地球科学进展 ›› 2005, Vol. 20 ›› Issue (12): 1306 -1313. doi: 10.11867/j.issn.1001-8166.2005.12.1306

综述与评述 上一篇    下一篇

海底深部生物圈微生物的研究进展
党宏月,宋林生,李铁刚,秦蕴珊   
  1. 中国科学院海洋研究所,山东 青岛 266071
  • 收稿日期:2004-11-02 修回日期:2005-07-18 出版日期:2005-12-25
  • 通讯作者: 党宏月
  • 基金资助:

    中国科学院知识创新工程重要方向项目“近100万年热带西太平洋古环境与深部生物圈演化”(编号:KZCX3-SW233)和“太平洋典型区域海底热液活动的环境效应研究”(编号:KZCX3-SW-223);国家自然科学基金项目“海洋细菌附着动态和机理的分子生物学研究”(编号:40476058)资助

PROGRESSES IN THE STUDIES OF SUBSEAFLOOR DEEP BIOSPHERE MICROORGANISMS

DANG Hongyue, SONG Linsheng, LI Tiegang, QIN Yunshan   

  1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
  • Received:2004-11-02 Revised:2005-07-18 Online:2005-12-25 Published:2005-12-25

由于极端环境条件和有限有机碳输入及长期埋藏和矿化,大洋海底深部沉积物一直被认为是一个巨大的荒漠,根本无法支持任何生命活动。DSDP(Deep Sea Drilling Project)和 ODP(Ocean Drilling Program)计划的实施对此提出了严峻的挑战。海底深部生物圈微生物区系在世界大洋沉积物和上部洋壳中的普遍存在是 ODP计划的重大发现之一。一系列的研究表明在海底深部沉积物中蕴藏着巨大的微生物生物量、生物和分子多样性以及复杂多样的生理生态功能过程。海底深部生物圈微生物正成为生命起源和进化、地球系统进化和演化、全球变化和海洋生物技术开发利用的研究焦点。

Because of extreme environmental conditions, limited organic carbon input and long term of burial and diagenesis, deep sea subsurface sediments were regarded as a huge ‘desert’ not being able to support any life-form. This was challenged by the DSDP and ODP deep drilling practices. One of the most significant findings of ODP is the discovery of the widely-distributed microbiological biosphere in the deeply buried sediments and upper oceanic crusts of the world oceans. A series of studies demonstrated that the subseafloor deep biosphere harbors a huge biomass, a great biological and molecular diversity, and a series of complicated and diverse physio-ecological functions and processes. The study of the deep subseafloor bioshphere microorganisms becomes the foci of the studies of life origin and evolution, earth system evolution and transformation, global climate change, and marine life resource biotechnology.

中图分类号: 

[1] Baross J A, Hoffman S E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life[J]. Origins Life, 1985, 15:327-345.
[2] Delaney J R, Kelley D S, Lilley M D, et al. The quantum event of oceanic crustal accretion: Impacts of diking at mid-ocean ridges[J]. Science, 1998, 281(5 374):222-230.
[3] Summit M, Baross J A. A novel microbial habitat in the mid-ocean ridge subseafloor[J]. Proceedings of the National Academy of Sciences of the United States of America,2001, 98(5):2 158-2 163.
[4] Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: The unseen majority[J]. Proceedings of the National Academy of Sciences of the United States of America,1998, 95(12):6 578-6 583.
[5] IPSC. Earth, Oceans and Life: Integrated Ocean Drilling Program, Initial Science Plan, 2003-2013[M]. Washington DC:IWG Supporting Office, 2001.
[6] Inagaki F, Takai K, Komatsu T, et al. Archaeology of Archaea: Geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment[J].Extremophiles,2001, 5(6):385-392.
[7] Wang Pinxian. Earth system science in China quo vadis?[J]. Advances in Earth Science, 2003, 18(6):837-851. [汪品先. 我国的地球系统科学研究向何处去[J]. 地球科学进展, 2003, 18(6):837-851.]
[8] Newman D K, Banfield J F. Geomicrobiology: How molecular-scale interactions underpin biogeochemical systems[J].Science,2002, 296(5 570):1 071-1 077.
[9] Science Committee of ODP-China. Chinese national science plan (2003-2013) for participation in IODP[J].Advances in Earth Science,2003, 18(5):662-665. [中国大洋钻探学术委员会. 中国加入综合大洋钻探(IODP)科学计划(2003—2013)[J]. 地球科学进展, 2003, 18(5):662-665.]
[10] D'Hondt S, Smith D C, Spivack A J. Exploration of the marine subsurface biosphere[J].JOIDES Journal,2002, 28(1):51-54.
[11] Zhu Yijie, Yu Kaiping, Zhou Zuyi. Scientific ocean drilling and deep biosphere[J].Marine Geology Leters,2003, 19(9):13-16,26. [朱毅杰,于开平,周祖翼. 科学大洋钻探与深部生物圈[J]. 海洋地质动态, 2003, 19(9):13-16,26.] 
[12] D'Hondt S, Rutherford S, Spivack A J. Metabolic activity of subsurface life in deep-sea sediments[J].Science,2002, 295(5 562):2 067-2 070.
[13] Parkes R J, Cragg B A, Wellsbury P. Recent studies on bacterial populations and processes in subseafloor sediments: A review[J]. Hydrogeological Journal,2000, 8(1):11-28.
[14] Parkes R J, Cragg B A, Bale S J, et al. Deep bacterial biosphere in Pacific Ocean sediments[J].Nature,1994, 371:410-413.
[15] Wellsbury P K, Goodman K, Barth T, et al. Deep marine biosphere fueled by increasing organic matter availability during burial and heating[J].Nature,1997, 388(6 642):573-576.
[16] Fisk M R, Giovannoni S J, Thorseth I H. Alteration of oceanic volcanic glass: Textural evidence of microbial activity[J].Science,1998, 281(5 379):978-980.
[17] Furnes H, Banerjee N R, Muehlenbachs K, et al. Early life recorded in archean pillow lavas[J].Science,2004, 304(5 670):578-581.
[18] Cowen J P, Giovannoni S J, Kenig F, et al. Fluids from aging ocean crust that support microbial life[J].Science,2003, 299(5 603):120-123.
[19] Kvenvolden K A. Potential effects of gas hydrate on human welfare[J].Proceedings of the National Academy of Sciences of the United States of America,1999, 96(7):3 420-3 426.
[20] Stevens T. Lithoautotrophy in the subsurface[J].FEMS Microbiological Reviews,1997, 20:327-337.
[21] Kasting J F, Siefert J L. Life and the evolution of Earth's atmosphere[J].Science,2002, 296(5 570):1 066-1 068.
[22] Deming J W, Baross J A. Deep-sea smokers: Windows to a subsurface biosphere?[J].Geochimica et Cosmochimica Acta,1993, 57:3 219-3 230.
[23] Takai K, Gamo T, Tsunogai U, et al. Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field[J].Extremophiles,2004, 8(4):269-282.
[24] Guerrero R. Crucial crises in biology: Life in the deep biosphere[J].International Microbiology,1998, 1(4):285-294.
[25] Hesselbo S P, Grocke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J].Nature,2000, 406:392-395.
[26] Benton M J, Twitchett R J. How to kill (almost) all life: The end-Permian extinction event[J].Trends in Ecology and Evolution,2003, 18(7):358-365.
[27] Lanoil B D, Sassen R, La Duc M T, et al. Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates[J].Applied and Environmental Microbiology,2001, 67(11):5 143-5 153.
[28] Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments[J].Nature,1999, 398(6 730):802-805.
[29] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J].Nature,2000, 407(6 804):623-626.
[30] Milkov A V. Global estimates of hydrate-bound gas in marine sediments: How much is really out there?[J].Earth-Science Reviews,2004, 66(3~4):7 663-7 668.
[31] Zhang C L, Lanoil B. Geomicrobiology and biogeochemistry of gas hydrates and cold seeps[J].Chemical Geology,2004, 205(3~4):187-194.
[32] Xu Xun. Marine biotechnology and sustainable development of marine life resources[J].Engineering Science,2000, 2(8):40-42. [徐洵. 海洋生物技术与资源的可持续利用[J]. 中国工程科学,2000,2(8):40-42.]
[33] Bartlett D H. Microbial adaptations to the psychrosphere/ piezosphere[J].The Journal of Molecular Microbiology and Biotechnology,1999, 1(1):93-100.
[34] Takai K, Komatsu T, Inagaki F, et al. Distribution of archaea in a black smoker chimney structure[J].Applied and Environmental Microbiology,2001, 67:3 618-3 629.
[35] Bale S J, Goodman K, Rochelle P A, et al. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea[J]. International Journal of Systematic Bacteriology,1997, 4:515-521.
[36] Kashefi K, Lovley D R. Extending the upper temperature limit for life[J].Science,2003, 301(5 635):934.
[37] Daughney C J, Rioux J P, Fortin D, et al. Laboratory investigation of the role of bacteria in the weathering of basalt near deep sea hydrothermal vents[J]. Geomicrobiological Journal,2004, 21(1):21-31.
[38] Summit M, Baross J A. Thermophilic subseafloor microorganisms from the 1996 North Gorda Ridge eruption[J].Deep-Sea Research II,1998, 45(12):2 751-2 766.
[39] Toffin L, Webster G, Weightman A J, et al. Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program[J].FEMS Microbiological Ecology,2004, 48(3):357-367.
[40] Mikucki J A, Liu Y, Delwiche M, et al. Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov[J].Applied and Environmental Microbiology, 2003, 69(6):3 311-3 316.
[41] Shlimon A G, Friedrich M W, Niemann H, et al. Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark)[J].International Journal of Systematic and Evolutionary Microbiology,2004, 54(3):759-763.
[42] Inagaki F, Suzuki M, Takai K, et al. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk[J]. Applied and Environmental Microbiology, 2003, 69(12):7 224-7 235.
[43] Kormas K A, Smith D C, Edgcomb V, et al. Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176)[J]. FEMS Microbiological Ecology, 2003, 45(2):115-125.
[44] Reed D W, Fujita Y, Delwiche M E, et al. Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin[J].Applied and Environmental Microbiology,2002, 68(8):3 759-3 770.
[45] Huber J A, Butterfield D A, Baross J A. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption[J]. FEMS Microbiological Ecology, 2003, 43(3):393-409.
[46] Huber J A, Butterfield D A, Baross J A. Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat[J]. Applied and Environmental Microbiology,2002, 68:1 585-1 594.
[47] Valentine D L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: A review[J].Antonie van Leeuwenhoek,2002, 81(1~4):271-282.
[48] Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J].Science,2002, 297(5 583):1 013-1 015.
[49] Lysnes K, Torsvik T, Thorseth I H, et al. Microbial populations in ocean floor basalt: Results from ODP Leg 187[J]. Proceedings of the Ocean Drilling Program, Scientific Results,2002, 187:1-27.[50] Thorseth I H, Torsvik T, Torsvik V, et al. Diversity of life in ocean floor basalt[J]. Earth and Planetary Science Letters, 2001, 194(1~2):31-37.
[51] Zeng Zhigang, Qin Yunshan. Contribution of ocean drilling to the study of seafloor hydrothermal activity[J]. Advances in Earth Science, 2003, 18(5):764-772. [曾志刚,秦蕴珊. 大洋钻探对海底热液活动研究的贡献[J]. 地球科学进展, 2003, 18(5):764-772.]

[1] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[2] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[3] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[4] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[5] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[6] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[7] 房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J]. 地球科学进展, 2014, 29(9): 1003-1010.
[8] 魏学琼, 叶瑜, 崔玉娟, 李蓓蓓, 袁存, 方修琦. 中国历史土地覆被变化重建研究进展[J]. 地球科学进展, 2014, 29(9): 1037-1045.
[9] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[10] 史培军, 孔锋, 叶谦, 汪明, 刘凯. 灾害风险科学发展与科技减灾[J]. 地球科学进展, 2014, 29(11): 1205-1211.
[11] 汪品先. 对地球系统科学的理解与误解——献给第三届地球系统科学大会[J]. 地球科学进展, 2014, 29(11): 1277-1279.
[12] WuGuoxiong,LinHai,ZouXiaolei,LiuBoqi,HeBian. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22.
[13] 许恒超,彭晓彤. 地球系统中生物成因硫化物矿物:类型、形成机制及其与生命起源的关系[J]. 地球科学进展, 2013, 28(2): 262-268.
[14] 周广胜,何奇瑾. 生态系统响应全球变化的陆地样带研究[J]. 地球科学进展, 2012, 27(5): 563-572.
[15] 张俊辉,夏敦胜,张英,刘宇航. 中国泥炭记录末次冰消期以来古气候研究进展[J]. 地球科学进展, 2012, 27(1): 42-51.
阅读次数
全文


摘要