地球科学进展 ›› 2008, Vol. 23 ›› Issue (6): 638 -643. doi: 10.11867/j.issn.1001-8166.2008.06.0638

生态学研究 上一篇    下一篇

黄河湿地孟津段不同植物群落类型土壤有机质含量变化特征研究
赵同谦,张华,徐华山,贺玉晓   
  1. 河南理工大学资源环境学院,河南 焦作 454003
  • 收稿日期:2007-11-05 修回日期:2008-05-09 出版日期:2008-06-10
  • 通讯作者: 赵同谦 E-mail:zhaotq@hpu.edu.cn
  • 基金资助:

    国家自然科学基金项目“滨河湿地生态系统服务功能机制及恢复模式研究”(编号:30570276)资助.

Research on Variation Characteristics of Soil Organic Matter Contents in Different Vegetation Community Types in Mengjin Part of Yellow River Wetland

Zhao Tongqian,Zhang Hua,Xu Huashan,He Yuxiao   

  1. Department of Resource & Environment, Henan Polytechnic University,Jiaozuo 454003,China  
  • Received:2007-11-05 Revised:2008-05-09 Online:2008-06-10 Published:2008-06-10

通过对黄河湿地孟津段不同湿地植被群落类型土壤进行采样分析,探讨了黄河小浪底水库修建之后调水调沙对下游滨河湿地不同植被群落类型土壤沉积特征的影响,并系统研究了滨河湿地土壤有机质的空间分异特征。研究结果表明:受上游小浪底水库建设的影响,滨河湿地不同植被群落类型土壤沉积层次和沉积厚度变化较大,近岸湿地植被向陆生演替的特征明显,土壤沉积加速、并不断向河道推移;滨河湿地不同植物群落类型、不同土壤层次的土壤有机质含量差异显著;典型湿地特征的植被群落表层土壤有机质含量明显高于其它深部沉积土壤;滨河湿地土壤有机质含量的显著差异性和受外部条件的显著控制作用,充分反映了滨河湿地生态系统的脆弱性。

Through the sample analysis of soils in different wetland vegetation community types in Mengjin part of Yellow River wetland, this article discussed the effects on the soil sedimentary characteristics of different wetland vegetation communities in lower riparian after the construction of Xiaolangdi Reservoir, and studied the spatial variation characteristics of the organic matter in riparian wetland soil. The results showed that: influenced by the construction of upriver Xiaolangdi Reservoir, there is great variation in the soil sediment layer amount and thickness of different community types in riparian wetland. The feature of the vegetation succession from hygrocolous to terrestrial is distinct. The soil sediment velocity increases and the riparian wetland continuously encroaches toward the river. Organic contents vary greatly among different vegetation communities and soil layers; The organic matter content of the upper layer soil in the typical wetland communities is obviously higher than that of the deep sediment soil; The fact that the soil organic matter in riparian wetland varies obviously and is controlled by external conditions fully indicates the fragility of riparian wetland.

中图分类号: 

[1] Bai JunhongDeng WeiZhang Yuxiaet al. Spacial distribution characteristics of soil organic matter and nitrogen in the natural floodplain wetland [J]. Environment Science2002232:77-81.[白军红,邓伟,张玉霞,等.洪泛区天然湿地土壤有机质及氮素空间分布特征[J].环境科学,2002232:77-81.]

[2] William J MJarnes G G. Wetlands [M]. New York:Van Nostrand Reinhold Company Inc1986: 89-l25.

[3] Mo JianfengTian KunLu Meiet al. Study on the spatial variability of soil organic matter in Napahai degraded wetland [J]. Journal of Southwest Forestry College2004243: 25-28.[莫剑锋,田昆,陆梅,等. 纳帕海退化湿地土壤有机质空间变异研究[J]. 西南林学院学报,2004 243: 25-28.]

[4] Philippe ANathalie LJean Let al. 13C composition of dissolved organic carbon in upland forested catchments of the Morvan MountainsFrance: Influence of coniferous and deciduous vegetation [J]. Journal of Hydrology2007225:354-363.

[5] Wang Z PHan X GLi L H. Effects of grassland conversion to croplands on soil organic carbon in the temperate Inner Mongolia [J]. Journal of Environmental Management2008863: 529-534.

[6] Sheldon FThoms M C. In-channel geomorphic complexity: The key to the dynamics of organic matter in large dryland rivers [J]. Geomorphology200677: 270-285.

[7] Shibu M ELeffelaar P AKeulen H Vet al. Quantitative description of soil organic matter dynamics—A review of approaches with reference to rice-based cropping systems [J]. Geoderma2006137: 1-18.

[8] Barrett J EVirginia R AParsons A Net al. Soil carbon turnover in the McMurdo dry valleysAntarctica [J]. Soil Biology & Biochemistry200638: 3 065-3 082.

[9] Shuiwang DuanThomas S BTroy P S. Temporal variability in the composition and aboundance of terrestrially-derived dissolved organic matter in the lower Mississippi and Pearl rivers [J]. Marine Chemistry2007103: 172-184.

[10] Santin COtero XFernández Set al. Variations of organic carbon stock in reclaimed estuarine soilsVillaviciosa estuaryNW Spain[J]. Science of the Total Environment2007378: 138-142.

[11] Liu JingshuangYang JisongYu Junbaoet al. Study on vertical distributon of soil organic carbon in wetlands Sanjiang plain [J]. Journal of Soil and Water Conservation2003173: 5-8. [刘景双,杨继松,于君宝,等. 三江平原沼泽湿地土壤有机碳的垂直分布特征研究[J]. 水土保持学报,2003173: 5-8.]

[12] Bai JunhongDeng WeiZhu Yanminget al. Spatial distribution characteristics and ecological effects of carbon an d nitrogen of soil in Huolin river catchment wetland [J]. Chinese Journal of Applied Ecology2003149: 1 494-1 498.[白军红,邓伟,朱颜明,等. 霍林河流域湿地土壤碳氮空间分布特征及生态效应[J]. 应用生态学报,2003149: 1 494-1 498.]

[13] Ma XuehuiLü XianguoYang Qinget al. Carbon cycle of a marsh Sanjiang plain [J]. Scientic Geographica Sinica1996164:323-330.[马学慧,吕宪国,杨青,等. 三江平原沼泽地碳循环初探[J]. 地理科学,1996164:323-330.]

[14] Luan ZhaoqingSong ChangchunDeng Wei. Study on soil fertility variation during wetland reclamation and utilization in the Naoli river watershed of the Sanjiang plain [J]. Journal of Jilin Agricultural University2003255: 544-547.[栾兆擎,宋长春,邓伟. 三江平原挠力河流域湿地不同开垦年限肥力的变化[J].吉林农业大学学报,2003255: 544-547.]

[15] Zhai JinliangHe YanDeng Wei. Content of total Ntotal P and organic matters and their correlation in soils of Xianghai floodplain wetland [J]. Research of Environment Sciences2001146:40-43.[翟金良,何岩,邓伟.向海洪泛湿地土壤全氮、全磷和有机质含量及相关性分析[J]. 环境科学研究,2001146: 40-43.]

[16] Liu RuhaiWang QichaoWang Yanet al. Changes of Hg and organic matter contents after reclamation of calamagrostis angustifolia wetland [J]. Journal of Agro-Environment Science 2003226:647-650.[刘汝海,王起超,王艳,等.小叶章湿地开垦后汞和有机质的动态变化[J]. 农业环境科学学报,2003226: 647-650.]

[17] Zhang WenjuWu JinshuiXiao Heaiet al. Profile distribution characteristics and accumulation of organin carbon in typical wetlands in Sanjiang plain [J]. Advances in Earth Science2004194: 558-563.[张文菊,吴金水,肖和艾,等. 三江平原典型湿地剖面有机碳分布特征与积累现状[J]. 地球科学进展,2004194: 558-563.]

[18] Chi ChuandeXu XinwangWu Xinminet al. Storage and distribution of soil organic carbon in Shengjin lake wetlandAnhuiChina [J]. Earth and Environment2006344: 59-64.[迟传德,许信旺,吴新民,等. 安徽省升金湖湿地土壤有机碳储存及分布[J]. 地球与环境,2006344: 59-64.]

[19] Tian YingbingXiong MingbiaoXiong Xiaoshanet al. The organic carbon distribution and flow in wetland soil plant system in Ruoergai plateau [J]. Acta Phytoecologica Sinica2003274: 490-495.[田应兵,熊明彪,熊晓山,等. 若尔盖高原湿地土壤植物系统有机碳的分布与流动[J]. 植物生态学报,2003274: 490-495.]

[20] Tian YingbingXiong MingbiaoSong Guangyu. Study on change of soil organic matter in the process of wetland ecological restoration in Ruoergai plateau [J]. Wetland Science200422: 88-93.[田应兵,熊明彪,宋光煜. 若尔盖高原湿地生态恢复过程中土壤有机质的变化研究[J]. 湿地科学,200422: 88-93.]

[21] Lu Rukun. Chemical Analysis Methods of Agricultural Soil [M]. Beijing: China Agricultural Technology Press1999: 50-107.[鲁如坤. 土壤农业化学分析方法[M].北京:中国农业科技出版社,1999:50-107.]

[22] Andersena D CNelsonb S M. Flood pattern and weather determine Populus leaf litter breakdown and nitrogen dynamics on a cold desert flootplain [J]. Journal of Arid Environments 200664: 626-650.

[23] Duan XiaonanWang XiaokeOuyang Zhiyunet al. The biomass of Phragmites Australis and its influencing factors in WuLiangSuHai [J]. Acta Phytoecologica Sinica2004282: 246-251.[段晓男,王效科,欧阳志云,等. 乌梁素海野生芦苇群落生物量及影响因子分析[J]. 植物生态学报,2004282: 246-251.]

[24] Song ChangchunZhang JinboZhang Lihua. The variation of carbon stock in freshwater mire after nitrogen input [J]. Advances in Earth Science2005201: 1 249-1 255.[宋长春,张金波,张丽华.氮素输入影响下淡水湿地碳过程变化[J]. 地球科学进展,2005201:1 249-1 255.]

[25] Xiong HanfengLiao QingzhouWu Qingfenget al. Distribution soil nutrients and correlation analysis in lake Liangzi wetlands Hubei province [J]. Journal of Lake Sciences2005171: 93-96.[熊汉锋,廖勤周,吴庆丰,等. 湖北梁子湖湿地土壤养分的分布特征和相关性分析[J]. 湖泊科学,2005171: 93-96.]

[26] Zhang WenjuTong ChengliYang Gairenet al. Effects of water on mineralization of organic carbon in sediment from wetlands [J]. Acta Ecologica Sinica2005252: 249-253.[张文菊,童成立,杨钙仁,等. 水分对湿地沉积物有机碳矿化的影响[J]. 生态学报,2005252: 249-253.]

[27] Jobbagy E GJackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecological Applications2002102):423-436.

[28] Lü GuohongZhou LiZhao Xianliet al. Vertical distribution of soil organic carbon and total nitrogen in reed wetland [J]. Chinese Journal of Applied Ecology2006173):384-389.[吕国红,周莉,赵先丽,等. 芦苇湿地土壤有机碳和全氮含量的垂直分布特征[J]. 应用生态学报,2006173):384-389.]

[29] Beauchamp V BStromberg J CStutz J C. Flow regulation has minimal influence on mycorrhizal fungi of a semi-arid floodplain ecosystem despite changes in hydrologysoilsand vegetation [J]. Journal of Arid Environments200668: 188-205.

[30] Nilsson CReidy C ADynesius Met al. Fragmentation and flow regulation of the world’s large river systems [J]. Science2005308405-408.

[31] William L Graf. Downstream hydrologic and geomorphic effects of large dams on American rivers [J]. Geomorphology200679: 336-360.

[1] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[2] 李启权,王昌全,岳天祥,张文江,余勇. 基于神经网络模型的中国表层土壤有机质空间分布模拟方法[J]. 地球科学进展, 2012, 27(2): 175-184.
[3] 吴乐知,蔡祖聪. 中国土壤有机质含量变异性与空间尺度的关系[J]. 地球科学进展, 2006, 21(9): 965-972.
[4] 饶志国,朱照宇,陈发虎,张家武. 黄土有机质稳定碳同位素研究进展[J]. 地球科学进展, 2006, 21(1): 62-69.
[5] 陶贞;沈承德;易惟熙;高全洲. 土壤碳动力学同位素示踪研究进展[J]. 地球科学进展, 2004, 19(5): 793-801.
[6] 陈庆强,沈承德,易惟熙,彭少麟,李志安. 土壤碳循环研究进展[J]. 地球科学进展, 1998, 13(6): 555-563.
阅读次数
全文


摘要