Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2008, Vol. 23 Issue (9): 982-989    DOI: 10.11867/j.issn.1001-8166.2008.09.0982
Articles     
The Composition of Tropical Plantation Forest Microwave Backscattering and Its Impact on Estimating Leaf Area Index
Gao Shuai1,2,Niu Zheng1
1.State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101,China;2.Graduate school of Chinese Academy of Sciences, Beijing 100049, China
Download:  PDF (1901KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The study simulated microwave backscattering from all components of forests using MIMICS(Michigan Microwave Canopy Scattering)Model and RADARSAT SAR data, including crown ,trunk and soil layer. The study concluded that, in sparse plantation forest area, the backscattering from direct crown and direct soil are both the most significant factors, and in the same premise, the consistence between the simulated data and the measured data of broadleaf forest was much better than that of conifer forest. For conifer forest, it was largely influenced by rugged terrain and it was difficult to simulate its microwave backscattering. Meanwhile, It was found that by using the forest closure parameter, the relationship between total and direct crown layer forest microwave backscattering could be determined and direct crown layer microwave backscattering could be quantitatively obtained. In the end, the paper validated the method.

Key words:  Leaf area index      Backscattering coefficient      SAR      RADARSAT.     
Received:  18 April 2008      Published:  10 September 2008
S771.5  
  S771.8  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

Gao Shuai,Niu Zheng. The Composition of Tropical Plantation Forest Microwave Backscattering and Its Impact on Estimating Leaf Area Index. Advances in Earth Science, 2008, 23(9): 982-989.

URL: 

http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2008.09.0982     OR     http://www.adearth.ac.cn/EN/Y2008/V23/I9/982

[1] Jing M,Chen P M R,Stith T,et al. Leaf area index of boreal forests:Theory,techniques,and measurements[J]. Journal of Geographical Research,1997,10229:429-443.

[2] Fang Xiuqin,Zhang Wanchang. The application of remotely sensed data to the estimation of the leaf area index[J]. Remote Sensing for Land & Sources,2003,573:58-62.[方秀琴,张万昌. 叶面积指数(LAI)的遥感定量方法综述[J]. 国土资源遥感,2003,573:58-62.]

[3] Jing M,Chen J C. Retrieving leaf area index of boreal conifer forests using landsat TM images[J]. Remote Sensing of Environment,1997,55:153-162.

[4] Chen J M,Pavlic G,Brown L,et al. Validation of Canada-wide leaf area index maps using ground measurements and high and moderate resolution satellite imagery[J]. Remote Sensing of Environment,2002,80:165-184.

[5] Wu Weibin,Hong Tiansheng,Wang Xiping,et al. Advance in ground-based LAI measurement methods[J]. Journal of Huazhong Agricultural University,2007,262:270-275.[吴伟斌,洪添胜,王锡平,. 叶面积指数地面测量方法的研究进展[J]. 华中农业大学学报,2007,262:270-275.]

[6] Paloscia S. An empirical approach to estimating leaf area index from multifrequency SAR data[J]. International Journal of Remote Sensing,1998,192:359-364.

[7] Inouea TK Y,Maenob H,Uratsukab S,et al. Season-long daily measurements of multifrequencyKa, Ku, X, C, and L and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables[J]. Remote Sensing of Environment,2002,81:194-204.

[8] Laura Dente,Giuseppe Satalino,Mattia G,et al. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield[J]. Remote Sensing of Environment,2008,112:1 395-1 407.

[9] Ulaby F T,Sarabandi Kamal,Mcdonlad K,et al. Craig Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing,1990,17:1 223-1 253.

[10] Mostafa A,Karam R H L. A microwave scattering model for layered vegetation[J]. IEEE Transactions on Geoscience and Remote Sensing,1992,304:767-784.

[11] Sun G,Simonett D S,Strahler A H. A radar backscatter model for discontinuous coniferous forests[J]. IEEE Transactions on Geoscience and Remote Sensing,1991,294:639-650.

[12] Qi Jiaguo,Wang Cuizhen. A microwave/optical synergistic model and its applications in tropical forest canopies[J]. Chinese Journal of Radio Science,2004,194:409-417.[齐家国,王翠珍. 微波/光学植被散射模型及其在热带森林中的应用[J]. 电波科学学报,2004,194:409-417.]

[13] Ren Hai,Peng Shaolin. Comparison of methods of estimation leaf area index in Dinghushan forests[J]. Acta Ecologica Sinica,2007,173:220-223.[任海,彭少麟. 鼎湖山森林群落的几种叶面积指数测定方法的比较[J]. 生态学报,2007,173:220-223.]

[14] Wang C. Quantitative Estimation of Forest Biophysical Attributes with Synergistic Use of Optical and Micro Remotely Sensed Data in Tropical Forests[M]. Michigan: Michigan State University,2004.

[15] Wang Chenli,Niu Zheng,Guo Zhixing,et al. A study on forest biophysical parameter impact on radar signature and extraction of forest stock volume by means of RADARSAT-SAR[J]. Remote Sensing for Land & Sources,2005,642:24-28.[王臣立,牛铮,郭治兴,.Radarsat SAR的森林生物物理参数信号响应及其蓄积量估测[J]. 国土资源遥感,2005,642:24-28.]

[16] Wang Chenli,Guo Zhixing,Niu Zheng,et al. Study on forest biophysics parameter impact on RADAR signature[J]. Ecology and Environment,2006,151:115-119.[王臣立,郭治兴,牛铮,.热带人工林生物物理参数及生物量对RADARSAT SAR信号响应研究[J]. 生态环境,2006,151:115-119.]

[17] Ulaby T,Allen C T,Eger G. Relating the microwave backscattering coefficient to leaf area index[J]. Remote Sensing of Environment,1984,14:113-133.

[18] Liu Wei. Study on Soil Moisture Inversion and Application with Polarization Radar in Vegetated Area[D]. Beijing:Institute of Remote Sensing Applications,Chinese Academy of Sciences.2005.[刘伟.植被覆盖地表极化雷达土壤水分反演与应用研究[D].北京:中国科学院遥感所,2005.]

No Suggested Reading articles found!