地球科学进展 ›› 2005, Vol. 20 ›› Issue (10): 1116 -1126. doi: 10.11867/j.issn.1001-8166.2005.10.1116

综述与评述 上一篇    下一篇

热红外遥感岩矿信息提取研究进展
闫柏琨 1,2,3,王润生 3,4,甘甫平 4,刘圣伟 4,杨苏明 4,陈伟涛 3,4,唐攀科 1,2,3   
  1. 1.中国地质大学地质过程与矿产资源国家重点实验室,北京 100083;2.中国地质大学岩石圈构造、深部过程及探测技术教育部重点实验室,北京 100083;
    3.中国地质大学地球科学与资源学院,北京 100083;
    4.中国国土资源航空物探遥感中心,北京 100083
  • 收稿日期:2005-03-11 修回日期:2005-07-01 出版日期:2005-10-25
  • 通讯作者: 闫柏琨
  • 基金资助:

    国家自然科学基金项目“高光谱遥感影像成因矿物学信息定量提取研究”(编号:40201034);国土资源部百名优秀青年科技人才计划项目“国土资源部岩矿遥感信息定量化技术研究”(编号:2003048)资助.

PROGRESSES IN MINERALS INFORMATION EXTRACTION USING THERMAL REMOTE SENSING

YAN Bokun 1,2,3;WANG Runsheng 3;4;GAN Fuping 4;LIU Shengwei 4;YANG Suming 4;CHEN Weitao 3;4;TANG Panke 1,2,3   

  1. 1.State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences,Beijing 100083,China;
    2.Key Laboratory of Lithosphere Tectonics and Lithoprobing Technology of Ministry of Education,China University of Geosciences, Beijing 100083, China;
    3.School of the Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China;
    4.China Aero-Geophysical Survey & Remote Sensing Center for Land and Resources,Beijing 100083,China
  • Received:2005-03-11 Revised:2005-07-01 Online:2005-10-25 Published:2005-10-25

热红外遥感是岩矿遥感信息领域起步未久,且表现出巨大潜力的技术手段。从岩矿发射率光谱、数据处理及信息提取技术方法、应用研究3个方面对热红外遥感在岩矿信息提取中的研究现状进行了全面总结,在此基础上对其发展难点及趋势进行了讨论,并对其在地质领域的应用前景进行了评估。在数据获取方面,高光谱分辨率数据是应用要求与发展趋势;数据处理方面,对大气影响进行定量评价并力求高精度的大气校正方法是难点与不可回避的问题,大气是影响数据质量的最大因素。岩矿热红外遥感信息机理(矿物发射率光谱特征与机理、光谱混合行为、光谱变异因素)的定性研究取得了一定进展,定量化的研究是发展趋势;在地质领域,因为可以对矿物种类(包括不含水矿物)及含量进行高精度提取的突出优势,不仅在矿产勘探,而且在基础地质研究方面将发挥巨大作用。

Thermal remote sensing is a promising technique that develops for not a long time in remote sensing of minerals. The technique development is summarized comprehensively in terms of minerals emissivity spectra characteristic, data processing, information retrieval and application. On the basis of this summarization, the development difficulties are discussed and applications for geology are predicted. Obtaining hyperspectral data is development direction; Atmosphere is a dominating factor that affects data quality, and high precision atmosphere correction must be resolved. Quality research of emissivity spectra mechanism has gained some advances, and quantitative research is development direction. Because minerals class (include minerals containing no water) and contents are retrieved by the technique, it can be applied not only on mine exploration but also on basic geological research.

中图分类号: 

[1]Christensen P R, Bandfield J L, Hamilton V E. A thermal emission spectral library of rock-forming minerals[J]. Journal of Geophysical Research,2000,105(E4):9 735-9 739.
[2]Lyon R J P. Analysis of rock spectra by infrared emission(8~25μm) [J]. Economic Geology,1965,60:745-750.
[3]Gillespie A R. Spectral mixture analysis of multispectral thermal infrared images[J]. Remote Sensing of Environment,1992,42:137-145.
[4]Crown D A, Pieters C M. Spectral properties of plagioclase and pyroxene mixtures and the interpretation of lunar soil spectra[J]. Icarus,1987,72:492-506.
[5]Thomson J L, Salisbury J W. The mid-infrared reflectance of mineral mixtures(7~14μm) [J]. Remote Sensing of Environment,1993,45:1-13.
[6]Hamilton V E, Wyatt M B, Mcsween H Y. Analysis of terrestrial and Martian volcanic composition using thermal emission spectroscopy:2.Application to Martian surface spectral from the Mars global surveyor thermal emission spectrometer[J]. Journal of Geophysical Research,2001,106(E7):14 733-14 746.
[7]Christensen P R, Andeson D L, Chase S C, et al. Thermal emission spectrometer experiment: The Mars Observer Mission[J]. Journal of Geophysical Research,1992,97:7 719-7 734.
[8]Smith M D, Bandfield J L, Christensen P R, et al. Thermal Emission Imaging System(THEMIS) infrared observations of atmospheric dust and water ice cloud optical depth[J]. Journal of Geophysical Research,2003,108(E11):5 115-5 124.
[9]http://modis.gsfc.nasa.gov/
[10]刘闯, 葛成辉. 美国对地观测系统(EOS)中分辨率成像光谱仪(MODIS)遥感数据的特点与应用[J]. 遥感信息,2000,(3):45-48.
[11]Barnes W L, Pagano T S, Salomonson V V. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer(MODIS) on EOS-AMI[J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36:1 088-1 100.
[12]http://asterweb.jpl.nasa.gov/
[13]Abrams M. The advanced spaceborne thermal emission and reflection radiometer(ASTER): Data products for the high resolution imager on NASA's Terra platform[J]. International Journal of Remote Sensing,2000,21(5):847-859.
[14]Hackwell J A, Warren D W, Bongiovi R P, et al. LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing[J]. Imaging Spectrometry Ⅱ, SPIE,1996,2819:102-107.
[15]Kirkland L E, Herr K C, Keim E R, et al. First use of an airborne thermal infared hyperspectral scanner for compositional mapping[J]. Remote Sensing of Environment,2001,80:447-459.
[16]Hook S J, Myers J J, Thome K J. The MODIS/ASTER airborne simulator (MASTER)—A new instrument for earth studies[J]. Remote Sensing of Environment,2001,76:93-102.
[17]Kahle A B, Goetz A F H. Minerologic information from a new airborne thermal infrared multispectral scanner[J]. Science,1983,222:24-27.
[18]Coll C, Caselles V, Valor E. Validation of temperature-emissivity separation and split-window methods from TIMS data and ground measurements[J]. Remote Sensing of Environment,2003,85:232-242.
[19]Sabine C, Realmuto V J, Taranik J V. Quantitative estimation of granitoid composition from thermal infared multispectral scanner(TIMS) data, Desolation Wilderness, northern Sierra Nevada, California[J]. Journal of Geophysical Research,1994,99(B3):4 261-4 271.
[20]Hook S J, Karlstrom K E, Miller C F, et al. Mapping the Piute Mountains, California, with thermal infared multispectral scanner(TIMS) images[J]. Journal of Geophysical Rearch,1994,99(B8):15  605-15 622.
[21]Bandfield J L, Hamilton V E, Christensen P R. A global view of Martian surface composition from MGS-TES[J]. Science,2000,287:1 626-1 630.
[22]Hamilton V E, Christensen P R, McSween H Y, et al. Determinatin of Martian meteorite lithologies and mineralogies using vibrational spectroscopy[J]. Journal of Geophysical Rearch,1997,102(E11):25 593-26 603.
[23]Christensen P R, Bandfield J L, Clark R N, et al. Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water[J]. Journal of Geophysical Rearch,2000,105(E4):9 623-9 642.
[24]Christesen P R, Bandfield J L, Smith M D, et al. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data[J]. Journal of Geophysical Rearch,2000,105(E4):9 609-9 621.
[25]Christensen P R, Morris R V, Lane M D, et al. Global mapping of Martian hematite mineral deposits: Remnants of water-driven processes on early Mars[J]. Journal of Geophysical Rearch,2001,106(E10):23 873-23 885.
[26]Gaddis L R, Staid M I, Johnson J R, et al. Mineral mapping in Valles Marineris, Mars: A New Approach to Spectral Demixing of TES data[R/OL]. http://www.lpi.usra.edu/meetings/lpsc2003/pdf/1956.pdf,2003.
[27]Burt D M, Kirkland L E, Adams P M. Barite and Celestine Detection in the Thermal Infrared-Possible Application to Determination of Aqueous Environment on Mars[R/OL]. http://www.lpi.usra.edu/meetings/lpsc2004/pdf/2085.pdf,2004.
[28]Farrand W H, Gaddis L R. Analysis of MGS TES Data over Acidalia Planitia and Cydonia Mensae: Compositional Evidence for Hydrovolcanic Activity?[R/OL]. http://www.lpi.usra.edu/meetings/lpsc2003/pdf/1601.pdf,2003.
[29]Hapke B. Combined Theory of Reflectance and Emittance Spectroscopy[A]. In: Remote Geochemical Analysis: Elemental and Mineralogical Composition[C]. Cambridge: Cambridge University Press,1993.31-41.
[30]Hapke B. Theory of Reflectance and Emittance Spectroscopy[M].Cambridge: Cambridge University Press,1993.
[31]Anderson G P, Arreu L W. The MODTRAN 2/3 report & LOWTRAN 7 mode[R]. Prepared by Ontar Corporation for Phillips Laboratory, Geophysics Directorate,1996.
[32]Vermote E F, Tanré D, Deuzé J L, et al. Second simulation of the satellite signal in the solar spectrum, 6S: An overview[J]. IEEE Transaction on Geoscience and Remote Sensing,1997,35(3):675-686.
[33]Dozier J, Warren S G. Effect of viewing angle on the thermal infared brightness temperature of snow[J]. Water Resource Research,1982,18:1 424-1 434.
[34]Gutman G G. Global data on land surface parameters from NOAA AVHRR for use in numerical climate models[J].Journal of Climatic,1994,7:670-680.
[35]Wald A E, Salisbury J W. Thermal infrared direction emissivity of powdered quartz[J]. Journal of Geophysical Research,1995,100(B12):24 665-24 675.
[36]Moersch J E, Christensen P R. Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra[J]. Journal of Geophysical Research,1995,100(E4):7 465-7 477.
[37]Chandrasekhar S. Radiative Transfer[M]. Dover, New York, 1960.
[38]Spitzer W G, Kleinman D A. Infrared lattice bands of quartz[J]. Physical Review,1961,121(5):1 324-1 335.
[39]Lane M D. Midinfared optical constants of calcite and their relationship to partical size effects in thermal emission spectra of granular calcite[J]. Journal of Geophysical Research,1999,104(E6):14 099-14 108.
[40]Wenrich M L, Christensen P R. Optical constants of minerals derived from emission spectroscopy: Applicaion to quartz[J]. Journal of Geophysical Research,1996,101(B7):15 921-15 931.
[41]Moersch J E, Christensen P R. Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra[J]. Journal of Geophysical Research,1995,100(E4):7 465-7 477.
[42]Conel J. Infared emissivities of silicates: Experimental result and a cloudy atmosphere model of spectral emission from condensed particulate mediums[J]. Journal of Geophysical Research,1969,74(6):1 614-1 634.
[43]Hapke B. Bidirectional reflectance spectroscopy 1, Theory[J]. Journal of Geophysical Rearch,1981,86:3 039-3 054.
[44]Hapke B. Bidirectional reflectance spectroscopy, 3, Correction for macroscopic roughness[J]. Icarus,1984,59:41-59.
[45]Hapke B. Bidirectional reflectance spectroscopy, 4, The extinction coefficient and the opposition effect[J]. Icarus,1986,67:264-280.
[46]Copper B L, Salisbury J W, Killen R M. Midinfared spectral features of rocks and their powders[J]. Journal of Geophysical Rearch,2002,107(E4):1-19.
[47]Shkuratov Y, Starukhina L, Hffmann H. A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon[J]. Icarus,1999,137:235-246.
[48]Lane M D, Christensen P R. Thermal infared emission spectroscopy of anhydrous carbonates[J]. Journal of Geophysical Rearch,1997,102(E11):25 581-25 592.
[49]Hamilton V E. Thermal infared emission spectroscopy of the pyroxene mineral series[J]. Journal of Geophysical Rearch,2000,105(E4):9 701-9 716.[50]Michalski J R, Kraft M D, Diedrich T, et al. Thermal emission spectroscopy of the silica polymorphs and conciderations for remote sensing of Mars[J]. Geophysical Research Letters,2003,30(19):PLA2-1- PLA2-4.
[51]Hamilton V. Overview of TIR spectroscopy[EB/OL]. http://tes.asu.edu/TESworkshop/Hamilton1.pdf,2004.
[52]Salisbury J, Estes J. The effect of particle size and porosity on spectral contrast in the mid-infared[J]. Icarus,1985,64:586-588.
[53]Salisbury J, Wald A. The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals[J]. Icarus,1992,96:121-128.
[54]Salisbury J, Hapke B, Estes J. Usefulness of weak band in midinfrared remote sensing of particulate planerary surfaces[J]. Journal of Geophysical Research,1987,92:702-710.
[55]Henderson B, Jakosky B, Randall C A. Monte Carlo model of polarized thermal emission from particulate planetary surfaces[J].Icarus,1992,99:51-62.
[56]Kirkland L E, Herr K C, Adams P M. Infrared stealthy surfaces: Why TES and TEMIS may miss some substantial mineral deposits on Mars and implications for remote sensing of planetary surfaces[J]. Journal of Geophysics Research,2003,108(E12):5 137-5 151.
[57]Xu Xiru, Liu Qinhuo, Chen Jiayi. The remote sensing of land surface temperature[J]. Acta Scientiarum Naturalium Universities Pekinensis,1998,34(2~3):248-253.[徐希孺, 柳钦火, 陈家宜. 遥感陆面温度[J]. 北京大学学报(自然科学版),1998,34(2~3):248-253.]
[58]Coll C, Caselles V, Rubio E. Temperature and emissivity separation from calibrated data of the digital airborne imaging spectrometer[J]. Remote Sensing of Environment,2000,76:250-259.
[59]Bandfield J L, Christensen P R, Smith M D. Spectral dataset factor analysis and endmember recovery: Application to analysis of Martian atmospheric particulates[J]. Journal of Geophysical Research,2000,105(E4):9 573-9 587.
[60]Li Z L, Becker F, Stoll M P. Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images[J]. Remote Sensing of Environment,1999,69:197-214.
[61]Becker F, Li Z L. Temperature-independent spectral indices in thermal infrared bands[J]. Remote Sensing of Environment,1990,32:17-33.
[62]Kahle A B, Madura D P, Soha J M. Middle infrared multispectral aircraft scanner data: Analysis for geological applications[J]. Applied Optics,1980,19:2 279-2 290.
[63]Gillespie A R. Lithologic Mapping of Silicate Rocks Using TIMS, in The TIMS Data Users' Workshop[Z]. Pasadena, CA:Jet Propulsion Laboratory,JPL Publication,1985.86-38.
[64]Li Z L, Becker F, Stoll M P. Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images[J]. Remote Sensing of Environment,1999,69:197-214.
[65]Watson K. Spectral ratio method for measuring emissivity[J]. Remote Sensing of Environment,1992,42:113-116.
[66]Hook S J, Gabell A R, Green A A, et al. A comparison of techniques for extracting emissivity information from thermal infrared data for geological studies[J]. Remote Sensing of Environment,1992,42:123-135.
[67]Chen Shupeng, Tong Qingxi, Guo Huadong. Study on Mechanism of Remote Sensing Information[M]. Beijing: Science Press,1998.190-192.[陈述彭, 童庆禧, 郭华东. 遥感信息机理研究[M]. 北京:科学出版社,1998.190-192.]
[68]Kealy P S, Gabell A R. Estimation of emissivity and temperature using alpha coeffients[A]. In :Proceedings of the Second TIMS Workshop[C]. Pasadena, CA:Jet Propulsion Laboratory, JPL Publication,1990.90-55.
[69]Liu Zhiwu, Dang Anrong, Lei Zhidong, et al. A retrieval model of surface temperature with ASTER data and application study[J]. Progress in Geography Science,2003,22(5):507-514.[刘志武, 党安荣, 雷志栋,等. 利用ASTER遥感数据反演陆面温度算法及应用研究[J]. 地理科学进展,2003,22(5):507-514.]
[70]Watson K. Two-temperature method for measuring emissivity[J]. Remote Sensing of Environment,1992,42:117-121.
[71]Wan Z, Li Z L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35:980-996.
[72]Gillespie A R, Rokugawa S, Matsunaga T, et al. A temperature and emissivity saparation algorithm for Advanced Spaceborne Thermal Emission and Reflectance Radiometer(ASTER) images[J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36:1 113-1 126.
[73]Barducci A, Pippi I. Temperature and emissivity retrieval from remotely sensed images using the "grey body emissivity" method[J]. IEEE Transactions on Geoscience and Remote Sensing,1996,34:681-695.
[74]Gillespie A R, Rokugawa S, Hook S J, et al. Temperature/Emissivity Separation Algorithm Theoretical Basis Document, Version-2.4[R/OL]. http://asterweb.jpl.nasa.gov/,2004.
[75]Zhang Xia, Zhang Bing, Zheng Lanfen, et al. Study on the retrieval of emissivity spectra from airborne thermal infrared data[J]. Journal of Infrared and Millimeter Waves,2000,19(5):361-365.[张霞, 张兵, 郑兰芬,等. 航空热红外多光谱数据的地物发射率谱信息提取模型及其应用研究[J]. 红外与毫米波学报,2000,19(5):361-365.]
[76]Ingram P M, Muse A H. Sensitivity of iterative spectrally smooth temperature/emissivity saparation to algorithmic assumptions and measurement noise[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(10):2 158-2 167.
[77]Yan Shouxun, Zhang Bing, Zhao Yongchao, et al. Summarizing the technical flow and main approaches for discrimination and mapping of rocks and minerals using hyperspectral remote sensing[J]. Remote Sensing Technology and Application,2004,19(1):52-63.[燕守勋,张兵,赵永超,等.高光谱遥感岩矿识别填图的技术流程与主要技术方法综述[J] 遥感技术与应用,2004,19(1):52-63.]
[78]Wyatt M B, Hamilton V E, Mcsween H Y, et al. Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 1.Determination of mineralogy, chemistry and classification strategies[J]. Journal of Geophysical Research,2001,106(E7):14 711-14 732.
[79]Ramsey M S, Christensen P R. Mineral abundance determination: Quantitative deconvolution of thermal emission spectra[J]. Journal of Geophysical Research,1998,103(B1):577-596.
[80]Rowan L C, Mars J C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) data[J]. Remote Sensing of Environment,2003,84:350-366.
[81]Vaughan R G, Calvin W M, Taranik J V. SEBASS hyperspectral thermal infrared data: Surface emissivity measurement and mineral mapping[J]. Remote Sensing of Environment,2003,85:48-63.
[82]Chou Xiaowei, Fu Bihong, Zheng Jianjing. Extraction and analysis of lithostratigraphic information from thermal infrared multispectral scanner imagery in arid region[J]. Chinese Science Bulletin,1994,39(18):1 693-1 695.[丑晓伟,傅碧宏,郑建京.干旱区热红外遥感多光谱遥感岩石地层信息提取与分析方法研究[J].科学通报,1994,39(18):1 693-1 695.]
[83]Jin Hao, Tong Qingxi, Zheng Lanfen, et al. The study of imaging spectrometer(MAIS) and thermal infrared multispectral scanner(TIMS) techniques for geological mapping[J]. Remote Sensing of Environment China,1994,9(2):138-144.[金浩,童庆喜,郑兰芬,等.成像光谱和热红外多光谱技术地质制图研究[J].环境遥感,1994,9(2):138-144.]
[84]Ninomiya Y, Fu Bihong. Extracting lithologic information from ASTER multispectral thermal infared data in the northeastern Pamirs[J]. Xinjiang Geology,2003,21(1):22-30.[二宫芳树,傅碧宏.帕米尔东北缘ASTER多光谱热红外遥感数据的岩性信息提取[J].新疆地质,2003,21(1):22-30.]
[85]Fu Bihong. Study and recent advances of remote sensing petrology[J]. Advances in Earth Science,1996,11(3):252-258.[傅碧宏.遥感岩石学的研究及其进展[J].地球科学进展,1996,11(3):252-258.]

[1] 张 勇, 戎志国, 闵 敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展, 2016, 31(2): 171-179.
[2] 姚云军,程洁,赵少华,贾坤,谢先红,孙亮. 基于热红外遥感的农田蒸散估算方法研究综述[J]. 地球科学进展, 2012, 27(12): 1308-1318.
阅读次数
全文


摘要