地球科学进展 ›› 2002, Vol. 17 ›› Issue (4): 528 -534. doi: 10.11867/j.issn.1001-8166.2002.04.0528

综述与评述 上一篇    下一篇

土壤碳蓄积量变化的影响因素研究现状
王绍强,刘纪远   
  1. 中国科学院地理科学与资源研究所资源环境数据中心,北京 100101
  • 收稿日期:2001-09-24 修回日期:2002-04-08 出版日期:2002-12-20
  • 通讯作者: 王绍强(1972-),男,湖北襄樊市人,副研究员,主要从事陆地碳循环研究.E-mail: wangsq@lreis.ac.cn E-mail:wangsq@lreis.ac.cn
  • 基金资助:

    中国科学院地理科学与资源研究所知识创新工程主干科学研究计划专题“中国陆地生态系统土壤碳蓄积估算”(编号:CXIOG-E01-02-02)资助.

RESEARCH STATUS QUO OF IMPACT FACTORS OF SOIL CARBON STORAGE

WANG Shao-qiang,LIU Ji-yuan   

  1. Resources and Environmental Data Center, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101,China
  • Received:2001-09-24 Revised:2002-04-08 Online:2002-12-20 Published:2002-08-01

土壤碳库的动态平衡影响作物产量和土壤肥力的高低,是土壤肥力保持和提高的重要研究内容。简要评述了土壤理化特性、温度和降水变化、大气CO2浓度上升、人类的农业活动对土壤有机碳蓄积量的影响,介绍了当前对土壤碳蓄积量动态变化的研究进展,认为应加强气候变化和土地利用/土地覆被变化与土壤碳循环研究的结合,提高对陆地生态系统碳循环变化的认识,并需要从生态环境保护的利益和可持续发展的理论出发,进一步加强土地管理方式的改变,促进土壤有机质的积累,提高土壤对碳的固定。

The dynamic balance of soil carbon pool is an important study field of soil fertility conservation and improvement, which affect directly crop productivity and soil fertility. In this paper, it is discussed that the effects of soil property, temperature and precipitation change, atmospheric CO2 concentration increase and anthropogenic agricultural activities on soil carbon storage. There could exist a positive relationship between soil texture and soil organic carbon content, hence, changes in soil carbon storage could be estimated by analyzing soil texture, soil microorganism and soil depth. Climate change and land-use/land-cover changes are the most important causes that result in the change of soil carbon storage. Changes in temperature and precipitation will impact plant productivity, litterfall rate and humus respiration so that soil organic carbon storage decreases or increases. However, vegetation productivity and soil respiration have acclimatization role to warming. Enhancement of atmospheric CO2 concentration will change utilizing efficiency of resources and carbon cycle ratio. So observation, experiments and modeling are very important direction to research controlling factors and mechanisms of soil organic carbon storage. Human activities led to more serious influence on soil carbon storage and flux than natural change. Land use change and deforestation emitted a lot of carbon to atmosphere from soil. Conversion from natural to agricultural land use, especially to cropland, leads to a rapid depletion of the soil organic carbon pool. Agricultural practices have also contributed to the depletion of soil organic carbon pool including drainage of wetlands, plowing and other forms of soil disturbance, inadequate management of soil fertility, tillage and excessive use of chemicals. Options for enhancing carbon pool in soil and ecosystems include reducing emissions and increasing soil organic carbon content and retention time of soil carbon. In order to better understand terrestrial ecosystem carbon cycle change, studies of the interaction relation among climate change, land-use change and soil carbon cycle should be carried out.

中图分类号: 

[1] Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and life zones[J]. Nature, 1982, 298: 156-159.
[2] Birdsey R A. Inventory of carbon storage and accumulation in U.S. forest ecosystems[A].  In: Burkhart  H E,et al.eds. Research in Forest Inventory, Monitoring, Growth and Yield[C]. Proc  IUFRO World Congr, Montreal, 5-11 Aug 1990 School of For and Wild Resour, Publ, FWS-3-90. Blacksburg: Virginia Polytechnic Inst And State Univ, 1990. 
[3] Franzmeier D P, Lemme G D, Miles R J. Organic carbon in soils of North Central United States[J]. Soil Science Society of America Journal,1985, 49: 702-708.
[4] Burke I C, Yonkr C M, Parton W J, et al. Texture, climate, and cultivation effects on soil organic matter content in US grassland soils[J]. Soil Sci Soc Am J, 1989, 53: 800-805.
[5] Wang Shaoqiang, Zhou Chenghu, Li Kerang, et al. Study on spatial distribution character analysis of the soil organic carbon reservoir in China[J]. Acta Geographic Sinica, 2000, 55(5): 533-544. [王绍强, 周成虎, 李克让,等. 中国陆地土壤有机碳库空间分析[J]. 地理学报, 2000, 55(5): 533-544.]
[6] Huang Changyong. Pedology[M]. Beijing:Chinese Agriculture Press, 2000. 1-311. [黄昌勇主编.  北京: 土壤学[M]. 中国农业出版社,2000.1-311.]
[7] Spackman L K, Munn L C. Genesis and morphology of soils associated with formation of Larance Basin (Mima-Like) mounds in Wyoming[J]. Soil Science Society of America Journal, 1984, 48: 1 382-1 384. 
[8] Kay B D. Soil structure and organic carbon: a review[A]. In: Lal R, Kimble J M, Follett R F, et al,eds. Soil Processes and the Carbon Cycle[C]. Boca Raton, FL: CRC Press, 1998.169 -198.
[9] Stevenson F J, Cole M A. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients[M]. New York:John Wiley & Sons Inc, 1999. 
[10] Anderson D W, Saggar S, Bettany J R, et al. Particle size fractions and their use in studies of soil organic matter I. The nature and distribution of forms of carbon, nitrogen and sulfur[J]. Soil Science Society America Proc, 1981, 30: 731-735.
[11] McDaniel P A, Munn L C. Effect of temperature on the relationship between organic carbon and texture in Mollisols and Aridisols[J]. Soil Science Society of America Journal, 1985, 49: 1 486-1 489.
[12] Sims Z R, Nielsen G A. Organic carbon in Montana soils as related to clay content and climate[J]. Soil Science Society of America Journal, 1986, 50: 1 269-1 271.
[13] Ayanaba A, Jenkinson D S. Decomposition of carbon-14 labeled Ryegrass and Maize under tropical conditions[J]. Soil Science Society of America Journal, 1990, 54: 112-115. 
[14] Young I M, Blanchart E, Chenu C, et al. The interaction of soil biota and soil structure under global change[J]. Global Change Biology, 1998, 4: 703-712.
[15] Yao Huaiying, He Zhenli, Chen Guochao, et al.Fertility significance of microbial biomass in red soil ryegrass system[J]. Chinese Journal of Applied Ecology, 1999, 10(6): 725-728. [姚槐应, 何振立, 陈国潮,等. 红壤微生物量在土壤-黑麦草系统中的肥力意义[J]. 应用生态学报, 1999, 10(6): 725-728.]
[16] Liao Liping, Gao Hong, Wang Silong, et al.The effect of nitrogen addition on soil nutrient leaching and the decomposition of Chinese fir leaf litter[J]. Acta Phytoecologica Sinica, 2000, 24(1): 34-39. [廖利平, 高洪, 汪思龙,等. 外加氮源对杉木叶凋落物分解及土壤养分淋失的影响[J]. 植物生态学报, 2000, 24(1): 34-39.]
[17] Qi Ye. The effect of climate change on vegetation at high latitudes of the northern hemisphere: a functional analysis[J]. Acta Ecologica Sinica, 1999, 19(4): 474-478.[齐晔. 北半球高纬度地区气候变化对植被的影响途径和机制[J]. 生态学报, 1999, 19(4): 474-478.]
[18] Batjes N H. Total carbon and nitrogen in the soils of the world[J]. Europe Journal of Soils Science, 1996, 47: 151-163.
[19] Melillo J M. Global climate change and terrestrial net primary production[J]. Nature, 1993, 363: 234-240.
[20] Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming[J]. Nature, 1991, 351: 304-306.
[21] Luo Yiqi, Wan Shiqiang, Hui Dafeng, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 2001, 413: 622-625.
[22] Liski J, Ilvesniemi H, Makela A, et al. CO2 Emissions from soil in responses to climatic warming are overestimated-The decompositon on old soil organic matter is tolerant of temperature[J]. AMBIO, 1999, 28 (2):171-174.
[23] Cai Zuchong. Effects of water regime on CO2, CH4 and N2O emissions and overall potential for greenhouse effect caused by emitted gases[J]. Acta Pedologica Sinica, 1999, 36(4): 484-491. [蔡祖聪. 水分类型对土壤排放的温室气体组成和综合温室效应的影响[J]. 土壤学报, 1999, 36(4): 484-491.]
[24] Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycles, 1995, 9(1): 23-36.
[25] Zhang Linbo, Cao Hongbo, Gao Jixi, et al. Effect of plant changes induced by elevated atmospheric CO2 on soil Biota[J]. Chinese Journal of Ecology, 1998, 17(4): 33-38. [张林波, 曹洪波, 高吉喜,等. 大气CO2浓度升高对土壤微生物的影响[J]. 生物学杂志, 1998, 17(4): 33-38.]
[26] Zhao Ping, Peng Shaolin. Increased atmospheric CO2 concentration and the possible alteration in structure of forest community[J]. Acta Ecologica Sinica, 2000, 20(6): 1 090-1 096.[赵平, 彭少麟. 大气CO2浓度升高与森林群落结构的可能性变化[J]. 生态学报, 2000, 20(6): 1 090-1 096.]
[27] Lin Weihong. Response of photosynthesis to elevated atmospheric CO2[J]. Acta Ecologica Sinica, 1998, 18(5):529-538. [林伟宏. 植物光合作用对大气CO2浓度升高的反应[J]. 生态学报, 1998, 18(5): 529-538.]
[28] Jiang Gaoming, Han Xingguo, Lin Guanghui. Response of plant growth to elevated[CO2]: a review on the chief methods and basic conclusions based on experiments in the external countries in past decade[J]. Acta Phytoecologica Sinica, 1997, 21(6): 489-502. [蒋高明,韩兴国,林光辉,等. 大气CO2浓度升高对植物的直接影响——国外十余年来模拟实验研究之主要手段及基本结论[J]. 植物生态学报, 1997, 21(6): 489-502.]
[29] Wang Dali. CO2 enrichment and allelopathy[J].  Acta Ecologica Sinica, 1999, 19(1): 122-127. [王大力. 全球CO2浓度变化与植物的化感作用[J]. 生态学报, 1999, 19(1): 122-127.]
[30] Kampichler C, Kandeler E, Bardgett R D, et al.Impact of elevated atmospheric CO2 concentration on soil microbial biomass and activity in a complex, weedy field model ecosystem[J]. Global Change Biology, 1998, 4: 335-346.
[31] Mooney H A, Koch G W. The impacts of CO2 concentration enhancement on terrestrial biosphere [J]. AMBIO, 1994, 23(1): 74-76.
[32] Wang Xingfen, Li Shiyi, Bai Kezhi, et al. Influence of doubled CO2 on plant growth and soil microbial biomass C and N[J]. Acta Botanica Sinica, 1998, 40(12): 1 169-1 172.[ 汪杏芬, 李世仪, 白克智,等. CO2倍增对植物生长和土壤微生物生物量碳、氮的影响[J]. 植物学报, 1998, 40(12): 1 169-1 172.]
[33] Darrah P R. Rhizodeposition under ambient and atmospheric carbon dioxide[J]. Plant and soil, 1996, 165: 55-64.
[34] Wang Yexu. Study on regional carbon cycle of forest ecosystem in China[D]. Doctoral thesis of Commission for Integrated Survey of Natural Resources, Chinese Academy of Sciences,  Beijing. 1999.[汪业勖. 中国森林生态系统区域碳循环研究[D]. 中国科学院自然资源综合考察委员会理学博士学位论文, 1999.]
[35] Wang Yanfen, Chen Zuozhong, Larry T. Distribution of soil organic carbon in the major grasslands of Xilinguole, Inner Mogolia, China[J]. Acta Phytoecologica Sinica, 1998, 22(6): 545-551. [王艳芬, 陈佐忠, Larry T. 人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J]. 植物生态学报, 1998, 22(6): 545-551.]
[36] Sampson R N, Apps M, Brown S, et al. Terrestrial biosphere carbon fluxes quantification of sinks and sources of CO2[J]. Water, Air and Soil Pollution, 1993, 70: 3-15.
[37] Mann L K. Changes in soil carbon storage after cultivation[J]. Soil Science, 1986, 142: 279-288.
[38] Detwiler R P. Land use change and the global carbon cycle: the role of tropical soils[J]. Biogeochemistry, 1986, 2: 67-93.
[39] Brown S, Lugo AE. Biomass of tropical forests. A new estimate based on forest volumes[J]. Science, 1984, 223: 1 290-1 293.
[40] Sedjo R A. The carbon cycle and global forest ecosystem[J]. Water, Air and Soil Pollution, 1993, 70: 295-307.
[41] Xu Deying. The effect of Human management activities on the carbon in forest soils[J].  World Forestry Research, 1994, 5: 26-31. [徐德应. 人类经营活动对森林土壤碳的影响[J]. 世界林业研究, 1994, 5: 26-31.]
[42] Tiessen H, Cuevas E, Chacon P. The role of soil organic matter in sustaining soil fertility[J]. Nature, 1994, 371: 783-785.
[43] Davidson E A, Ackerman I L. Changes in soil carbon inventories following cultivation of previously untilled soil[J]. Biogeochemistry, 1993, 20: 161-193.
[44] Schlesinger W H. Carbon storage in the caliche of arid soils: a case study from Arizona[J]. Soil Science, 1982, 133: 247-255.
[45] Schleisinger  W H. Evidence from chronosequence studies for a low carbon-storage potential of soils[J]. Nature, 1990, 348: 232-234.
[46] Schlesinger W H. An overview of the carbon cycle[A].  In: Lal R, Kimble J, Levine E, eds. Soils and Global Change[C]. Boca Raton, FL:CRC/Lewis Publishers, 1995.9-25. 
[47] Lal R. Soil organic dynamics in cropland and rangeland[J]. Environmental Pollution, 2002, 116: 353-362.
[48] Cerri C C, Volkoff B, Andreaus F. Nature and behavior of organic matter in soils under natural forest, and after deforestation, burning and cultivation, near Manaus[J]. Forest Ecology and Management, 1991, 38: 247-257. 
[49] Lugo A E, Brown S. Management of topical soils as sinks of atmospheric carbon[J]. Plant and Soil, 1993, 149: 27-41.  
[50] Yang Xueming. Carbon sequestration in farming land soils: an approach to buffer the global warming and to improve soil productivity[J]. Soil and Environmental Sciences, 2000, 9(4): 311-315. [杨学明. 利用农业土壤固定有机碳[J]. 土壤与环境, 2000, 9(4): 311-315.]
[51] Zhang Fushen. Study on the organic oxidation stability of loessial soil and cumulic cinnamon soil under long-term fertilization conditions[J]. Soils and Fertilizers, 1996, 6: 32-36. [张付申. 长期施肥条件下娄土和黄绵土有机质氧化稳定性研究[J]. 土壤肥料, 1996, 6: 32-36.
[52] Shen Hong, Cao Zhiming, Wang Zhiming. Study of carbon pool management index in soils under different agroecosystems[J].  Journal of Natural Resources, 1999, 14(3): 206-211. [沈宏, 曹志洪, 王志明. 不同农田生态系统土壤碳库管理指数的研究[J]. 自然资源学报, 1999, 14(3): 206-211.]
[53] Shen Hong, Cao Zhihong, Hu Zhengyi. Characteristics and ecological effects of the active organic carbon in soil[J]. Chinese Journal of Ecology, 1999, 18(3): 32-38. [沈宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应[J]. 生态学杂志, 1999, 18(3): 32-38.]
[54] Ma Chengze, Zhou Qin, He Fang. Surplus-deficit distribution of organic carbon in soil under combined fertilization[J]. Acta Pedologica Sinica, 1996, 31(1): 35-41. [马成泽,周勤,何方,等. 不同肥料配合施用土壤有机碳盈亏分布[J]. 土壤学报, 1996, 31(1): 35-41.]
[55] Gregorich E G, Janzen H H. Storage of soil carbon in the light fraction and macroorganic matter[A]. In:  Carter M R, Stewart B A, eds. Structure and organic matter storage in soils[C]. Boca Raton, FL:Lewis Publ, CRC Press,  1996.
[56] Gregorich E G, Rochette P, McGuire S,et al.Soluble organic carbon and carbon dioxide fluxes in maize fields receiving spring applied manure[J]. J Environ Qual, 1998, 27: 209-214.
[57] Wang Yan, Shen Qirong, Shi Ruihe, et al.Changes of soil microbial biomass C, N and P and the N transformation after application of organic and inorganic fertilizers[J]. Acta Pedologica Sinica, 1998, 35(2): 227-234. [王岩, 沈其荣, 史瑞和,等. 有机、无机肥料施用后土壤生物量C、N、P的变化及N素转化[J]. 土壤学报, 1998, 35(2): 227-234.]
[58] Burke I C, Lauenroth W K, Coffin D P. Soil organic matter recovery in semiarid grasslands: implications for the conservation reserve program[J]. Ecological Monographs, 1995, 5: 793-801.
[59] Fisher M J, Rao I M, Ayarza M A,et al. Carbon storage by introduced deep-rooted grasses in the South American savannas[J]. Science, 1994, 371: 236-238.
[60] Jin Feng, Yang Hao, Zhao Qiguo. Study advance of soil organic carbon storage and it's impacting factors[J]. Soil, 2000, 1: 11-17. [金峰, 杨浩, 赵其国. 土壤有机碳储量及影响因素研究进展[J]. 土壤, 2000, 1: 11-17.]
[61] Xu Yangchun, Shen Qirong, Ran Wei. Effects of zero-tillage and application of manure on soil microbial biomass C, N, and P after sixtenn years of cropping[J]. Acta Pedologica Sinica, 2002.39(1): 89-96. [徐阳春, 沈其荣,冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J]. 土壤学报, 2002, 39(1): 89-96.]
[62] IPCC  Working Group I.Climate Change 1995[M].  Cambridge: Cambridge University Press, 1996.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要