地球科学进展 ›› 2005, Vol. 20 ›› Issue (8): 823 -832. doi: 10.11867/j.issn.1001-8166.2005.08.0823

所属专题: IODP研究

IODP研究 上一篇    下一篇

发震带试验(SEIZE)
王利,周祖翼   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2005-06-16 修回日期:2005-06-25 出版日期:2005-08-25
  • 通讯作者: 王利
  • 基金资助:

    科技基础性工作和社会公益研究专项“中国综合大洋钻探计划研究”(编号:2003DIB3J114);国家高技术研究发展计划“大洋钻探技术预研究”(编号2004AA615030);国家重点基础研究发展规划项目“中国边缘海的形成演化及重要资源的关键问题”(编号:G2000047604)和“暖池形成和演变的构造控制及其沉积证据”(编号:G2000078501)联合资助.

THE SEISMOGENIC ZONE EXPERIMENT(SEIZE)

WANG Li; ZHOU Zuyi   

  1. Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2005-06-16 Revised:2005-06-25 Online:2005-08-25 Published:2005-08-25

对发震带试验计划(SEIZE)以及南海(Nankai)海槽的发震带钻探计划(NanTroSEIZE)进行了综述。SEIZE作为大陆边缘计划(MARGINS)的重要研究内容和综合大洋钻探计划(IODP)的优先研究领域,重点对世界主要俯冲发震带进行研究。SEIZE的主要研究内容包括:①凸凹体的物理性质;②在地震周期里,应力、应变和孔隙流体成分随时间的变化;③在俯冲逆冲断层上,发震带上界和下界的确定;④引起海啸的发震带的特征;⑤大型逆冲带地震在物质转换过程中所起的作用。NanTroSEIZE将成为IODP第一个基于立管钻探的计划,也是科学大洋钻探历史上第一个分期实施的复合钻探计划;钻入发震带的复合钻探计划将最终验证关于发震带的各种假说。 

This paper gives a brief introduction to the Seimogenic Zone Experiment (SEIZE) and Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). As one of major initiatives of the NSF-MARGINS Program and Integrated Ocean Drilling Program (IODP), SEIZE focuses its research on major subduction seismogenic belts in the world. The main study areas of SEIZE include: (1)physical nature of asperity; (2)temporal relationships among stress, strain, and pore fluid pressure throughout the earthquake cycle; (3)controls on the updip and downdip limits of the seismogenic zone of subduction thrusts; (4)nature of tsunamigenic earthquake zones; (5)role of large thrust earthquake in mass flux. As the first riser drilling proposal, NanTroSEIZE was highly ranked. It is also the first complex drilling proposal in the history of scientific ocean drilling program. Drilling through the seismogenic zone based on this complex drilling proposal will provide evidences to validate many hypotheses of the seismogenic zone.

中图分类号: 

[1] IPSC. Earth, Ocean and life-Integrated Ocean Drilling Program, Initial Science Plan, 2003-2013 [M].Earth Sciences Division of NSFC translate.Shanghai: Tongji University Press,2003. [IODP科学规划委员会编著.IODP初始科学计划2003—2013 [M].国家自然科学基金委员会地球科学部等译.上海: 同济大学出版社, 2003.]
[2] Margins Steering Committee. The Seismogenic Zone Experiment (SEIZE): Science Plan [EB/OL]. http://www.geo.ua.edu/AMG/OldMargins/SEIZE_sci_plan.html#, 2004-10-10.
[3] Liu Xinyue , Wang Qing , Zhou Zuyi . IODP in Japan [J]. Advances in Earth Science, 2004, 19 (4):552-557. [刘新月, 王清, 周祖翼.日本的综合大洋钻探计划(IODP)[J]. 地球科学进展, 2004, 19 (4):552-557.]
[4] Lay T, Astiz L, Kanamori H, et al. Temporal variation of large intraplate earthquakes in coupled subduction Zone[J]. Physics of the Earth and Planetary Interiors, 1989, 54: 258-312.
[5] The Margins Office at Lamont-Doherty Earth Observatory of Columbia University. NSF MARGINS Program-Science Plan.2004 [M/OL]. http://www.margins.wustl.edu/Publications/SciencePlans/MARGINS_SciencePlans2004.pdf, 2004-10-02.
[6] Protti M, Mcnally K, Pacheco J, et al. The March 25, 1990 (M (W) =7.0 M (L) =6.8), earthquake at the entrance of the Nicoya Gulf, Costa-Rica-Its prior activity, foreshocks, and triggered seismicity [J]. Journal of Geophysical Research-Solid Earth, 1995, 100(B10): 20 345-20 358. 
[7] Bilek S L, Schwartz S Y, Deshon H R, et al. Control of seafloor roughness on earthquake rupture behavior[J].Geology,2003, 31: 455-458. 
[8] Ruff L J. Asperity Distributions and large Earthquake occurrence in subduction zones[J]. Tectonophysics, 1992, 211: 61-83. 
[9] McCaffrey R. Statistical significance of the seismic coupling coefficient[J]. Bulletin of the Seismological Society of America, 1997, 87:1 069-1 073. 
[10] Heki K, Miyazake S I, Tsuji H, et al. Silent fault slip following an interplate thrust earthquake at the Japan Trench[J]. Nature, 1997, .386: 595-598. 
[11] Hirose H, Hirahara K, Kimata F, et al. A slow thrust slip event following the two 1996 hyuganada earthquakes beneath the Bungo channel, Southwest Japan[J]. Geophysical Research Letters, 1999, 26: 3 237-3 240. 
[12] Ozawa S, Murakami M, Tada T, et al. Time-dependent inversion study of the slow thrust event in the Nankai Trough Subduction Zone, Southwestern Japan[J]. Journal of Geophysical Research-Solid Earth, 2001, 106: 787-802. 
[13] Burgmann R, Kogan M G, Levin V E, et al. Rapid Aseismic Moment Release Following the 5 December, 1997 Kronotsky, Kamchatka, Earthquake[J]. Geophysical Research Letters, 2001, 28: 213-234. 
[14] Dragert G, Wang K, James T S, et al. A silent slip event on the deeper Cascadia subduction interface[J]. Science, 2001, 292:1 225-1 528.
[15] Linde A T, Silver P G. Elevation changes and the great 1960 chilean earthquake-support for Aseismic Slip[J]. Geophusical Research Letters, 1989,16:1 305-1 308. 
[16] Geller R J, Jackson D D, Kagan Y Y, et al. Geoscience-earthquakes cannot be predicted[J]. Science, 1997,275:1 616-1 617.
[17] Masterlark T, DeMets C, Wang H F, et al. Homogeneous vs heterogeneous subduction zone models: Coseismic and postseismic deformation[J]. Geophysical Research Letters, 2001, 28: 4 047-4 050. 
[18] Hyndman R D, Wang K. Thermal constraints on the zone of major thrust earthquake failure—The Cascadia Subduction Zone[J]. Journal of Geophysical Research-Solid Earth, 1993, 98: 2 039-2 060.
[19] Hyndman R D, Wang K, Yamano M. Thermal constraints on the seismogenic portion of the southwestern Japan subduction thrust[J]. Journal of Geophysical Research-Solid Earth, 1995, 100: 15 373-15 392. 
[20] Fisher D, Byrne Tim. The character and distribution of mineralized fractures in the Kodiak formation, Alaska-implications for fluid-flow in an underthrust sequence[J]. Journal of Geophysical Research-Solid Earth and Planets, 1990, 95: 9 069-9 080.
[21] Moore J C, Saffer D. Updip limit of the seismogenic zone beneath the accretionary Prism of southwest Japan: An Effect of diagenetic to low-grade metamorphic processes and increasing effective stress[J].Geology, 2001, 29: 183-186. 
[22] Ujiie K. Evolution and kinematics of an ancient decollement zone, melange in the Shimanto accretionary complex of Okinawa Island, Ryukyu Arc[J]. Journal of Structural Geology, 2002, 24: 937-952. 
[23] Tsunami Earthquakes [EB/OL]. http://www.sciencemag.org/cgi/content/full/278/5338/598, 2005-02-12.
[24] Bilek S L, Lay, et al. Tsunami earthquakes possibly widespread manifestations of frictional conditional stability[J]. Geophysical Research Letters, 2002, 29: art. no.-1673.
[25] Hickman S, Sibson R, Bruhn R. Introduction to Special Section-Mechanical Involvement of Fluids in Faulting[J]. Journal of Geophysical Research-Solid Earth, 1995, 100: 12 831-12 840.
[26] Raleigh C B, Healy J H, Bredehoeft J D. Experiment in an earthquake control at Rangely, Colorado[J]. Science, 1976,191:1 230-1 237.
[27] Johnson P A, Mcevilly T V. Parkfield seismicity-fluid-driven[J]. Journal of Geophysical Research-Solid Earth, 1995,100:12 937-12 950. 
[28] Hubbert M K, Rubey M K, Rubey W W. Role of fluid pressure in the mechanics of overthrust faulting I: Mechanics of fluid-filled porous solids and its application to overthrust Faulting[J]. GSA Bulletin, 1959, 70: 115-166. 
[29] Davis D, Suppe J, Dahlen F A. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges[J]. Journal of Geophysical Research, 1983, 88: 1 153-1 172.
[30] Scholz C H. Earthquakes and friction laws[J]. Nature, 1998, 391: 37-42.
[31] Saffer D M, Bekins B A. Hydrologic Controls on the Morphology and Mechanics of Accretionary Wedges[J]. Geology, 2002, 30: 271-274. 
[32] Revil A, Cathles L M. Fluid Transport by Solitary Waves Along Growing Faults-A Field Example from the South Eugene Island Basin, Gulf of Mexico[J]. Earth and Planetary Science Letters, 2002, 202(2): 321-335.
[33] Song Haibin, Matsuba Y O, Kuramot S. A summary of gas hydrate researches in adjacent sea regions around Japan especially the Nankai Trough[J]. Progress in Geophysics, 2001, 16(2): 88-98. [宋海斌,松林修,仓本真一.日本Nankai海槽天然气水合物研究现状[J].地球物理学进展,2001, 16(2): 88-98.][34] Xu Jiren, Zhao Zhixin, Kono Y, et al. Regional characteristics of stress field and its dynamics in and around the Nankai trough, Japan[J]. Chinese Journal of Geophysics, 2003, 46: 488-495. [徐纪人,赵志新,河野芳辉,等.日本南海海槽地震区域应力场及其板块构造动力学特征[J].地球物理学报, 2003, 46: 488-495.]
[35] Gaku Kimura, Harold Tobin, the NanTroSEIZE Working Group. NanTroSEIZE: The Nankai Trough seismogenic zone experiment Complex Drilling Project [EB/OL]. IODP Complex Drilling Project (CDP) proposal (603). http://www.ees.nmt.edu/NanTroSEIZE/603-CDP-REV3_pub.pdf, 2004-12-07.

[1] 陈国松, 孟元林, 郇金来, 肖丽华, 冯丹. 含油气盆地碎屑岩储层异常高孔、渗带成因机制研究进展[J]. 地球科学进展, 2021, 36(9): 922-936.
[2] 李荣西, 毛景文, 赵帮胜, 陈宝赟, 刘淑文. 烃类流体在 MVT型铅锌矿成矿中角色与作用:研究进展与展望[J]. 地球科学进展, 2021, 36(4): 335-345.
[3] 张晓智, 周怀阳, 钱生平. 俯冲带岩浆弧安山岩的成因研究进展[J]. 地球科学进展, 2021, 36(3): 288-306.
[4] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[5] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[6] 林间, 徐敏, 周志远, 王月. 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12): 1253-1266.
[7] 王九一, 刘成林. 石盐流体包裹体中古嗜盐菌的研究进展[J]. 地球科学进展, 2016, 31(12): 1220-1227.
[8] 毛克宇. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析[J]. 地球科学进展, 2016, 31(10): 1056-1066.
[9] 杨婧, 王金荣, 张旗, 陈万峰, 潘振杰, 焦守涛, 王淑华. 弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比[J]. 地球科学进展, 2016, 31(1): 66-77.
[10] 王水龙, 尚林波, 毕献武, 樊文苓. 硅酸盐熔体和流体中金的性质及行为研究进展[J]. 地球科学进展, 2014, 29(6): 683-690.
[11] 夏阳,张立飞. 中源地震脱水脆变机制的岩石学研究进展[J]. 地球科学进展, 2013, 28(9): 997-1006.
[12] 曹青,赵靖舟,赵小会,张涛,王宝清. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7): 819-828.
[13] 高红灿,郑荣才,魏钦廉,陈发亮,陈 君,朱登锋,刘 云. 碎屑流与浊流的流体性质及沉积特征研究进展[J]. 地球科学进展, 2012, 27(8): 815-827.
[14] 刘显凡,赵甫峰,李春晖,楚亚婷,邓碧平,宋祥峰,张民. 深部过程中地幔流体现实微观踪迹的实验证据[J]. 地球科学进展, 2012, 27(10): 1161-1166.
[15] 朱俊江. 哥斯达黎加地震起源计划——IODP 334航次介绍[J]. 地球科学进展, 2011, 26(12): 1300-1305.
阅读次数
全文


摘要