地球科学进展 ›› 2005, Vol. 20 ›› Issue (7): 772 -777. doi: 10.11867/j.issn.1001-8166.2005.07.0772

生态学研究 上一篇    下一篇

基于反射率的太湖典型湖区溶解性有机碳的反演
张运林 1, 2,黄群芳 3,马荣华 1,陈伟民 1   
  1. 1.中国科学院南京地理与湖泊研究所,江苏 南京 210008;
    2.中国科学院研究生院,北京 100039;
    3.南京大学城市与资源学系,江苏 南京 210093
  • 收稿日期:2004-11-18 修回日期:2005-03-28 出版日期:2005-07-25
  • 通讯作者: 张运林
  • 基金资助:

    中国科学院知识创新工程重大项目“长江中下游地区湖泊富营养化的发生机制与控制对策研究”(编号:KZCX1-SW-12);江苏省自然科学基金项目“东太湖湖底水生植被对水体叶绿素遥感的影响研究”(编号:BK2004422)资助.

RETRIEVING OF DISSOLVED ORGANIC CARBON BASED ON IRRADIANCE REFLECTANCE IN TYPICAI LAKE ZONES OF LAKE TAIHU

ZHANG Yunlin 1; 2;HUANG Qunfang 3;MA Rong-hua 1;CHEN Weimin 1   

  1. 1. Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    2. Graduate School of the Chinese Academy of Sciences, Beijing 100039, China; 
    3. Department of City and Resources, Nanjing University, Nanjing 210093, China
  • Received:2004-11-18 Revised:2005-03-28 Online:2005-07-25 Published:2005-07-25

2004年4月基于野外水下辐照度的测定及实验室溶解性有机碳(DOC)的分析,通过研究典型湖区水体中DOC浓度与反射率之间的关系,选择DOC浓度反演的最佳波段,建立了DOC浓度的遥感定量反演模型。结果表明,DOC浓度在6.60~17.17 mg/L(均值为9.99 mg/L,方差为2.48 mg/L)之间;反射率的峰值出现在560~590 nm;红光波段与绿光波段反射率的对数值能较好的估计DOC浓度,其中又以lg(R670/R530)与lg(DOC)相关程度最高,决定系数为0.82;DOC浓度反演的经验模型为:lg(DOC)=0.654(±0.012)lg\[R(670)/R(530)\]+1.007(±0.086)。对模型进行检验,最小误差为6.7%、最大误差为20.3%,平均误差为12.3%。

Underwater irradiance and irradiance reflectance in typical lake zones of Lake Taihu were measured using a Macam SR9910 scanning spectroradiometer in April 2004. Extensive water quality parameters such as Total Suspended Solids (TSS), Dissolved Organic Carbon (DOC) and chlorophyll a (Chl-a) were measured simultaneously with the spectral data. The features of the spectral irradiance reflectance of the lake waters are discussed. An optimum band combination is found and a local algorithm model for DOC concentration estimation is developed. The results show that DOC concentration ranges from 6.60 to 17.17 mg/L with an average of 9.99 mg/L. Most peaks of subsurface irradiance reflectance are recorded between 560 and 590 nm. The ratio of irradiance reflectance of red waveband to green waveband can be used to estimate DOC concentration satisfactorily. Determination coefficients between lg(R670/R530) and lg(DOC) is 0.82. The retrieving model of DOC concentration is: lg(DOC)=0.654( 0.012)lg\[R(670)/R(530)\]+1.007( 0.086). The maximal, minimal and average relative errors of model are 20.3%, 6.7% and 12.3%, respectively. This paper has demonstrated the potential of the method for deriving CDOM and DOC from measurements of irradiance reflectance in lake Taihu. The accuracy of the method needs to be improved if it is to be of practical use, and this will involve more and careful measurements.

中图分类号: 

[1] Zhang Yunlin, Qin Boqiang, Chen Weimin. Effects of increased UV-B radiation on aquatic ecosystem in lakes[J]. Advances in Earth Science, 2005, 20(1): 106-112. [张运林, 秦伯强, 陈伟民. 增强的UV-B对湖泊生态系统的影响研究[J]. 地球科学进展, 2005, 20(1): 106-112.]
[2] Qin Boqiang, Wu Qinglong, Gao Junfeng, et al. Water environmental issues in Taihu Lake of China: Problems causes and management[J]. Journal of Natural Resources, 2002, 17(2): 221-228. [秦伯强, 吴庆龙, 高俊峰, 等. 太湖地区的水资源与水环境:问题、原因与管理[J]. 自然资源学报, 2002, 17(2): 221-228.]
[3] Chen Chuqun, Shi Ping. Application of ocean color satellite remote sensing data for estimation of DOC concentration[J]. Acta Scientiae Ircumstantiae. 2001, 21(6): 715-719. [陈楚群, 施平. 应用水色卫星遥感技术估算珠江口海域溶解有机碳浓度[J]. 环境科学学报, 2001, 21(6): 715-719.]
[4] Chen Chuqun, Pan Zhilin, Shi Ping. Simulation of sea water reflectance and its application in retrieval of yellow substance by remote sensing data[J]. Journal of Tropical Oceanography, 2003, 22(5): 33-39. [陈楚群, 潘志林, 施平. 海水光谱模拟及其在黄色物质遥感反演中的应用[J]. 热带海洋学报, 2003, 22(5): 33-39.]
[5] Vertucci F A, Likens G E. Spectral reflectance and water quality of Adirondack mountain region lakes[J]. Limnology and Oceanography, 1989, 34(6): 1 656-1 672.
[6] Arenz R F, Lewis W M, Saunders J F. Determination of chlorophyll and dissolved organic carbon from reflectance data for Colorado reservoirs[J]. International Journal of Remote Sensing, 1996, 17(8): 1 547-1 566.
[7] Kallio K, Kutser T, Hannonen T, et al. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons[J]. The Science of the Total Environment, 2001, 268: 59-77.
[8] Pierson D C, Str mbeck N. Estimation of radiance reflectance and the concentrations of optically active substances in Lake Malaren, Sweden, based on direct and inverse solutions of a simple model[J]. The Science of the Total Environment, 2001, 268: 171-188.
[9] Bowers D G, Evans D, Thomas D N, et al. Interpreting the color of an estuary[J]. Estuarine, Coastal and Shelf Science, 2004, 59(1): 13-20.
[10] Kutser T, Pierson D C, Kallio KY, et al. Mapping lake CDOM by satellite remote sensing[J]. Remote Sensing of Environment, 2005, 94(4): 535-540.[11] Zhang Yunlin, Qin Boqiang, Chen Weimin, et al. Analysis on distribution and variation of beam attenuation coefficient of Taihu Lake's water[J]. Advance in Water Science, 2003, 14(4): 447-453. [张运林,秦伯强,陈伟民,等. 太湖水体光学衰减系数的分布及变化特征[J]. 水科学进展, 2003, 14(4): 447-453.]
[12] Schubert H, Sagert S, Forster R M. Evaluation of the different levels of variability in the underwater light field of a shallow estuary[J]. Helgoland Marine Research, 2001, 55(1): 12-22.
[13] Kirk J T O. Light and Photosynthesis in Aquatic Ecosystem[M]. Cambridge: Cambridge University Press, 1994.
[14] Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domain[J]. Limnology and Oceanography, 1981, 26(1): 43-53.
[15] Keith D J, Yoder J A, Freeman S A. Spatial and temporal distribution of coloured dissolved organic matter (CDOM) in Narragansett bay, Rhode Island: Implications for phytoplankton in coastal waters[J]. Estuarine, Coastal and Shelf Science, 2002, 55(5): 705-717.
[16] Tassan S. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters[J]. Applied Optics, 1994, 33(24): 2 369-2 378.
[17] Gons H J, Ebert J, Kromkamp J. Optical teledetection of the vertical attenuation coefficient for downward quantum irradiance of photosynthetically available radiation in turbid inland waters[J]. Aquatic Ecology, 1998, 31(3): 299-311.
[18] Gons H J. Optical teledetection of chlorophyll a in turbid inland waters[J]. Environmental Science & Technology, 1999, 33(7): 1 127-1 133.
[19] Zhang Yunlin, Qin Boqiang, Chen Weimin, et al. Experimental study of underwater light field and affect mechanism[J]. Progress in Natural Science, 2004, 14(7): 792-798. [张运林, 秦伯强, 陈伟民,等. 水下光场及其影响机制的水槽模拟实验研究[J]. 自然科学进展, 2004, 14(7): 792-798.]
[20] Bowers D G, Harker G E L, Smith P S D, et al. Optical properties of a region of freshwater influence (the Clyde Sea)[J]. Estuarine, Coastal and Shelf Science, 2000, 50(5): 717-726.
[21] Hirtle H, Rencz A. The relation between spectral reflectance and dissolved organic carbon in lake water: Kejimkujik National Park, Nova Scotia, Canada[J]. International Journal of Remote Sensing, 2003, 24(5): 953-967.

[1] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[2] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[3] 孙小荣,张书毕,吴继忠,郑南山. 基于 SNRGPS-IR技术机理分析[J]. 地球科学进展, 2019, 34(2): 156-163.
[4] 郭恺. 基于局部层析的 TTI各向异性参数初始建模方法研究[J]. 地球科学进展, 2019, 34(10): 1060-1068.
[5] 冯旭亮. 空间域密度界面反演方法及其进展[J]. 地球科学进展, 2019, 34(1): 57-71.
[6] 李爱农, 边金虎, 尹高飞, 靳华安, 赵伟, 张正健, 南希, 雷光斌. 山地典型生态参量遥感反演建模及其时空表征能力研究[J]. 地球科学进展, 2018, 33(2): 141-151.
[7] 居为民, 方红亮, 田向军, 江飞, 占文凤, 刘洋, 王正兴, 何剑锋, 王绍强, 彭书时, 张永光, 周艳莲, 贾炳浩, 杨东旭, 符瑜, 李荣, 柳竟先, 王海鲲, 李贵才, 陈卓奇. 基于多源卫星遥感的高分辨率全球碳同化系统研究[J]. 地球科学进展, 2016, 31(11): 1105-1110.
[8] 于文涛, 李静, 柳钦火, 曾也鲁, 尹高飞, 赵静, 徐保东. 中国地表覆盖异质性参数提取与分析[J]. 地球科学进展, 2016, 31(10): 1067-1077.
[9] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[10] 韩成鸣, 李耀东, 史小康. 云分析预报方法研究进展[J]. 地球科学进展, 2015, 30(4): 505-516.
[11] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[12] 李大治, 晋锐, 车涛, 高莹, 耶楠, 王树果. 联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究 *[J]. 地球科学进展, 2014, 29(2): 295-305.
[13] 王振宇, 杨勤勇, 李振春, 胡光辉, 尹力, 王杰. 近地表速度建模研究现状及发展趋势[J]. 地球科学进展, 2014, 29(10): 1138-1148.
[14] 刘旸,蔡波,班显秀,袁健,耿树江,赵姝慧,李帅彬. AIRS红外高光谱资料反演大气水汽廓线研究进展[J]. 地球科学进展, 2013, 28(8): 890-896.
[15] 解国爱,王宗秀,张庆龙,吕赟珊,邹旭. 江西永平铜矿区古构造应力场与构造演化[J]. 地球科学进展, 2013, 28(5): 608-617.
阅读次数
全文


摘要