地球科学进展 ›› 2008, Vol. 23 ›› Issue (6): 604 -612. doi: 10.11867/j.issn.1001-8166.2008.06.0604

综述与评述 上一篇    下一篇

深海热液喷口生物群落研究进展
王丽玲 1,2,林景星 3,胡建芳 1   
  1. 1.中国科学院广州地球化学研究所有机地球化学国家重点实验室,广东 广州 510640;2. 中国科学院研究生院,北京 100049;3. 中国地质科学院地质研究所现代生态环境地质研究中心,北京 100037
  • 收稿日期:2007-10-30 修回日期:2008-04-15 出版日期:2008-06-10
  • 通讯作者: 胡建芳(1973-),女,湖北黄梅人,副研究员,主要从事环境/生物地球化学研究工作. E-mail:hujf@gig.ac.cn
  • 基金资助:

    中国大洋协会项目“深海生物地球化学过程在地质体中的记录”(编号:DYXM-115-02-4-04)资助.

Recent Progress in Deep-sea Hydrothermal Vent Communities

Wang Liling 1,2,Lin Jingxing 3,Hu Jianfang 1   

  1. 1.State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 ,China; 2.Graduate University of Chinese Academy of Sciences, Beijing 100049,China; 3. Research Center of Contemporary Ecoenvironmental Geology, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Received:2007-10-30 Revised:2008-04-15 Online:2008-06-10 Published:2008-06-10

近年来深海热液喷口生物群落的研究取得了大量的成果。通过调查发现,除温度外,环境化学参数、地理位置、喷口类型、热液活动周期、生物可利用率等因素都对深海热液喷口生物群落分布产生影响。随着实验室热液微生物的分离、培养成功,一些新的属种及其特殊的生理特征被发现。分子生物学技术的发展,使得对于深海热液生物基因测序、基因功能的研究和表达,功能基因对微生物生理功能的调控作用,动物与微生物之间的共生关系,生物对极端环境的适应机制等问题的研究都能够进行。对于目前不能进行实验室分离培养的微生物,通过基因组分析,也能够了解其群落结构。不同的深海热液喷口,其病毒的类型、分布、丰度以及病毒对热液生态系统的影响是不同的。通过这些研究,科学家探讨了热液喷口环境中生物群落的能量合成与代谢途径的相关理论,并提出了生命有可能起源于热液喷口环境的假说。

The hydrothermal vent communities were actively studied in rescent years and significant progress has been obtained. The Iinvestigations of hydrothermal vent communities indicate that a number of factors could affect the composition of the community, including temperature, environmental chemistry, the site and type of vent, and the cycle of hydrothermal activities. In this period, representatives of several new taxa of microorganisms were identified based on the successful culture in the laboratory. The mechanism of gene in regulating the microbial physiological function, the symbiosis between animals and microbe, and the mechanism of physiological adaptations to extreme environment were established by genetic sequencing ofand functionalization of the hydrothermal organisms. Also, our knowledge on the microbial diversity and the community structure of the hydrothermal vent environment extended significantly by the macrogenetic surveys of un-cultured microbe in the hydrothermal vent communities. Deep-sea hydrothermal vents were also found to be inhabited by virus. The existence and significant ecological roles of chemoautotrophic and autotrophic microbe in the hydrothermal vent communities strongly support the hypothesis that the life emerges at the hydrothermal environment on the Earth.

中图分类号: 

[1] Reysenbach A LShock E. Merging genomes with geochemistry in hydrothermal ecosystems [J]. Science2002296:1 077-1 082.

[2] Wang ChunshengYang JunyiZhang Dongshenget al. A review on deep-sea hydrothermal vent communities [J]. Journal of Xiamen UniversityNature Science),2006452:141-147.[王春生,杨俊毅,张东声,等.深海热液生物群落研究综述[J].厦门大学学报:自然科学版,2006452:141-147.]

[3] Jollivet D. Specific and genetic diversity at deep-sea hydrothermal vents: An overview [J]. Biodiversity and Conservation19965:1 619-1 653.

[4] Boetius A. Lost city life [J].Science2005307:1 420-1 422. 

[5] Tarasov V GGebruk A VMironov A Net al. Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena [J]. Chemical Geology2005224:5-39.

[6] Li RihuiHou Guiqing. Reserach advances in deep-sea hydrothermal vent communities [J]. Marine Geology and Quaternary Geology1999194:103-108.[李日辉,侯贵卿.深海热液喷口群落的研究进展[J].海洋地质与第四纪地质,1999194:103-108.]

[7] Luther W GRozab F TRozan F Tet al. Chemical speciation drives hydrothermal vent ecology [J]. Nature2001410:813-816.

[8] Tunnlcllffe VFowler R C M. Influence of sea-floor spreading on the global hydrothermal vent fauna [J]. Nature1996379:531-533.

[9] Dover C L VHumphris S EFornari Det al. Biogeography and ecological setting of Indian Ocean hydrothermal vents [J]. Science2001294:818-823.

[10] Miroshnichenko M L. Thermophilic microbial communities of deep-sea hydrothermal vents [J]. Microbiology2004731:1-13.

[11] Xiao TianChen Duo. Microbial processes at deep-sea hydrothermal vents [J]. Marine Sciences19986:11-15.[肖天,陈騳.深海热液区的微生物作用[J].海洋科学,19986:11-15.]

[12] Miroshnichenko L MBonch-Osmolovskaya A E. Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents [J]. Extremophiles200610:85-96.

[13] Shan LiweiFeng GuiyingFan Sanhong. Progress in genome and methanogenesis of methanogens [J]. Journal of Microbiology2003236:42-46.[单丽伟,冯贵颖,范三红.产甲烷菌研究进展[J].微生物学杂志,2003236:42-46.]

[14] Liu Zhiheng. Modern Microbiology [M]. Beijing: Science Press2002:190.[刘志恒主编.现代微生物学[M].北京:科学出版社,2002:190.]

[15] Huang JufangZeng LepingZhou Hongbo. Influence of microorganisms in deep-sea hydrothermal vents on the behavior of mineral elements [J]. Ecology and Environment2006151:175-178.[黄菊芳,曾乐平,周洪波.深海热液喷口微生物对矿物元素行为的影响[J].生态环境,2006151:175-178.]

[16] Christopher E L. Bacterial Endosymbionts: Genome reduction in a hot spot [J]. Current Biology20071713: R508-R510.

[17] Satoshi NYoshihiro TShigeru Set al. Deep-sea ventε-proteobacterial genomes provide insights into emergence of pathogens [J]. PNAS200710429:12 146-12 150.

[18] Huber J AMark Welch D BMorrison H Get al. Microbial population structures in the deep marine biosphere [J]. Science2007318:97-100.

[19] Prieur D. Microbiology of deep-sea hydrothermal vents [J]. Marine biotechnology1997 15:242-244.

[20] Jeanthon C. Molecular ecology of hydrothermal vent microbial communities [J]. Antonie van Leeuwenhoek200077:117-133.

[21] Prieur DErauso GGeslin Cet al. Genetic elements of thermococcales [J]. Biochemical Society Transactions200432:184-187.

[22] Claire GMarc Le RMélusine Get al. Observation of virus-like particles in high temperature enrichment cultures from deep-sea hydrothermal vents [J]. Research in Microbiology2003154:303-307.

[23] Alice C OCurtis A S. High abundances of viruses in a deep-sea hydrothermal vent system indicates viral mediated microbial mortality [J]. Deep-sea Research Part200552:1 515-1 527.

[24] Fry I. Search for Life’s Beginnings [J]. Science2006312:1 140-1 141.

[25] Feng JunLi JianghaiNiu Xianglong. Research advances in hydrothermal vent microbial communities and its significance for geology [J]. Advances in Earth Science2005207:732-739.[冯军,李江海,牛向龙.现代海底热液微生物群落及其地质意义[J].地球科学进展,2005207:732-739.]

[26] Fu WeiZhou YongzhangYang Zhijunet al. Modern seafloor hydrothermal system and its scientific implications [J]. Advances in Earth Science2005201):81-88.[付伟,周永章,杨志军,等.现代海底热水活动的系统性研究及其科学意义[J].地球科学进展,2005201:81-88.]

[27] Little T S CVrijenhoek C R. Are hydrothermal vent animals living fossils? [J]. Trends in Ecology and Evolution20031811:582-588.

[28] Suzuki YInagaki FTakai Ket al. Microbial diversity in inactive chimney structures from deep-sea hydrothermal systems [J]. Microbial Ecology200447:186-196.

[29] Shen GuoyingShi Bingzhang. Marine Ecology [M]. Beijing: Science Press2002:353-356.[沈国英,施并章.海洋生态学[M].北京:科学出版社,2002:353-356.]

[30] Fisher R CGirguis P A . Proteomic snapshot of life at a vent [J]. Science2007315:198-199.

[31] Markert SArndt CFelbeck Het al. Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila [J]. Science2007315:247-250.

[32] Rau G. Hydrothermal vent clam and tube worm 13C/12C: Further evidence of nonphotosynthetic food sources [J]. Science1981213:338-340.

[33] Kashefi KLovley R D. Extending the upper temperature Limit for Life [J]. Science2003 301:934.

[34] Marteinsson V TBirrien J LKristjansson J Ket al. First isolation of thermophilic aerobic non-Ssporulating heterotrophic bacteria from deep-sea hydrothermal vents [J]. FEMS Microbiology Ecology199518:163-174.

[35] Chen XiulanZhang YuzhongGao Peiji. Progress in deep-sea microbiology [J]. Marine Sciences2004281:61-66.[陈秀兰,张玉忠,高培基.深海微生物研究进展[J].海洋科学,2004281:61-66.]

[36] Lollar B S. Life’s chemical kitchen [J]. Science2004304:972-973.

[37] Liang ZhanbeiShi YiYue Jin. Progress in methanotrophs [J]. Chinese Journal of Ecology2004235:198-205.[梁战备,史奕,岳进.甲烷氧化菌研究进展[J].生态学杂志,2004235:198-205.]

[38] Zhai ShikuiLi HuaimingYu Zenghuiet al. Advance in the investigation technology of modern seafloor hydrothermal activities [J]. Advances in Earth Science2007228:769-776.[翟世奎,李怀明,于增慧,等.现代海底热液活动调查研究技术进展[J].地球科学进展,2007228:769-776.]

[39] Ou MingongCui XiaolongLi Yiqinget al. Application of metagenomics in uncultured microorganism study [J]. Journal of Microbiology2007272:88-91.[欧敏功,崔晓龙,李一青,等.宏基因组学在未培养微生物研究中的应用[J].微生物学杂志,2007272:88-91.]

[1] 翁成郁. 巽他区域地质气候环境演变与陆地生物多样性形成与变化[J]. 地球科学进展, 2017, 32(11): 1163-1173.
[2] 王 军, 李红涛, 郭义强, 王平安. 煤矿复垦生物多样性保护与恢复研究进展[J]. 地球科学进展, 2016, 31(2): 126-136.
[3] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[4] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[5] 张均龙, 徐奎栋. 海山生物多样性研究进展与展望[J]. 地球科学进展, 2013, 28(11): 1209-1216.
[6] 何亚婷,齐玉春,董云社,彭琴,肖胜生,刘欣超. 外源氮输入对草地土壤微生物特性影响的研究进展[J]. 地球科学进展, 2010, 25(8): 877-885.
[7] 王丽,陈尚,任大川,柯淑云,李京梅,王栋. 基于条件价值法评估罗源湾海洋生物多样性维持服务价值[J]. 地球科学进展, 2010, 25(8): 886-892.
[8] 孙晓霞,孙松. 深海化能合成生态系统研究进展[J]. 地球科学进展, 2010, 25(5): 552-560.
[9] 魏玉利,王 鹏,赵美训,张传伦. 黑潮源区沉积物微生物多样性初步研究[J]. 地球科学进展, 2010, 25(2): 212-219.
[10] 张永民. 生物多样性的保育及可持续利用对策[J]. 地球科学进展, 2009, 24(6): 662-667.
[11] 李新荣,何明珠,贾荣亮. 黑河中下游荒漠区植物多样性分布对土壤水分变化的响应[J]. 地球科学进展, 2008, 23(7): 685-691.
[12] 周杨明,于秀波,于贵瑞. 自然资源和生态系统管理的生态系统方法:概念、原则与应用[J]. 地球科学进展, 2007, 22(2): 171-178.
[13] 孙松,孙晓霞. 国际海洋生物普查计划[J]. 地球科学进展, 2007, 22(10): 1081-1086.
[14] 王兆印,程东升,何易平,王洪铸. 西南山区河流阶梯—深潭系统的生态学作用[J]. 地球科学进展, 2006, 21(4): 409-416.
[15] 张志强. 地球难以承载人类重负——《生命行星报告2004》解读[J]. 地球科学进展, 2005, 20(4): 378-383.
阅读次数
全文


摘要