driven fow in a fuid saturated non-Darcian porous medium[J]. International Journal of Heat and Mass Transfer, 1999, 42: 1205-1215. [本文引用:1] [JCR: 2.315]
[80] Nithiarasu P, Sujatha K S, Ravindran K, et al. Non-Darcy natural convection in a hydrodynamically and thermally anisotropic porous medium[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 188: 413-430. [本文引用:1] [JCR: 2.617]
[81] Saghir M Z, Chaalal O, Islam M R. Numerical and experimental modeling of viscous fingering during liquid-liquid miscible displacement[J]. Journal of Petroleum Science and Engineering, 2000, 26: 253-262. [本文引用:1] [JCR: 0.997]
[82] Civan F. Leaky-tank reservoir model including the non-Darcy effect[J]. Journal of Petroleum Science and Engineering, 2000, 28: 87-93. [本文引用:1] [JCR: 0.997]
[83] Cello G, Tondi E, Micarelli L, et al. Fault zone fabrics and geofluid properties as indicators of rock deformation modes[J]. Journal of Geodynamics, 2001, 32: 543-565. [本文引用:1] [JCR: 2.967]
[84] Fadili A, Philippe M J, Tardy J R, et al. A 3D filtration law for power-law fluids in heterogeneous porous media[J]. Non-Newtonian Fluid Mech, 2002, 106(2/3): 121-146. [本文引用:1] [JCR: 1.567]
[85] Merrikh A A, Mohamad A A. Non-Darcy effects in buoyancy driven flows in an enclosure filled with vertically layered porous media[J]. International Journal of Heat and Mass Transfer, 2002, 45(21): 4305-4313. [本文引用:1] [JCR: 2.315]
[86] Huang Yuanzhi, Wang Enzhi, Han Xiaomei. Non-Darcy percolation mechanism for seepage in low-permeability rock[J]. Journal of Tsinghua University (Science and Technology), 2005, 45(9): 1202-1205.
[黄远智, 王恩志, 韩小妹. 低渗透岩石非饱和非Darcy渗流机理[J]. 清华大学学报: 自然科学版, 2005, 45(9): 1 202-1 205. ] [本文引用:1] [CJCR: 0.517]
[87] Zhu Zhiqiang, Zeng Jianhui, Wu Heyong, et al. An experimental study on oil migration and accumulation in low-permeability sand stone[J]. Oil & Gas Geology, 2007, 28(2): 229-234.
[朱志强, 曾溅辉, 吴河勇, . 低渗透砂岩石油运移及成藏特征模拟实验[J]. 石油与天然气地质, 2007, 28(2): 229-234. ] [本文引用:3] [CJCR: 0.281]
[88] Zhu Zhiqiang, Zeng Jianhui, Wang Jianjun, et al. An experimental study on flow characteristics of oil migration in low-permeability sand stone under condition of oil accumulation[J]. Geoscience, 2009, 23(4): 761-766.
[朱志强, 曾溅辉, 王建君, . 油气成藏条件下低渗透砂岩石油运移的渗流特征实验研究[J]. 现代地质, 2009, 23(4): 761-766. ] [本文引用:2] [CJCR: 1.443]
[89] Unal I, Ersan M G. Oil agglomeration of a lignite treated with microwave energy: Effect of particle size and bridging oil[J]. Fuel Processing Technology, 2005, 87(1): 71-76. [本文引用:1] [JCR: 2.816]
[90] Liu Yueqiang, Zhu Qing, Liang Wenfa, et al. Research on the movable oil in reservoirs with low permeability in Qiuling oilfield with nuclear magnetic resonance technology[J]. Xinjiang Geology, 2006, (1): 52-54.
[刘曰强, 朱晴, 梁文发, . 利用核磁共振技术对丘陵油田低渗储层可动油的研究[J]. 新疆地质, 2006, (1): 52-54. ] [本文引用:1] [CJCR: 0.581]
[91] Wang Ruifei, Sun Wei, Yang Hua. Micro mechanism of water drive in ultra-low permeability sand stone reservoir[J]. Journal of Lanzhou University (Natural Sciences), 2010, 46(6): 29-33.
[王瑞飞, 孙卫, 杨华. 特低渗透砂岩油藏水驱微观机理[J]. 兰州大学学报: 自然科学版, 2010, 46(6): 29-33. ] [本文引用:1] [CJCR: 0.583]
[92] Davis J S. Modeling Gas migration, distribution, and saturation in a structurally and petrologically evolving tight gas reservoir[C]∥International Petroleum Technology Conference. Bangkok: International Petroleum Technology Conference, 2011. [本文引用:2]
[93] Chen Fajing. Application of basin structure analysis in China’s petroleum prospecting and exploration[J]. Oil & Gas Geology, 1989, 10(3): 247-255.
[陈发景. 盆地构造分析在我国油气普查和勘探中的作用[J]. 石油与天然气地质, 1989, 10(3): 247-255. ] [本文引用:1] [CJCR: 0.281]
[94] Wang Xinzhou, Song Yitao, Wang Xuejun, et al. Physical Simulation of Petroleum Formation and Oil Expulsion: Methods, Mechanism and Application[M]. Dongying: China University of Petroleum Press, 1996: 145-164.
[王新洲, 宋一涛, 王学军, . 石油成因与排油物理模拟方法及应用[M]. 东营: 中国石油大学出版社, 1996: 145-164. ] [本文引用:1]
[95] Inan S, Yalcin M N, Mann U. Expulsion of oil from petroleum source rocks: Inferences from pyrolysis of samples of unconventional grain size[J]. Organic Geochemistry, 1998, 29(1/3): 45-61. [本文引用:1] [JCR: 2.518]
[96] Chen Zhonghong, Zha Ming. The structure of source rocks and characteristics of hydrocarbon expulsion—An example from Paleogene system in Jiyang Depression[J]. Petroleum Exploration and Development, 2003, 30(6): 45-47.
[陈中红, 查明. 济阳坳陷古近系烃源岩结构及排烃的非均一性[J]. 石油勘探与开发, 2003, 30(6): 45-47. ] [本文引用:1] [CJCR: 2.573]
[97] Chen Zhonghong, Liu Wei. Key factors of controlling the hydrocarbon expulsion of the source rock in Dongying Sag[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2007, 22(6): 40-43.
[陈中红, 刘伟. 控制东营凹陷烃源岩排烃的几个关键因素[J]. 西安石油大学学报: 自然科学版, 2007, 22(6): 40-43. ] [本文引用:1]
[98] Liu Qing, Zhang Linye, Shen Zhongmin, et al. Microfracture occurrence and its significance to the hydrocarbon’s expulsion in source rocks with high organic matter abundance, Dongying depression[J]. Geological Review, 2004, 50(6): 593-597.
[刘庆, 张林晔, 沈忠民, . 东营凹陷富有机质烃源岩顺层微裂隙的发育与油气运移[J]. 地质论评, 2004, 50(6): 593-597. ] [本文引用:1] [CJCR: 2.048]
[99] Liu Zhen, Liu Jingjing, Wang Wei, et al. Experimental analyses sand stones: On critical conditions of oil charge for low permeability a case study of Xifeng oilfield, Ordos Basin[J]. Acta Petrolei Sinica, 2012, 33(6): 996-1002.
[刘震, 刘静静, 王伟, . 低孔渗砂岩石油充注临界条件实验——以西峰油田为例[J]. 石油学报, 2012, 33(6): 996-1002. ] [本文引用:1] [CJCR: 1.437]
[100] Jiao Cuihua, Xia Dongdong, Wang Jun, et al. Methods for determining the petrophysical property cutoffs of extra-low porosity and permeability sand stone reservoirs—An example from the Xishanyao Formation reservoirs in Yongjin oilfield[J]. Oil & Gas Geology, 2009, 30(3): 379-383.
[焦翠华, 夏冬冬, 王军, . 特低渗砂岩储层物性下限确定方法——以永进油田西山窑组储集层为例[J]. 石油与天然气地质, 2009, 30(3): 379-383. ] [本文引用:1] [CJCR: 0.281]
[101] Zhang Hong, Zhang Shuichang, Liu Shaobo, et al. A theoretical discussion on the oil-charging throat threshold for tight reservoirs and case study[J]. Petroleum Exploration and Development, 2014, 41(3) : 1-8.
[张洪, 张水昌, 柳少波, . 致密油充注孔喉下限的理论探讨及实例分析[J]. 石油勘探与开发, 2014, 41(3): 1-8. ] [本文引用:1] [CJCR: 2.573]
[102] Li Qing, Zhao Feng, Liu Peng. Determination of lower limits of porosity and permeability of tight sand gas reservoirs in the eastern block of the Sulige Gas field[J]. Natural Gas Industry, 2012, 32(6): 31-35.
[黎菁, 赵峰, 刘鹏. 苏里格气田东区致密砂岩气藏储层物性下限值的确定[J]. 天然气工业, 2012, 32(6): 31-35. ] [本文引用:1] [CJCR: 0.833]
[103] Sun W, Qu Z, Tang G. Characterization of water injection in low permeability rock using sand stone micromobles[J]. Journal of Petroleum Technology, 2004, 56(5): 71-72. [本文引用:1]
[104] Schembre J M, Kovscek A R. Thermally induced fines mobi-lization: It’s relationship to wettability and formation damage[C]∥SPE, ed. International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting Treatise. Calfornia: SPE, 2004. [本文引用:1]
[105] Sun Wei, Shi Cheng’en, Zhao Jingzhe, et al. Application of X-CT scanned image technique in the research of micro-pore texture and percolation mechanism in ultra-permeable oil field[J]. Acta Geologica Sinica, 2006, 80(5): 775-779.
[孙卫, 史成恩, 赵惊蛰, . X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用——以西峰油田庄19井区长8储层为例[J]. 地质学报, 2006, 80(5): 775-779. ] [本文引用:1] [CJCR: 2.768]
[106] Zou Caineng, Zhu Rukai, Bai Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864.
[邹才能, 朱如凯, 白斌, . 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864. ] [本文引用:1] [JCR: 1.117] [CJCR: 2.65]
[107] Zou Caineng, Li Jianzhong, Dong Dazhong, et al. The first discovery of rich nanoscale porosity in China’s shale gas reservoirs[J]. Petroleum Exporation and Development, 2010, 37(5): 508-509.
[邹才能, 李建忠, 董大忠, . 中国首次在页岩气储集层中发现丰富的纳米级孔隙[J]. 石油勘探与开发, 2010, 37(5): 508-509. ] [本文引用:1]
[108] Alshibli K A, Alramahi B A, Attia A M. Assessment of spatial distribution of porosity in synthetic quartz cores using microfocus computed tomography (mu CT)[J]. Particulate Science and Technology, 2006, 24(4): 369-380. [本文引用:1] [JCR: 0.435]
[109] Mantha N M, Schindler M, Murayama M, et al. Silica-and sulfate-bearing rock coatings in smelter areas: Products of chemical weathering and atmospheric pollution I. Formation and mineralogical composition[J]. Geochimica et Cosmochimica Acta, 2012, 85: 254-274. [本文引用:1] [JCR: 3.884]
[110] Camp W K. Basin-centered gas or subtle conventional traps?[C]∥Cumella S P, Shanley K W, Camp W K, eds. Understand ing, Exploring, and Developing Tight-gas Sand s-2005 Vail Hedberg Conference: AAPG Hedberg Series, 2008 [本文引用:1]