地球科学进展 ›› 2006, Vol. 21 ›› Issue (12): 1268 -1272. doi: 10.11867/j.issn.1001-8166.2006.12.1268

所属专题: 青藏高原研究——青藏科考虚拟专刊

研究论文 上一篇    下一篇

青藏高原地表能量通量的估计
季劲钧 1,2,黄玫 2   
  1. 1.中国科学院大气物理研究所,北京 100029;2.中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京 100101
  • 收稿日期:2006-10-11 修回日期:2006-11-02 出版日期:2006-12-15
  • 通讯作者: 季劲钧 E-mail:jijj@mail.iap.ac.cn
  • 基金资助:

    国家重点基础研究发展计划项目“中国陆地生态系统碳循环及其驱动机制研究”(编号:2002CB412500);国家自然科学基金重大项目“区域生态系统过程功能和结构对全球变化响应和适应的集成分析”(编号:30590384)资助.

The Estimation of the Surface Energy Fluxes over Tibetan Plateau

Ji Jinjun 1,2,Huang Mei 2   

  1. 1. Institute of Atmospheric Physics, CAS, Beijing 100029, China; 2.The Synthesis Research Center, Chinese Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • Received:2006-10-11 Revised:2006-11-02 Online:2006-12-15 Published:2006-12-15

利用1981—2000年逐日气候、植被和土壤基础资料作为输入,以大气—植被相互作用模式(AVIM2)计算了青藏高原0.1°分辨率的年平均地表能量通量的空间分布和季节变化特征。结果显示,年平均地表净辐射通量由高原西南部的100 W/m2减少到东部的70 W/m2左右。高原东南部的林区潜热通量强而感热通量弱,从高原东南向西、向北潜热通量逐渐减少,而感热通量逐渐增大。夏季这种趋势更加显著。冬季除东南部外,高原上广大地区地表能量通量都较低。

The daily climate data for 1981-2000, and the vegetation type data as well as the soil texture data were used as the inputs of Atmosphere-Vegetation Interaction Model (AVIM2) to simulate the spatial and seasonal surface energy fluxes of Tibetan Plateau with the resolution of 0.1°×0.1° grids. The results indicate that the annual mean surface net radiation flux decreases from 100 W/m2 over southwestern to 70 W/m2 of eastern plateau. The simulated latent heat flux in the forests of southeastern plateau is strong, whereas the sensible heat flux in that area is weak. From southeastern plateau to west and to north, the estimated latent heat flux decreases gradually while the sensible heat increased gradually. This tendency is more significant in summer. In winter, except for the southeastern area, the simulated surface energy fluxes over the broad area of plateau are low.

中图分类号: 

[1] Ye Duzheng, Luo Siwei, Zhu Baozhen. The structure of flow field in Tibet plateau and the heat balance in troposphere atmosphere[J]. Acta Meteorologica Sinica, 1957, 28 (2) :108-121.[叶笃正,罗四维,朱抱真.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报,1957, 28 (2):108-121.]

[2] Yeh T-C, Staff members of Academia Sinica. On the general circulation over the eastern Asia() [J]. Tellus, 1958,10:58-75.

[3] Ma Yaoming, Yao Tandong, Wang Jiemin. Experimental study of energy and water cycle in Tibetan Plateau—The progress introduction on the study of GAME/ Tibet and CAMP/ Tibet[J]. Plateau Meteorology,2006,25(2):344-351. [马耀明,姚檀栋,王介民.青藏高原能量和水循环试验研究——GAME/TibetCAMP/Tibet研究进展[J].高原气象,2006,25(2):344-351.]

[4] The Number One Work Group on Qinghai-Tibet Plateau Meteorological Scientific Experiment. The Atlas of Surface Radiation and Heat Balance (May-Augest, 1979) [M]. Beijing, Meteorological Press, 1984.[青藏高原气象科学实验第一课题组.青藏高原地面辐射平衡和热量平衡图集(19795/8)[M]. 北京:气象出版社,1984.]

[5] Ma Weiqiang, Ma Yaoming, Li Maoshan, et al. Seasonal variation on land surface energy budget and energy balance components in the Northern Tibetan Plateau [J]. Journal of Glaciology and Geocryology,2005,27(5): 674-679 .[马伟强, 马耀明,李茂善,.藏北高原地区地表辐射支出和能量平衡的季节变化[J].冰川冻土,2005,27(5): 674-679.]

[6] Yu Jinhua, Liu Jingmiao, Ding Yüguo. Annual and diurnal variations of surface fluxes in western Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2004,23(3):353-359.[余锦华,刘晶淼,丁裕国.青藏高原西部地表通量的年、日变化特征[J].高原气象, 2004,23(3):353-359.]

[7] Wei Li, Li Dongliang. Evaluation of NCEP/DOE surface flux data over Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2003,22(5): 478-487.[魏丽,李栋梁.青藏高原地区NCEP新再分析地面通量资料的检验[J].高原气象,2003,22(5): 478-487.]

[8] Li Guoping, Duan Tingyang, Gong Yuanfa, et al. A composite study of the surface fluxes on the Tibetan Plateau[J]. Acta Meteorologica Sinica,2002,60(4): 453-459. [李国平,段廷扬,巩远法,.青藏高原近地层通量特征的合成分析[J].气象学报,2002,60(4): 453-459.]

[9] Ma Yaoming, Zhong lei, Tian hui, et al. Study on the regional land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau Area[J]. Journal of Remote Sensing,2006,10(4): 542-547.[马耀明,仲雷, 田辉,.青藏高原非均匀地区区域能量通量研究[J].遥感学报,2006,10(4): 542-547.]

[10] Lü Jianhua, Ji Jinjun. A simulationstudy of atmosphere-vegetation interactions over the Tibetan Plateau, Part: Physical fluxes and parameters[J]. Chinese Journal of Atmospheric Sciences,2002,26 (1): 111-126. [吕建华,季劲钧.青藏高原大气植被相互作用的模拟试验:物理通量和参数[J].大气科学,2002,26(1):111-126.]

[11] Ji J. A climate-vegetation interaction model-simulating the physical and biological processes at the surface [J]. Journal of Biogeography,1995, 22:445-451.

[12] Ji Jinjun, Yu li. A simulationstudy of coupled feedback mechanism between physical and biogeochemical processes at the surface[J]. Chinese Journal of Atmospheric Sciences,1995,23 (4): 439-448.[季劲钧,余莉.地表面物理过程与生物地球化学过程耦合反馈机理的模拟研究[J].大气科学,1995,23 (4): 439-448.]

[13] Lu J, Ji J. A simulation and mechanism analysis of long-term variations at land surface over arid/semi-arid area in north China[J]. Journal of Geophysical Research,2006,111(d9):D09306, 1-19.

[14] Ji Jinjun, Liu Qing, Li Yinpeng. Features and simulation of surface water balance in semi-arid areas[J]. Acta Geographica Sinica,2004,59():964-971.[季劲钧,刘青,李银鹏.半干旱地区地表水平衡的特征和模拟[J].地理学报,2004,59():964-971.]

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 王俏懿,马耀明,王宾宾,左洪超. 喜马拉雅南北坡地区地表能量通量及蒸散发量对比分析[J]. 地球科学进展, 2021, 36(8): 810-825.
[6] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[7] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[8] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[9] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[10] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[11] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[12] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[13] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[14] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[15] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
阅读次数
全文


摘要