地球科学进展 ›› 2006, Vol. 21 ›› Issue (2): 138 -143. doi: 10.11867/j.issn.1001-8166.2006.02.0138

“土地利用/覆盖变化与综合减灾”专辑 上一篇    下一篇

土地利用变化对中国土壤碳储量变化的间接影响
周涛 1,2,史培军 1,3   
  1. 1.北京师范大学环境演变与自然灾害教育部重点实验室,北京 100875;2.北京师范大学资源学院资源科学研究所,北京 100875;3.北京师范大学资源学院灾害与公共安全研究所,北京 100875
  • 收稿日期:2005-12-20 修回日期:2006-01-11 出版日期:2006-02-15
  • 通讯作者: 周涛 E-mail:zhoutao@ires.cn
  • 基金资助:

    国家自然科学基金项目“基于遥感和过程模型反演中国土壤呼吸的关键参数”(编号:40401028);国家自然科学基金杰出青年基金项目“陆地表层人地系统相互作用机制的地理样带研究”(编号:40425008)资助.

Indirect Impacts of Land Use Change on Soil Organic Carbon Change in China

Zhou Tao 1,2,Shi Peijun 1,3   

  1. 1.Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education of China,Beijing Normal University, Beijing 100875,China; 2. Institute of Resources Science, College of Resources Science and Technology,Beijing Normal University, Beijing 100875, China;3. Institute of Disaster and Public Security, College of Resources Science and Technology, Beijing Normal University, Beijing 100875, China
  • Received:2005-12-20 Revised:2006-01-11 Online:2006-02-15 Published:2006-02-15

中国土壤有机碳储量及其在全球变暖背景下的变化趋势是影响全球碳循环的一个重要因素。土地利用变化对土壤有机碳储量既有直接影响,也有间接影响。一方面,土地利用变化直接改变了生态系统的类型,从而改变了生态系统的净初级生产力(NPP)及相应的土壤有机碳的输入。另一方面,土地利用变化潜在地改变了土壤的理化属性,从而改变了土壤呼吸对温度变化的敏感性系数(常用Q10表示)。在全球变暖背景下,Q10值的改变显著影响着土壤有机碳释放的强度。利用生态系统碳循环过程模型(CASA模型)反演了不同土地利用类型下的Q10值,并评价了土地利用类型的改变对土壤有机碳储量变化的间接影响。研究结果表明,林地与草地转换成耕地后将增大土壤呼吸的Q10值,此外,人类通过灌溉、氮肥的施用也能增大土壤呼吸的Q10值,从而使得全球变暖背景下土壤呼吸的碳通量有所增强。

Soil organic carbon (SOC) storage and its change trend in China is important  to the global carbon cycles under the background of global warming. Land use change has both direct and indirect influences on SOC storage. On the one hand, the land use change directly modifies the original ecosystem type and then makes the net primary productivity and soil carbon input change, which directly impacts SOC storage. On the other hand, land use change modifies some physical or chemical properties of soil and thus potentially impacts the value of temperature sensitivity of soil heterogeneous respiration (Q10). Under the situation of global warming, the changed Q10 will modify the feedback intensity of soil respiration and then indirectly impacts the soil organic carbon storage. In this study, a regional process-based carbon cycle model (CASA model) was used to estimate the Q10 values for the different land use types. Basing on the differences of Q10 among land use types, the indirect impacts of land use change on soil organic carbon storage was assessed. The results showed that the land use changes from grassland or forest to cropland will increase the value of Q10. Furthermore, the human activities, such as utilizing of irrigation and nitrogenous fertilizer will also increase the values of Q10. So, the land use change and human activities will potentially increase soil carbon releasing under the situation of global warming and then will indirectly impact soil organic carbon storage.

中图分类号: 

[1] Houghton J T, et al, eds. In Climate Change 2001: The Science of Climate Change[M]. New York: Cambridge University Press, 2001.

[2] IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: Implications for the Kyoto protocol[J]. Science, 1998, 280:1 393-1 394.

[3] Piao S, Fang J, Zhou L, et al. Changes in vegetation net primary productivity from 1982 to 1999 in China[J]. Global Biogeochemical Cycles, 2005, 19:GB2027, doi:10.1029/2004GB002274.

[4] Zhou Tao, Shi Peijun, Wang Shaoqiang. Impacts of climate change and human activities on soil carbon storage in China[J]. Acta Geographica Sinica, 2003, 58(5): 727-734.[周涛,史培军,王绍强. 气候变化及人类活动对中国土壤有机碳储量的影响[J]. 地理学报,2003, 58(5): 727-734.]

[5] Zhou Tao, Shi Peijun, Sun Rui, et al. The impacts of climate change on net ecosystem production in China[J]. Acta Geographica Sinica, 2004, 59(3): 357-365.[周涛,史培军,孙睿,. 气候变化对净生态系统生产力的影响[J].地理学报, 2004, 59(3): 357-365.]

[6] Luo Y, Wan S, Hui D, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature,2001, 413:622-625.

[7] Reichstein M, Rey A, Freibauer A, et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices[J]. Global Biogeochemical Cycles, 2003, 17(4): 1104, doi:10.1029/2003GB002035.

[8] Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming?[J]. Biogeochemistry, 2000, 48:21-51.

[9] Raich J W, Tufekcioglu A. Vegetation and soil respiration: Correlations and controls[J]. Biogeochemistry,2000, 48: 71-90.

[10] Lloyd J, Taylor J A. On the temperature dependence of soil respiration[J]. Function of Ecology, 1994, 8:315-323.

[11] Kirschbaum M U F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage[J]. Soilogical Biolistry Biochemistry,1995, 27:753-760.

[12] Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent or confound factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology,1998, 4(2):217-227.

[13] Liu X, Wan S, Su B, et al. Responses of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem[J]. Plant and Soil,2002, 240:213-223.

[14] Reichstein M, Tenhunen J D, Ourcival J M, et al. Ecosystem respiration in two Mediterranean evergreen Holm oak forests: Drought effects and decomposition dynamics[J]. Function of Ecology, 2002, 16:27-39.

[15] Hui D, Luo Y. Evaluation of soil CO2 production and transport in duke forest using a process-based modeling approach[J]. Global Biogeochemical Cycles, 2004,18:GB4029,doi:10.1029/ 2004GB002297.

[16] Taylor B R, Parkinson D, Parsons W F J. Nitrogen and lignin content as predictors of litter decay rates: A microcosm test[J]. Ecology,1989, 70:97-104.

[17] Liski J, Ilvesniemi H, Mäkelä A, et al. CO2 emissions from soil in response to climatic warming are overestimated-The decomposition of old soil organic matter is tolerant of temperature[J]. AMBIO,1999, 28:171-174.

[18] Wan S Q, Luo Y Q. Substrate regulation of soil respiration in a tallgrass prairie: Results of a clipping and shading experiment[J]. Global Biogeochemical Cycles,2003, 17(2):Art. No. 1054.

[19] Fang Jingyun, Liu Shaohui, Zhao Kun. Factors affecting soil respiration in reference with temperature's role in the global scale[J]. Chinese Geographical Science,1998, 8(3): 246-255.

[20] Thompson M V, Randerson J T, Malmstrom C M, et al. Change in net primary production and heterotrophic respiration: How much is necessary to sustain the terrestrial carbon sink?[J]. Global Biogeochemical Cycles,1996, 10(4):711-726.

[21] Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils[J]. Global Biogeochemical Cycles,1994, 8(3): 279-293.

[22] Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles,1993, 7(4):811-841.

[23] Field C B, Randerson J T, Malmstrom C M. Global net primary production: Combining ecology and remote sensing[J]. Remote Sensing of Environment,1995, 51: 74-88.

[24] GSDP: the global soil data products[EB/OL]. Oak Ridge, Tenn: International Geosphere-Biosphere Programme-Data and Information Services,2000[2004-03-16].httpwww.daac.ornl.gov.

[25] Qi Y, Xu M, Wu J. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: Nonlinearity begets surprises[J]. Ecological Modelling,2002, 153: 131-142.

[26] Yuste J C, Janssens I A, Carrara A, et al. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest[J]. Tree Physiology,2003, 23:1 263-1 270.

[27] Dörr H, Münnich K O. Annual variation in soil respiration in selected areas of the temperate zone[J]. Tellus,1987, 9B:114-121.

[1] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[2] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[3] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[4] 李侠祥, 刘昌新, 王芳, 郝志新. 中国投资对“一带一路”地区经济增长和碳排放强度的影响[J]. 地球科学进展, 2020, 35(6): 618-631.
[5] 刘凯,聂格格,张森. 中国 19512018年气温和降水的时空演变特征研究[J]. 地球科学进展, 2020, 35(11): 1113-1126.
[6] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[7] 郝志新,吴茂炜,张学珍,刘洋,郑景云. 过去千年中国年代和百年尺度冷暖阶段的干湿格局变化研究[J]. 地球科学进展, 2020, 35(1): 18-25.
[8] 蒋诗威,周鑫. 中国东南地区中世纪暖期和小冰期夏季风降水研究进展[J]. 地球科学进展, 2019, 34(7): 697-705.
[9] 高峰,赵雪雁,宋晓谕,王宝,王鹏龙,牛艺博,王伟军,黄春林. 面向 SDGs的美丽中国内涵与评价指标体系[J]. 地球科学进展, 2019, 34(3): 295-305.
[10] 张宸嘉, 方一平, 陈秀娟. 基于文献计量的国内可持续生计研究进展分析[J]. 地球科学进展, 2018, 33(9): 969-982.
[11] 陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.
[12] 王建, 车涛, 李震, 李弘毅, 郝晓华, 郑照军, 肖鹏峰, 李晓峰, 黄晓东, 钟歆玥, 戴礼云, 李红星, 柯长青, 李兰海. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-15.
[13] 吴绍洪, 高江波, 戴尔阜, 赵东升, 尹云鹤, 杨琳, 郑景云, 潘韬, 杨勤业. 中国陆地表层自然地域系统动态研究:思路与方案[J]. 地球科学进展, 2017, 32(6): 569-576.
[14] 陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445.
[15] 汪品先. 未雨绸缪——迎接大洋钻探学术新计划的制定[J]. 地球科学进展, 2017, 32(12): 1229-1235.
阅读次数
全文


摘要