综述与评述

论西北地区空中云水资源特征与云降水转化机制

  • 张强 ,
  • 王元 ,
  • 张萍
展开
  • 1.中国气象局兰州干旱气象研究所/甘肃省干旱气候变化与减灾重点实验室/中国气象局干旱气候变化 与减灾重点开放实验室,甘肃 兰州 730020
    2.甘肃省气象局,甘肃 兰州 730020
    3.兰州大学 西部生态安全省部共建协同创新中心,大气科学学院,甘肃 兰州 730000
张强,主要从事干旱气象、陆面过程及气候变化研究. E-mail:zhangqiang@cma.gov.cn
王元,主要从事云降水物理研究. E-mail:wang_yuan@lzu.edu.cn

收稿日期: 2025-04-02

  修回日期: 2025-05-04

  网络出版日期: 2025-07-03

基金资助

国家自然科学基金区域创新发展联合基金项目(U24A20604)

Cloud Water Resources and Precipitation Conversion in Northwest China

  • Qiang ZHANG ,
  • Yuan WANG ,
  • Ping ZHANG
Expand
  • 1.Lanzhou Institute of Arid Meteorology, China Meteorological Administration, Gansu Province Key Laboratory of Arid Climate Change and Reducing Disaster, China Meteorological Administration Key Laboratory of Arid Climate Change and Reducing Disaster, Lanzhou 730020, China
    2.Gansu Provincial Meteorological Service, Lanzhou 730020, China
    3.Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
ZHANG Qiang, research areas include arid meteorology, land surface processes and climate change. E-mail: zhangqiang@cma.gov.cn
WANG Yuan, research areas include cloud and precipitation physics. E-mail: wang_yuan@lzu.edu.cn

Received date: 2025-04-02

  Revised date: 2025-05-04

  Online published: 2025-07-03

Supported by

the Regional Innovation and Development Joint Fund of the National Natural Science Foundation of China(U24A20604)

摘要

我国西北地区是全球典型的干旱气候区,社会发展受到水资源的严重约束,但当前对该地区空中云水资源的开发利用却明显不足,研究该地区云水资源的时空变化特征及云降水过程,对于提高该地区云水资源开发利用技术水平具有重要的现实意义。为此,国家自然科学基金区域创新发展联合基金资助的“西北地区空中云水资源多尺度变化特征与云降水过程研究”课题针对此问题开展了深入研究。在分析了西北地区云水资源开发利用重要性的基础上,从多大气环流系统的协同影响、云降水宏微观物理过程的复杂性、沙尘性气溶胶的特殊活化作用、高原边坡地形和大型山脉的特殊作用以及西北地区气候暖湿化对云水资源影响等多个方面深入讨论了西北地区云水资源形成和云降水转化机制的科学问题,并探讨了野外观测试验对解决上述科学问题的重要支撑作用。在此基础上,提出未来应重点关注多尺度环流对西北地区云水资源的协同影响、云水资源对气候暖湿化的响应特征、高山云系的微物理特征、沙尘气溶胶的活化成云特性、云—雨转化机制以及云微物理参数化的发展优化6个重点研究方向,旨在为未来开展西北地区空中云水资源特征与云降水转化机制研究提供科学指导。

本文引用格式

张强 , 王元 , 张萍 . 论西北地区空中云水资源特征与云降水转化机制[J]. 地球科学进展, 2025 , 40(5) : 473 -486 . DOI: 10.11867/j.issn.1001-8166.2025.038

Abstract

Northwest China is one of the world’s typical arid regions, where limited water resources severely constrain social development. However, the current utilization of atmospheric cloud water resources in this region remains significantly underdeveloped. Investigating the spatiotemporal variations of cloud water resources and cloud-precipitation processes is of great practical importance for enhancing technological capacity to exploit atmospheric water resources. To address this challenge, the National Natural Science Foundation of China (NSFC), through its Regional Innovation and Development Joint Fund, has supported the project “Multi-scale Variations of Atmospheric Cloud Water Resources and Cloud-Precipitation Processes in Northwest China”. This study highlights the strategic importance of developing cloud water resources in the region and examines the complexity of water formation and precipitation conversion mechanisms. Key influencing factors include the interaction of multiple atmospheric circulation systems; the macro- and microphysical complexities of cloud processes; the unique activation effects of dust aerosols; the topographic influences of plateaus and major mountain ranges; and the impact of regional climate warming and humidification. The critical role of field observations in supporting these investigations is also emphasized. Based on these insights, the study identifies six key research priorities for the future, including understanding variability patterns, aerosol-cloud interactions, cloud-precipitation conversion mechanisms, and advancing cloud microphysical parameterizations. These efforts aim to establish a robust theoretical and technical foundation for the effective utilization of atmospheric water resources in Northwest China.

参考文献

[1] ZHANG Hongli, HAN Fuqiang, ZHANG Liang, et al. Analysis of spatial and seasonal variations in climate warming and humidification in northwest China[J]. Arid Zone Research202340(4): 517-531.
  张红丽, 韩富强, 张良, 等. 西北地区气候暖湿化空间与季节差异分析[J]. 干旱区研究202340(4): 517-531.
[2] LI Yuanyuan, LI Yunling, GUO Xuning, et al. Spatial-temporal distribution and variation characteristics of precipitation in China during 1956-2016[J]. Advances in Water Science202536(1): 1-17.
  李原园, 李云玲, 郭旭宁, 等. 1956—2016年中国降水量时空分布规律及变化特征[J]. 水科学进展202536(1): 1-17.
[3] ADLER R F, GU G J, SAPIANO M, et al. Global precipitation: means, variations and trends during the satellite era (1979-2014)[J]. Surveys in Geophysics201738(4): 679-699.
[4] WANG Wenjing. Study of characteristics of air cloud and water resource in northwest China[D]. Lanzhou: Lanzhou University, 2018.
  王雯璟. 中国西北地区空中云水资源特征的研究[D]. 兰州: 兰州大学, 2018.
[5] LIU Dongsheng, LI Zechun, DING Zhongli, et al. Research on water resources allocation, ecological environment construction, and sustainable development strategy in the northwest region—volume of natural history: the evolution and development trends of the natural environment in the northwest region[M]. Beijing: Science Press, 2004.
  刘东生, 李泽椿, 丁仲礼, 等. 西北地区水资源配置生态环境建设和可持续发展战略研究——自然历史卷:西北地区自然环境演变及其发展趋势[M]. 北京:科学出版社, 2004.
[6] LI Zechun, ZHOU Yuquan, LI Qingxiang, et al. A additional way for alleviating water resources shortage in arid and semi-arid region: precipitation stimulation[J]. Bimonthly of Xinjiang Meteorology2006(1): 1-6, 11.
  李泽椿, 周毓荃, 李庆祥, 等. 人工增雨是缓和干旱半干旱地区水资源匮乏的一个补充途径[J]. 新疆气象2006(1): 1-6, 11.
[7] YI Shuhua, LIU Hongli, LI Weiliang, et al. Spatial and temporal distributions of cloud over northwest of China[J]. Meteorological Monthly200329(1): 7-11.
  宜树华, 刘洪利, 李维亮, 等. 中国西北地区云时空分布特征的初步分析[J]. 气象200329(1): 7-11.
[8] ZHANG Qiang, YU Yaxun, ZHANG Jie. Characteristics of water cycle in the Qilian Mountains and the oases in Hexi inland river basins[J]. Journal of Glaciology and Geocryology200830(6): 907-913.
  张强, 俞亚勋, 张杰. 祁连山与河西内陆河流域绿洲的大气水循环特征研究[J]. 冰川冻土200830(6): 907-913.
[9] YAO Z Y, AN L, ZHANG P, et al. Characteristics of cloud water resource and precipitation efficiency of hydrometeors over northwest China[J]. Journal of Meteorological Research202337(3): 353-369.
[10] FLOSSMANN A I, MANTON M, ABSHAEV A, et al. Review of advances in precipitation enhancement research[J]. Bulletin of the American Meteorological Society2019100(8): 1 465-1 480.
[11] FU Yunfei, YU Rucong, CUI Chunguang, et al. The structure characteristics of precipitating clouds over the East Asia based on TRMM measurements[J]. Torrential Rain and Disasters200726(1): 9-20.
  傅云飞,宇如聪,崔春光,等. 基于热带测雨卫星探测的东亚降水云结构特征的研究[J]. 暴雨灾害200726(1): 9-20.
[12] SASSEN K, WANG Z E. Classifying clouds around the globe with the CloudSat radar: 1-year of results[J]. Geophysical Research Letters200835(4). DOI: 10.1029/2007gl032591 .
[13] HUANG Yimei, ZHOU Yuquan, YANG Min. Using 3 mm cloud radar data to analyze frontal mixed cloud vertical structure and supercooled water[J]. Plateau Meteorology201736(1): 219-228.
  黄毅梅, 周毓荃, 杨敏. 利用3 mm云雷达资料分析混合相云垂直结构及过冷水分布[J]. 高原气象201736(1): 219-228.
[14] WANG Yuan, NIU Shengjie, LEI Hengchi, et al. An examination of the microphysical responses to aircraft seeding of stratiform clouds with embedded convection using the joint observational data of three aircrafts[J]. Transactions of Atmospheric Sciences201740(5): 686-696.
  王元, 牛生杰, 雷恒池. 利用三架飞机联合探测资料分析层积混合云催化物理效应[J]. 大气科学学报201740(5): 686-696.
[15] GUO Xueliang, FU Danhong, GUO Xin, et al. Advances in aircraft measurements of clouds and precipitation in China[J]. Journal of Applied Meteorological Science202132(6):641-652.
  郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展[J]. 应用气象学报202132(6):641-652.
[16] JIAN B D, LI J M, ZHANG L J, et al. Competition between radiative and seeding effects of overlying clouds on underlying marine stratocumulus[J]. Geophysical Research Letters202249(23). DOI: 10.1029/2022gl100729 .
[17] ZHANG Qiang, SUN Zhaoxuan, CHEN Lihua, et al. Reviews on studies of exploitation and utilization of cloud-water resource in the Qilian Mountains region[J]. Arid Land Geography200932(3): 381-390.
  张强, 孙昭萱, 陈丽华, 等. 祁连山空中云水资源开发利用研究综述[J]. 干旱区地理200932(3): 381-390.
[18] SCIARE J, FAVEZ O, SARDA-ESTèVE R, et al. Long-term observations of carbonaceous aerosols in the Austral Ocean atmosphere: evidence of a biogenic marine organic source[J]. Journal of Geophysical Research: Atmospheres2009114(D15). DOI:10.1029/2009JD011998 .
[19] MCFARQUHAR G M, ZHANG G, POELLOT M R, et al. Ice properties of single-layer stratocumulus during the mixed-phase Arctic cloud experiment: 1. observations[J]. Journal of Geophysical Research: Atmospheres2007112(D24). DOI: 10.1029/2007JD008633 .
[20] WANG J, WOOD R, JENSEN M, et al. Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) field campaign report[R]. DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States), 2019.
[21] SINGH H B, BRUNE W H, CRAWFORD J H, et al. Overview of the summer 2004 intercontinental chemical transport experiment-north America (INTEX-a)[J]. Journal of Geophysical Research: Atmospheres2006111(D24). DOI: 10.1029/2006JD007905 .
[22] DAMIANI R, HAIMOV S. A high-resolution dual-Doppler technique for fixed multiantenna airborne radar[J]. IEEE Transactions on Geoscience and Remote Sensing200644(12): 3 475-3 489.
[23] DAMIANI R, ZEHNDER J, GEERTS B, et al. The cumulus, photogrammetric, in situ, and Doppler observations experiment of 2006[J]. Bulletin of the American Meteorological Society200889(1): 57-74.
[24] FIELD P R, HEYMSFIELD A J, SHIPWAY B J, et al. Ice in clouds experiment-layer clouds. Part II: testing characteristics of heterogeneous ice formation in lee wave clouds[J]. Journal of the Atmospheric Sciences201269(3): 1 066-1 079.
[25] WANG G H, KAWAMURA K, HATAKEYAMA S, et al. Aircraft measurement of organic aerosols over China[J]. Environmental Science & Technology200741(9): 3 115-3 120.
[26] XUE L K, DING A J, GAO J, et al. Aircraft measurements of the vertical distribution of sulfur dioxide and aerosol scattering coefficient in China[J]. Atmospheric Environment201044(2): 278-282.
[27] LU Guangxian, GUO Xueliang. Aerosol distribution, source and its relationship with CCN transformation around Beijing in spring by aircraft detection[J]. Chinese Science Bulletin201257(15): 1 334-1 344.
  卢广献, 郭学良. 环北京春季大气气溶胶分布、来源及其与CCN转化关系的飞机探测[J]. 科学通报201257(15): 1 334-1 344.
[28] FU Y, LEI H C. Aircraft observation of cloud microphysical characteristics of pre-stratiform-cloud precipitation in Jiangxi Province[J]. Atmospheric and Oceanic Science Letters201710(5): 364-371.
[29] LI Jiming, CHEN Tianyu, CHEN Baojun, et al. Design and implementation of weather modification ability construction project of northwest China[J]. Advances in Meteorological Science and Technology202111(5): 50-56.
  李集明, 陈添宇, 陈宝君, 等. 西北区域人工影响天气能力建设项目总体设计与实施[J]. 气象科技进展202111(5): 50-56.
[30] DUAN Jing, WANG Ziqiang, LI Yuanyuan, et al. Design and implementation of northwest China weather modification ability construction project[J]. Advances in Meteorological Science and Technology202111(5): 72-76.
  段婧, 王自强, 李圆圆, 等. 西北人影工程研究试验设计与实施[J]. 气象科技进展202111(5): 72-76.
[31] ZHANG Qiang, LIN Jingjing, LIU Weicheng, et al. Precipitation seesaw phenomenon and its formation mechanism in the eastern and western parts of northwest China during flood season[J]. Science China Earth Sciences201962: 2 083-2 098.]
  张强, 林婧婧, 刘维成, 等. 西北地区东部与西部汛期降水跷跷板变化现象及其形成机制[J]. 中国科学: 地球科学201949(12): 2 064-2 078.
[32] ZHANG Qiang, ZHU Biao, YANG Jinhu, et al. New characteristics of climate humidification trend in northwest China[J]. Chinese Science Bulletin202166(): 3 757-3 771.
  张强, 朱飙, 杨金虎, 等. 西北地区气候湿化趋势的新特征[J]. 科学通报202166(): 3 757-3 771.
[33] HAYNES J M, STEPHENS G L. Tropical oceanic cloudiness and the incidence of precipitation: early results from CloudSat[J]. Geophysical Research Letters200734(9). DOI:10.1029/2007GL029335 .
[34] BEHRANGI A, TIAN Y D, LAMBRIGTSEN B H, et al. What does CloudSat reveal about global land precipitation detection by other spaceborne sensors?[J]. Water Resources Research201450(6): 4 893-4 905.
[35] Chenchao KOO, TSAN Lisan. On the growth of the droplets under gravitational coalescence in a fluctuating environment[J]. Acta Meteorologica Sinica196220(4): 301-307.
  顾震潮, 詹丽珊. 起伏条件下云雾的重力碰并生长[J]. 气象学报196220(4): 301-307.
[36] FALKOVICH G, FOUXON A, STEPANOV M G. Acceleration of rain initiation by cloud turbulence[J]. Nature2002419(6 903): 151-154.
[37] LU C S, LIU Y G, NIU S J, et al. Broadening of cloud droplet size distributions and warm rain initiation associated with turbulence: an overview[J]. Atmospheric and Oceanic Science Letters201811(2): 123-135.
[38] SMALL J D, CHUANG P Y. New observations of precipitation initiation in warm cumulus clouds[J]. Journal of the Atmospheric Sciences200865(9): 2 972-2 982.
[39] CHENG W Y Y, CARRIó G G, COTTON W R, et al. Influence of cloud condensation and giant cloud condensation nuclei on the development of precipitating trade wind cumuli in a large eddy simulation[J]. Journal of Geophysical Research: Atmospheres2009114(D8). DOI: 10.1029/2008JD011011 .
[40] LI X Y, BRANDENBURG A, SVENSSON G, et al. Condensational and collisional growth of cloud droplets in a turbulent environment[J]. Journal of the Atmospheric Sciences202077(1): 337-353.
[41] HUANG J P, WANG T H, WANG W C, et al. Climate effects of dust aerosols over East Asian arid and semiarid regions[J]. Journal of Geophysical Research: Atmospheres2014119(19). DOI:10.1002/2014JD021796 .
[42] WU Zhijun, CHEN Jie, CHEN Jingchuan, et al. Ice nucleating particles in the atmosphere: progress and challenges[J]. Chinese Journal of Atmospheric Sciences202145(4): 759-776.
  吴志军, 陈洁, 陈景川, 等. 大气冰核: 研究进展与挑战[J]. 大气科学202145(4): 759-776.
[43] BI Kai, HUANG Mengyu, HU Yaqiong. Research progress and outlook of atmospheric ice nuclei[J]. Advances in Meteorological Science and Technology202212(4): 22-29.
  毕凯, 黄梦宇, 虎雅琼. 大气冰核研究进展及展望[J]. 气象科技进展202212(4): 22-29.
[44] CHATZIPARASCHOS M, DASKALAKIS N, MYRIOKEFALITAKIS S, et al. Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds[J]. Atmospheric Chemistry and Physics202323(3): 1 785-1 801.
[45] WELTI A, Lü?ND F, STETZER O, et al. Influence of particle size on the ice nucleating ability of mineral dusts[J]. Atmospheric Chemistry and Physics20099(18): 6 705-6 715.
[46] K?HLER H. The nucleus in and the growth of hygroscopic droplets[J]. Transactions of the Faraday Society193632: 1 152-1 161.
[47] TWOMEY S. The nuclei of natural cloud formation part II: the supersaturation in natural clouds and the variation of cloud droplet concentration[J]. Geofisica Pura e Applicata195943(1): 243-249.
[48] PETTERS M D, KREIDENWEIS S M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity[J]. Atmospheric Chemistry and Physics20077(8): 1 961-1 971.
[49] MIKHAILOV E, VLASENKO S, ROSE D, et al. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake[J]. Atmospheric Chemistry and Physics201313(2): 717-740.
[50] PARAMONOV M, KERMINEN V M, GYSEL M, et al. A synthesis of Cloud Condensation Nuclei Counter (CCNC) measurements within the EUCAARI network[J]. Atmospheric Chemistry and Physics201515(21): 12 211-12 229.
[51] P?HLKER M L, P?HLKER C, QUAAS J, et al. Global organic and inorganic aerosol hygroscopicity and its effect on radiative forcing[J]. Nature Communications202314(1). DOI: 10.1038/s41467-023-41695-8 .
[52] GUNTHE S S, KING S M, ROSE D, et al. Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity[J]. Atmospheric Chemistry and Physics20099(19): 7 551-7 575.
[53] ROSE D, NOWAK A, ACHTERT P, et al. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China-part 1: size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity[J]. Atmospheric Chemistry and Physics201010(7): 3 365-3 383.
[54] FORS E O, SWIETLICKI E, SVENNINGSSON B, et al. Hygroscopic properties of the ambient aerosol in southern Sweden—a two year study[J]. Atmospheric Chemistry and Physics201111(16): 8 343-8 361.
[55] HENNING S, DIECKMANN K, IGNATIUS K, et al. Influence of cloud processing on CCN activation behaviour in the Thuringian Forest, Germany during HCCT-2010[J]. Atmospheric Chemistry and Physics201414(15): 7 859-7 868.
[56] KRISTENSEN T B, MüLLER T, KANDLER K, et al. Properties of Cloud Condensation Nuclei (CCN) in the trade wind marine boundary layer of the western North Atlantic[J]. Atmospheric Chemistry and Physics201616(4): 2 675-2 688.
[57] BOUGIATIOTI A, BEZANTAKOS S, STAVROULAS I, et al. Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean[J]. Atmospheric Chemistry and Physics201616(11): 7 389-7 409.
[58] P?HLKER M L, P?HLKER C, DITAS F, et al. Long-term observations of cloud condensation nuclei in the Amazon rain forest-part 1: aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction[J]. Atmospheric Chemistry and Physics201616(24): 15 709-15 740.
[59] SALMA I, THéN W, V?R?SMARTY M, et al. Cloud activation properties of aerosol particles in a continental Central European urban environment[J]. Atmospheric Chemistry and Physics202121(14): 11 289-11 302.
[60] CHEN L, ZHANG F, ZHANG D M, et al. Measurement report: hygroscopic growth of ambient fine particles measured at five sites in China[J]. Atmospheric Chemistry and Physics202222(10): 6 773-6 786.
[61] WANG Y, NIU S J, LU C S, et al. A new CCN activation parameterization and its potential influences on aerosol indirect effects[J]. Atmospheric Research2021, 253. DOI: 10.1016/j.atmosres.2021.105491 .
[62] WANG Y, HENNING S, POULAIN L, et al. Aerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany[J]. Atmospheric Chemistry and Physics202222(24): 15 943-15 962.
[63] WANG Y, LI J M, FANG F, et al. In-situ observations reveal weak hygroscopicity in the southern Tibetan Plateau: implications for aerosol activation and indirect effects[J]. NPJ Climate and Atmospheric Science20247: 77.
[64] ANDREAE M O, ROSENFELD D. Aerosol-cloud-precipitation interactions. Part 1. the nature and sources of cloud-active aerosols[J]. Earth-Science Reviews200889(1/2): 13-41.
[65] SEINFELD J H, PANDIS S N. Atmospheric chemistry and physics: from air pollution to climate change[M]. 3rd edition. Hoboken: John Wiley and Sons, 2016.
[66] HUA S F, CHEN B J, LIU Y B, et al. Evaluation of the ice particle simulation of microphysics schemes with aircraft measurements of a stratiform cloud in North China[J]. Journal of the Atmospheric Sciences202380(6): 1 635-1 656.
[67] FAN J W, ROSENFELD D, YANG Y, et al. Substantial contribution of anthropogenic air pollution to catastrophic floods in southwest China[J]. Geophysical Research Letters201542(14): 6 066-6 075.
[68] SHAW T A, MIYAWAKI O. Fast upper-level jet stream winds get faster under climate change[J]. Nature Climate Change202414: 61-67.
[69] SENEVIRATNE S I, ZHANG X B, ADNAN M, et al. Weather and climate extreme events in a changing climate// Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021:1 513-1 766.
[70] CHEN Yonghang, HUANG Jianping, CHEN Changhe, et al. Temporal and spatial distributions of cloud water resources over northwestern China[J]. Plateau Meteorology200524(6): 905-912.
  陈勇航, 黄建平, 陈长和, 等. 西北地区空中云水资源的时空分布特征[J]. 高原气象200524(6): 905-912.
[71] ZHANG Qaing, ZHANG Jie, SUN Guowu, et al. Research on atmospheric water-vapor distribution over Qilianshan Mountains[J]. Acta Meteorologica Sinica2007(4): 633-643.
  张强, 张杰, 孙国武, 等. 祁连山山区空中水汽分布特征研究[J]. 气象学报2007(4):633-643.
[72] YIN Xianzhi, PANG Chaoyun, QIAO Yanjun, et al. New progress in research on the development potential of cloud water resources in Qilian Mountains[J]. Desert and Oasis Meteorology202014(6):134-140.
  尹宪志,王毅荣,徐文君,等. 祁连山空中云水资源开发潜力研究新进展[J]. 沙漠与绿洲气象202014(6):134-140.
[73] BA Li, YIN Xianzhi, PANG Zhaoyun, et al. Characteristics of the difference in air water resources between the north and south slopes of the Qilian Mountains in the summer[J]. Arid Zone Research202239(5): 1 345-1 359.
  把黎, 尹宪志, 庞朝云, 等. 祁连山地区夏季南坡与北坡空中云水资源差异性分析[J]. 干旱区研究202239(5): 1 345-1 359.
[74] CHEN Fahu, XIE Tingting, YANG Yujie, et al. Discussion of the “warming and wetting” trend and its future variation in the drylands of northwest China under global warming[J]. Science China Earth Sciences202366(6): 1 241-1 257.
  陈发虎,谢亭亭,杨钰杰,等. 我国西北干旱区“暖湿化”问题及其未来趋势讨论[J].中国科学:地球科学202353(6):1 246-1 262.
[75] ZHANG Qiang, YANG Jinhu, WANG Pengling, et al. Progress and prospect on climate warming and humidification in northwest China[J]. Chinese Science Bulletin202368(14):1 814-1 828.
  张强, 杨金虎, 王朋岭, 等. 西北地区气候暖湿化的研究进展与展望[J]. 科学通报202368(14):1 814-1 828.
[76] BAI B, YUE P, ZHANG Q, et al. Changing characteristics of ecosystem and water storage under the background of warming and humidification in the Qilian Mountains, China[J]. Science of the Total Environment2023, 893. DOI: 10.1016/j.scitotenv.2023.164959 .
[77] ZHOU Baiquan, ZHAI Panmao. The constraint methods for projection in the IPCC sixth assessment report on climate change[J]. Acta Meteorologica Sinica202179(6): 1 063-1 070.
  周佰铨, 翟盘茂. IPCC第六次气候变化评估中的气候约束预估方法[J]. 气象学报202179(6): 1 063-1 070.
文章导航

/