戴海伦(1986-),女,上海人,博士研究生,主要从事水土资源与环境研究. E-mail: daihailun@mail.bnu.edu.cn
河岸侵蚀是河流横向演变的重要方式, 也是威胁沿岸土地、生态环境及人民生命财产安全的重要方式。通过回顾国内外河岸侵蚀的研究历程, 将主要研究分为4个方面并加以评述:①河岸侵蚀的过程机制。河岸侵蚀是多种过程的复合体, 许多学者提出不同的理论来解释。其中, 河岸稳定性理论得到了较为广泛的认可。②河岸侵蚀的影响因素。影响河岸塌岸的因素主要有水文、土壤、河流、气象、岸坡和植物等, 但不同因素在塌岸过程中的重要性是不等价的, 甚至同一因素在不同河段会对河岸崩塌产生迥异的影响。③河岸侵蚀量的估算。随着测量手段的不断改进, 侵蚀量测量的时间间隔越来越短, 空间范围越来越大, 精度越来越高。早期的测量中, 广泛应用了简便易行、经济适用的侵蚀针法, 而如今, 遥感影像和摄影测量技术已逐渐成为主流方法。④河岸侵蚀的模型模拟。目前河岸侵蚀的模拟模型多基于水力学、土力学等基本理论, 研究岸坡稳定性。在对以上4个方面进行回顾的基础上, 讨论了目前研究存在的主要问题, 并对未来河岸侵蚀研究工作开展进行展望。提出应首先研究河段河岸侵蚀的时空特征, 选择合理的方法、技术体系, 通过微观与宏观相结合的方式, 对河岸侵蚀的时空分布进行量化分析, 从而为预报河岸侵蚀及制定防治措施奠定基础。
Riverbank erosion is a critical style of lateral channel change. It threatens the arable land, ecological environment, as well as the people’s lives and properties along the river. Through review on the research process of riverbank erosion globally, four aspects were classified and described: ① Riverbank erosion processes and mechanisms. The occurence and development of riverbank erosion is quite complicated, composed by multiple processes, which are hard to separate with each other. Therefore, the scholars have proposed a lot of theories to describe the processes. Among the theories, “Riverbank Stability Theory” has been widely recognized and developed. ② Factors of riverbank erosion. The key factors that affect riverbank erosion include hydrology conditions of the river, soil properties, geomorphology, vegetation of the river bank and meteorology. However, it should be noted that the importance of different factors in the collapse process is not equivalent and effects of the same factor on different rivers are various. ③ Riverbank erosion estimation. With the tremendous improvement of quantification recently, time interval of erosion measurement is shortening continuously, while spatial scale is larger and larger. At the same time, resolution is becoming increasingly high. Erosion pin was commonly used in early studies because of its easy use and low cost, whereas remote sensing and digital photogrammetry have more advantages in modern measurement. ④Modeling of riverbank erosion. At present, the models are mainly based on the fundamental theories of hydraulics and soil mechanics, to study riverbank stability. According to the review of the four aspects above, problems of recent researches and prospects of possible development in the future were discussed. The researchers should pay much attention to temporal spatial distribution of riverbank erosion first before further research. The study would be greatly helpful to the researchers for the specific river reach when choosing the proper theories as well as technologies for measurement and quantification, study the riverbank erosion through both macroscopic and microscopic views, and predict the erosion for management purpose.
河岸侵蚀也称河岸崩塌、崩岸、塌岸, 是指由土石等物质组成的河岸受水流冲刷, 在水力、重力等作用下土石失去稳定并沿河、湖的岸坡产生崩落、崩塌和滑坡等现象, 几乎存在于世界上所有江河沿岸。如美国密西西比河下游、欧洲莱茵河历史上都发生过多次崩岸, 我国七大江河也普遍存在崩岸现象[ 1]。如2011年长江中下游及汉江共发生崩岸险情117处, 累计崩岸长度65.8 km[ 2]。Yao等[ 3]对1958—2008年的黄河宁蒙河段进行研究发现, 50年来, 该段河岸后退总面积为518.38 km2。
河岸侵蚀具有短时性、突发性、时段性、不确定性、地域性、剧烈性等特点, 难于观测。河岸侵蚀可导致多种环境问题:河岸崩塌产生的泥沙物质是江河的主要泥沙来源之一;泥沙在进入江河中之后, 过量泥沙可进一步破坏水质、影响水生生物的生长发育。强度大的河岸崩塌往往会酿成重大险情, 严重威胁沿岸人民的生命财产安全。
河岸侵蚀受水力、土力、重力等多种因素影响, 成因机制十分复杂。虽然目前国内外学者对河岸侵蚀过程已有不少研究, 但对如黄河这种大河河岸侵蚀的定量研究不多。本文将从现场监测入手, 对河岸侵蚀成因机制、影响因素及侵蚀量估算、模型模拟等4个方面的研究进展进行评述, 旨在为河岸侵蚀研究者在研究对象及方法选择时提供理论依据, 进而推动我国河岸侵蚀的相关研究进程。
国外对于河岸侵蚀的研究起源于19世纪中后期, 但当时仅限于利用历史资料、泥沙生物等资料信息推求河流横向变化的情况[ 4]。20世纪50年代末, 随着人类活动的范围与程度不断加大, 河岸侵蚀及其带来的河势演变逐渐成为众多交叉领域学科学者研究的重点, 并开始采用野外实测数据进行研究。最早期的研究关注崩岸的快速发生发展及其原因的复杂性[ 5~ 7]。之后的研究证明, 崩岸过程及机理复杂多变, 涵盖了相当广泛的学科及领域[ 8, 9]。自20世纪70年代起, 研究者们开始关注河流横向变迁与游荡型河流演变、河漫滩消长以及流域泥沙来源的动态相关关系[ 10], 但多为定性地讨论与分析崩岸的影响因子, 在此基础上建立概念模型[ 9]。
20世纪80年代, Thorne[ 11]将河岸侵蚀的原因分为两大类:一是水流的作用, 另一种是外界条件造成的土体强度减弱和风化。在天然条件下, 二者往往是同时存在的。其中水流对于河岸的作用分为直接作用和间接作用:前者直接作用于河岸, 冲刷河岸上的泥沙颗粒并将它们带走;后者是水流冲刷、掏空坡脚, 使岸坡的高度或角度增加, 导致上部的岸壁因重力作用而下落。外界条件包括土质及土体含水量等影响因素。另一方面, 数值模型模拟河岸崩塌逐渐成为研究崩岸的重心之一。学者们着重研究了河岸稳定程度、河岸稳定系数, 以及考虑渗流、不同植被覆盖、受冻融作用影响的崩岸侵蚀[ 12]。但此时关注的河岸多由单层、粘性组成物质构成。
进入20世纪90年代, 学者们[ 13~ 15]结合80年代末期形成的河岸稳定性理论, 对不同级别、不同时空领域的河岸崩塌进行了研究。与此同时, 观测设施、技术的提高也促进了河岸崩塌研究的进步。大量高科技产品被广泛应用到了河岸侵蚀中来。如使用光电感应侵蚀针(Photo-Electronic Erosion Pin, PEEP)、激光雷达系统(Light Detection and Ranging, LiDAR)、激光扫描仪[ 16~ 20]等对河岸侵蚀量进行观测, 使用高分辨率遥感影像分析大尺度空间区域及时间跨度的河岸侵蚀量动态变化情况等。此外, 对多层组成物质、非粘性粗颗粒及混合土质等复杂河岸的崩塌侵蚀研究也逐渐得到了发展。
与国外相比, 我国关于河岸侵蚀的研究起步较晚。尽管之前有些论述, 但真正开展的系统研究当属1978年, 中国科学院地理研究所[ 21]出版的关于长江九江至河口段河床边界条件及其与崩岸关系的研究论著。随后, 尹国康[ 22]和陈引川等[ 23]从河道岸坡变形的机理、河流动力学的角度分析了河岸侵蚀的发生条件。但这些研究多局限在经验分析, 研究对象也主要集中在长江中下游河段。
20世纪90年代以来, 我国的河岸侵蚀研究取得了系列研究成果, 主要集中在以下几个方面:通过实地调查、野外采样分析、水文泥沙资料分析等对河岸侵蚀的类型、原因及机理进行研究[ 24~ 29];对河岸侵蚀进行室内试验模拟及数值模型研究[ 30~ 35]);通过水沙、地形资料研究崩岸与河道演变的关系[ 36~ 41];通过水库运行前后固定断面水文泥沙资料分析上游水库调节对崩岸的影响[ 42, 43];以及崩岸治理及相应成果研究[ 44, 45]。研究的关注点也从集中于长江中下游干流过渡到黄河、黑龙江、乌苏里江、松花江、汉江等河流。
不少学者[ 11, 46, 47]指出, 河岸崩塌过程包含水力冲刷过程、重力崩塌过程和陆面风化过程。Thorne等[ 48]、Rinaldi等[ 49]、 Julian等[ 50]、Hooke[ 51]和Luppi 等[ 52]的研究表明, 影响河岸侵蚀过程主要决定是洪水。我国的冷魁[ 53]、吴玉华等[ 54]、金腊华等[ 25]从河流动力学角度解释了崩岸成因与机理。Duan[ 55]提出, 重力导致的河岸崩塌往往在高水流退去之后发生;Papanicolaou等[ 56]发现, 河岸形态需要同时满足既达到或超过临界岸高, 又超过临界坡脚, 重力崩岸才有可能发生。我国的黄本胜等[ 30, 57]、王延贵等[ 58]根据岸坡稳定理论分析了河岸侵蚀的机理。
Lawler[ 59]关于针状冰对陆面风化作用的影响进行了实验分析, Prosser等[ 60]在澳大利亚也做了关于风化作用对河岸侵蚀的研究。Couper[ 61]研究发现, 粉粒黏粒含量高的河岸更易受陆面风化作用的影响。但以往研究仍主要集中在水力和重力两部分, 关于陆面风化方面的研究较少。
至今的许多关于河岸稳定性分析的研究都是由Thorne[ 62]的理论发展而来。他提出, 岸坡组成物质的可蚀性及抗剪强度是影响河岸稳定性的两大因素。随后, 在考虑了河床横向展宽、临界剪切力、临界坡度等因素之后, Osman等[ 63]进一步发展了这一理论。张幸农等[ 1]总结了以往研究, 依据河流动力学和土力学等原理, 将河岸侵蚀发生的原因分为土坡失稳、河岸侵蚀、土体液化以及其他原因(如管涌、降雨入渗等)。
综观各国学者关于河岸侵蚀影响因素的研究可见, 河岸发生崩塌主要受水文、土壤、河流、气象、岸坡、植物等方面的作用。
Thomson[ 64]从区域地质条件、地下水位、地形地貌等方面, 较早地分析了岸坡稳定性的影响因素。Simon等[ 65]定量分析了降雨导致的垂直入渗和侧渗水流对岸坡稳定性的作用。Abernethy等[ 66]通过实地调查研究了不同植物类型对河岸稳定性的影响。Julian和Torres[ 50]研究了洪峰强度对河岸侵蚀影响的水动力学机制。Hooke[ 9], Casagli等[ 15], Simon等[ 67]认为, 土壤水分在侵蚀过程中起到了重要作用, 较低的含水量可能使土壤强度降低[ 68]。对于以细粒物质为主的弱粘性河岸来说, 基质势对崩岸发生的影响程度更大[ 11, 15, 49]。冻融作用也是影响河岸侵蚀的主要因素[ 69], 特别是针对陆面风化过程而言。冻融循环作用会增加土层深处的开裂, 并导致重力作用下的崩岸[ 59, 60, 70~ 72]。而植被对岸坡稳定的作用比较复杂, 不同的研究产生了迥异的结论。如Thorne[ 73], Simon等[ 67], Gray和Barker[ 74], van de Wiel和Darby[ 75]发现, 岸边植被可通过增加根系与岸坡的结合来提高河岸稳定性;而Greenway[ 76], Collison和Anderson,[ 77]通过研究发现, 河岸坡地上的植物可能通过增加重量而更易导致崩塌出现;Simon和Collison[ 78], van de Wiel和Darby[ 79]的研究表明, 岸边植被对岸坡稳定的影响既可能是正面的也可能是负面的。这与河岸的物质组成及植物的种类、年龄等因素有关。
在我国, 河岸侵蚀的影响因素及其量化研究也得到了充分发展。长江、黄河等大河历来是河流治理研究的重点, 但也因其影响因素繁多复杂而难于将各个因素分离、进行定量研究。因此, 特地将我国的河岸侵蚀影响因素及其量化研究单独评述。王永[ 80]认为, 长江安徽段崩岸的影响因素包括水流因素、地质因素、河床边界条件及风浪淘蚀等几个方面。马振兴等[ 81]对长江马湖大堤崩岸的研究表明:河道地形的“瓶颈”作用及上游主流的顶冲、堤岸岩性及护岸条件、堤基不良工程体的存在以及地下水的侧压力作用是导致河岸侵蚀的主要原因。夏军强等[ 32, 82]定量研究了黄河下游岸滩侵蚀速率, 并通过现场勘查和土工试验定量分析了黄河下游岸滩侵蚀严重的原因。岳红艳和余文畴[ 27]分析了长江河道崩岸机理, 并对影响因素及其作用机制进行了推导。他们还定量分析了水流泥沙运动条件和河床边界条件对河岸崩塌的影响[ 83]。王延贵等对河岸崩塌进行了系列研究, 定量分析了洪水期洪水浸泡和洪水消长、岸脚淘刷对河岸崩塌的影响程度[ 31, 58, 84], 同时还对影响河岸崩塌临界高度的因素进行量化, 建立了临界高度计算公式。谢立全等[ 85]对岸坡地下水渗流的运动规律与江河水流之间的关系进行了定量研究。张幸农等[ 34]则在试验室中建立了概化坡体模型, 定量研究了水位差、水流冲刷和坡度等要素对河岸崩塌的影响。严文群等[ 33]分析了地下水稳定渗流对河岸坡面稳定性影响的机理, 并通过试验定量研究了其影响方式。
河岸侵蚀的速率及数量主要通过以下几个途径获取:野外观测、遥感影像及地形图、泥沙及生物特征。这3个方面的途径分别对应不同的时间尺度:野外观测主要应用在1~10年的短期研究中, 遥感影像及地形图主要应用在10~200年的中期研究中, 泥沙及生物特征主要应用在30~500年的长期研究中[ 86]。
早期的野外观测主要采用侵蚀针法与断面法, 实现对河岸形态的动态监测。其中, 侵蚀针法由于具备简便易行、经济实用的特点, 应用最为广泛。该法最早是由Wolman[ 5]借鉴了Ireland等[ 87]研究沟蚀的经验, 将其引入到河岸崩塌研究中来, 通过定期量测出露于地表的测针长度, 反映侵蚀深度。在随后的研究中, 该方法在崩岸的观测中起到了非常重要的作用[ 7, 9, 15, 60, 86, 88]。但它只能得到短期内河岸的侵蚀深度, 且易受人为干扰。在河岸侵蚀严重时, 可能由于侵蚀针随河岸崩塌丢失而无法测算侵蚀。随着技术的发展, 野外观测方法有了进一步发展。Lawler[ 16]于1989年采用PEEP法来研究河岸侵蚀。该法的原理是:随着侵蚀的发展, 出露于地表的感光元件将接收到更多光线, 通过读取相应电压转化的输出信号, 可实现定期记录侵蚀/堆积的强度、频率, 大大减少了传统侵蚀针法中重复去现场的次数, 节省了人力物力。Lawler、Veihe[ 89, 90]等学者在随后的研究中使用了该法, 但PEEP也有其局限性, 如当探测器被积雪、植被、高强度紊流覆盖或扰动时会丢失数据。
遥感影像、摄影测量也是学者们常用的研究河岸侵蚀手段, 可用来监测较大范围时间、空间尺度的侵蚀状况, 且具有重复周期短、分辨率高、节省人力、不易扰动河岸等以往方法无法比拟的优势。如杨根生等[ 91]通过对比不同时期航片, 估算了黄河河岸崩塌产生的入黄泥沙量。Yao等[ 3]使用不同时期的地形图、影像资料, 研究了1958—2008年黄河宁蒙段的河岸崩岸/堆积情况。De Rose 和Basher[ 20]采用航片、机载激光雷达结合的方式, 估算了河流崩岸侵蚀。LiDAR、激光扫描仪等是近年来新发展起来的观测设备, 用来定量监测河流动态变化、界定河岸边界以及估算河岸侵蚀。Notebaert等[ 92], Pizzuto 等[ 19]采用LiDAR得到的图像, 对河床摆动、河岸侵蚀总量进行了研究。Thoma等[ 17]采用机载激光系统, 对河流泥沙中的崩岸部分进行了研究。但该法尚处于探索阶段, 投影及影像校正等可能带来较大误差。此外, 机载雷达、激光系统使用费用较高, 适用于大尺度河流演变研究。该法在使用时也有其局限性, 如校正过程、多时段相互对比时的叠加都可能带来误差, 一般只能得到二维侵蚀/堆积面积等。
对河岸侵蚀的模拟可划分为室内水槽模拟和数值模拟。在实际研究中, 二者往往结合使用, 相辅相成。
国外学者对岸坡稳定性的研究较多, 而具体崩塌量的研究较少, 且河流规模较小。河岸稳定性研究方面有代表性的有:Darby等[ 93]改进了Osman 和 Thorne[ 63]的理论, 增加了孔隙水压力及静水压力, 并取消了之前研究中对崩塌面必过坡脚的限制, 开发了岸坡稳定模型。Simon等[ 65]提出了分层模拟的岸坡稳定算法, 将其发展成为了“河岸稳定性及坡脚侵蚀模型”(Bank Stability and Toe Erosion Model, BSTEM), 不仅可用于模拟河岸稳定程度, 还可根据河岸物质组成、几何形态、坡脚参数等估算侵蚀量。然而, 该模型尚处于完善阶段, 其应用价值还有待进一步验证。夏军强等[ 94]建立了河床冲刷过程中横向展宽的模拟模型。黄本胜等[ 30]提出了适用于粘性河岸稳定性预测的模型, 并认为河槽水位、地下水位、岸滩形态以及河岸滩土质抗冲性的大小对河岸稳定性有不同程度的影响。钟德钰等[ 95]建立了模拟河岸侵蚀和崩塌的计算方法, 用于模拟黄河下游的河道横向变形。Jia等[ 96]建立了三维数值模型, 用来模拟长江石首段的河岸侵蚀及河势演变。Posner等[ 97]采用了蒙特卡罗模拟, 研究了河岸侵蚀及游荡河流演变。但值得注意的是, 目前模型模拟结果往往基于水力学、土力学等基本理论, 经详细实测资料验证的较少。
尽管已有许多学者关注河岸侵蚀, 并进行了河岸侵蚀过程的发生机理以及产沙量贡献预测的研究, 也取得了一些研究结果, 但由于其不同于受单一营力作用的水蚀、风蚀, 而是受多种营力共同作用, 研究难度较大。我国的河流众多, 且由于人为因素的影响, 与国外同等规模的江河比, 河岸侵蚀等问题更加严峻。目前我国在崩岸侵蚀的研究方面仍存在以下问题, 今后应着重考虑。首先, 对于河岸侵蚀研究, 多数仅限于理论分析和数学模拟, 缺乏详细实际调查测量资料和模拟实验数据支撑。其次, 以往研究得出的数据大多仅能反映河岸侵蚀深度或河岸后退距离、损失面积, 对崩岸体积及具体侵蚀土方量的研究甚少。第三, 河岸侵蚀涉及到大量复杂的影响因素, 当前研究只关注于微观尺度的河段监测结果, 很少涉及大尺度地质地貌条件等因素对河岸崩塌的影响, 忽视了河岸侵蚀类型和严重程度的空间分布规律研究。导致对河岸侵蚀发生规律的理解不全面, 同时也影响了研究成果的可推广性。第四, 国内崩岸侵蚀的研究区域多位于长江流域, 部分位于黄河下游, 而对于近年来河岸侵蚀剧烈发展的河段如黄河上游沙漠宽谷段的研究仍然较少。第五, 河岸侵蚀量与入河泥沙量的关系尚不明确。
因此, 需将河岸侵蚀作为一种独立侵蚀方式, 加以研究, 根据具体研究对象的空间及时间尺度, 充分借鉴土壤侵蚀学的经典研究方法, 结合地质灾害、自然灾害及风险评估等学科体系, 选择典型河段, 采用“3S”技术进行具体实测, 根据测量结果评估河岸侵蚀的剧烈程度。并以此为基础, 对大区域范围内的河岸侵蚀影响因素进行调查收集、分析量化, 研究诸因素及河岸侵蚀时空分布规律, 进而得出某重点河段的河岸侵蚀强度及程度分布情况、绘制相应图件。进一步研究河岸侵蚀与入河泥沙、向下游输送泥沙之间的关系, 明确河岸侵蚀对于河流泥沙的贡献率。此外, 还应加强实测方法等相关行业标准的制定, 减少由于测量方式、仪器等引起的误差, 增强不同河段、不同河流之间河岸侵蚀研究的可比性。上述研究的开展, 不仅可丰富完善河岸侵蚀、河流泥沙、河床演变等学科知识体系, 也可对河岸侵蚀的风险评估、模拟预报等提供理论基础, 此外, 还可为指导河流治理及流域、区域生态环境综合治理提供参考依据。
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|