地球科学进展 ›› 2005, Vol. 20 ›› Issue (10): 1100 -1105. doi: 10.11867/j.issn.1001-8166.2005.10.1100

综述与评述 上一篇    下一篇

沉积盆地热化学硫酸盐还原作用评述
蔡春芳,李宏涛   
  1. 中国科学院地质与地球物理研究所,矿产资源研究重点实验室,北京 100029
  • 收稿日期:2004-12-14 修回日期:2005-06-20 出版日期:2005-10-25
  • 通讯作者: 蔡春芳
  • 基金资助:

    国家重点基础研究发展规划项目“多种能源矿产共存成藏(矿)机理与富集分布规律”(编号:2003CB214605);国家自然科学基金项目“沉积盆地富硫流体:成因、流动与硫酸盐还原作用”(编号:40173023);全国百篇优秀博士学位论文获得者科研启动专项资金联合资助.

THERMOCHEMICAL SULFATE REDUCTION IN SEDIMENTARY-BASINS:A REVIEW

CAI Chunfang ;LI Hongtao   

  1. Key Labortory of Mineral Resources, Institute of Geology and Geophysics,CAS, Beijing 100029, China
  • Received:2004-12-14 Revised:2005-06-20 Online:2005-10-25 Published:2005-10-25

川东天然气藏H2S 气体泄露而导致重大伤亡事故后,热化学硫酸盐还原作用(TSR)成为了国内研究的热点。在油气储层条件下,尽管甲烷是最稳定的烃类,但TSR被诱发后,因为甲烷浓度远高于其它烃类,水溶甲烷能与硫酸根离子反应产生H2S 气体。同时,发现在参与TSR反应的有机质、起始温度、硫同位素分馏效应等方面,实验模拟结果均与地质实例观察结果有较大的差异,可能与TSR反应的催化剂等方面认识不足有关。并认为,TSR成因的H2S或元素硫可以在晚成岩期合并入有机质中,形成新的有机含硫化合物。但在自然界中,这类化合物很少被鉴别出来。

Thermochemical sulfate reduction (TSR) has become a hot topic in China after a heavy casualty caused by H2S leakage from natural gas reservoir in East Sichuan Basin. It is frequently observed that methane gas anhydrite mineral H2S gas coexist in the same reservoir.Therefore, reaction of methane with solid anhydrite was proposed to generate H2S under petroleum reservoir conditions (Yue et al., 2003). However, methane is the most stable hydrocarbon under petroleum reservoir conditions. Simulation experiment has shown that it is expected to take 1017 years for 10% anhydrite solid to react with methane, the reaction being not significant in terms of geological time. However, our data show that there exists a positive correlative relationship between methane carbon isotope and the degree to sulfate reduction in the Triassic Jianlingjia Formation and Fexiangguan Formation, East Sichuan basin. The relationship suggests that aqueous sulfate may have reacted with dissolved methane and generated H2S. After TSR is initiated by heavier hydrocarbons, natural gas is expected to have much higher partial pressures of methane and much higher concentrations of dissolved methane than heavier hydrocarbons. Relative 12C-rich methane preferentially reacts with sulfate due to a kinetic fractionation, resulting in residual 13C-rich methane. Based on a great number of experimental simulation, we find that organic matter involved in TSR, TSR initiation temperature and sulfur isotope fractionation during TSR are significantly different from case studies, respectively. One possibility among others is some unknown catalysis involved in TSR. Many lines of evidence have shown that H2S or/and elemental sulfur generated during TSR have been incorporated into organic matter, but rare newly generated sulfur-containing organic compound has been separated and identified in nature.

中图分类号: 

[1] Seewald J S. Organic-inorganic interactions in petroleum-producing sedimentary basins [J]. Nature, 2003, 426: 327-333.
[2] Toland  W G. Oxidation of organic compounds with aqueous sulfate [J]. Journal of American Chemical Society, 1960, 82: 1 911-1 916.
[3] Orr  W  L. Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas[A]. In: Campos R, Goni J, eds. Advances in Organic Geochemistry 1975 [C]. Oxford: Pergamon Press, 1977. 571-597.
[4] Anisimov  L A. Conditions of abiogenic reduction of sulfates in oil- and gas-bearing basins [J]. Geochemistry International, 1978, 15: 6-70.
[5] Krouse  H R, Viau  C A, Eliuk  L  S, et al. Chemical and isotopic evidence of thermochemical sulfate reduction by light hydrocarbon gases in deep carbonate reservoirs [J]. Nature, 1988, 333: 415-419. 
[6] Worden R H, Smalley P C, Oxtoby N H. Gas souring by thermochemical sulfate reduction at 140℃[J]. AAPG Bulletin, 1995, 79: 854-863.
[7] Heydari E. The role of burial diagenesis in hydrocarbon destruction and H2S accumulation, Upper Jurassic Smackover Formation, Black Creek field, Mississippi[J]. American Association of Petroleum Geologists Bulletin, 1997, 81: 26-45.
[8] Dai Jinxing. Distribution, classification and origin of H2S-bearing natural gases in Chinese basins [J]. Acta Sedimentological Sinica, 1985, 3(4): 109-120.[戴金星. 中国含硫化氢的天然气分布特征、分类及其成因探讨 [J]. 沉积学报,1985, 3(4): 109-120.]
[9] Shen Ping, Xu Yongchang, Wang Jinjiang, et al. Sulfur isotopic compositions of hydrogen sulphides in natural gases and the sedimentary geochemical facies [J]. Acta Sedimentologica Sinica, 1997, 15(2):216-219.[沈平,徐永昌,王晋江,等.天然气硫化氢的硫同位素组成及沉积地球化学相[J]. 沉积学报, 1997, 15(2): 216-219.]
[10] Wang Yigang, Dou Lirong, Wen Yinchu, et al. Origin of Triassic Feixianguan Formation gas pools in Northeastern Sichuan Basin, China [J] .Geochimica, 2002, 21(6): 517-524. [王一刚,窦立荣,文应初,等. 四川盆地东北部高含硫气藏H2S的成因探讨 [J]. 地球化学, 2002, 31(6): 517-524.]
 [11] Dai Jinxing, Hu Jianyi, Jia Chengzao, et al. Suggestions for scientifically and safely exploration and developing H2S gas fields[J].Petroleum Exploration and Development,2004, 31(2): 1-4. [戴金星,胡建义,贾承造,等.科学安全勘探开发硫化氢天然气田的建议 [J]. 石油勘探与开发, 2004,31(2): 1-4.] [12] Yue Changtao, Li Shuyuan, Ding Kangle, et al. Simulation experiments on thermochemical sulfate reduction of methane with solid calcium sulfate [J]. Geochimica,2003, 32(6): 601-605. [岳长涛,李术元,丁康乐,等.甲烷和固态硫酸钙的热化学还原反应模拟实验初步研究[J]. 地球化学, 2003, 32(6): 601-605.]
[13] Kiyosu  Y, Krouse H R, Viau C A. Carbon isotope fractionation during oxidation of light hydrocarbon gases: Relevance to thermochemical sulfate reduction in gas reservoirs[A]. In: Orr W L, White C M, eds. Geochemistry of Sulfur in Fossil Fuels[C]. Washington  DC : American Chemical Society, 1990. 633-641.
[14] Machel H G. Bacterial and thermochemical sulfate reduction in diagenetic settings old and new insights [J]. Sedimentary Geology,2001, 140: 143-175. 
[15] Machel H G, Krouse R H, Riciputi L R, et al. Devonian Nisku Sourr Gas Play, Canada: A Unique Natural Laboratory for Study of Thermochemical sulfate reduction [A]. In: Vairavamurthy M A, Schoonen M A, eds. Geochemical Transformations of Sedimenatsr Sulfur. ACS Symposium Series 612 [C]. Washington DC: American Chemical Society, 1995. 439-454.
[16] Machel  H G, Krouse H R, Sassen R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction [J]. Applied Geochemistry,1995, 8: 373-389.
[17] Worden R H, Smalley P C, Cross M M. The influences of rock fabric and mineralogy upon thermochemical sulfate reduction: Khuff Formation, Abu Dhabi [J]. Journal of Sedimentary Research,2000, 70: 1 218-1 229.
[18] Cai Chunfang, Xie Z Y, Worden R H, et al. Methane-dominated thermochemical sulphate reduction in the Triassic Feixianguan Formation East Sichuan Basin, China: Towards prediction of fatal H2S concentrations [J]. Marine and Petroleum Geology,2004, 21: 1 265-1 279.
 [19] Bildstein O, Worden R H, Brosse E. Assessment of anhydrite dissolution as the rate-limiting step during thermochemical sulfate reduction[J]. Chemical Geology,2001,176: 173-189.
[20] Orr W L. Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation study of Big Horn basin Palaeozoic oils [J]. American Association of Petroleum Geologists Bulletin, 1974, 50: 2 295-2 318.
[21] Connan J, Lacrampe-Couloume G. The origin of the Lacq Sup rieur heavy oil accumulation and the giant Lacq Int rieur gas field(Aquitaine Basin, SW France)[A]. In: Bordenave M L, ed. Applied Petroleum Geochemistry [C]. Paris: Tchnip, 1993. 465-488.
[22] Cai C F, Worden R H, Bottrell S H, et al. Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China [J]. Chemical Geology,2003, 202: 39-57. 
[23] Kiyosu Y. Chemical reduction and sulfur-isotope effects of sulfate by organic matter under hydrothermal conditions [J]. Chemical Geology,1980, 30: 47-56.
[24] Kiyosu Y, Krouse H R. The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect [J]. Geochemical Journal,1990, 24: 21-27.
[25] Kiyosu Y, Krouse H R. Thermochemical reduction and sulfur isotopic behavior of sulfate by acetic acid in the presence of native sulfur [J]. Geochemical Journal,1993, 27: 49-57.
[26] Nikolayeva O V, Ryzhenko B N, Germanov A I. Reduction of sulfate sulfur by hydrocarbons and alcohols in aqueous solution at 200~300℃[J]. Geochemistry International,1982, 5: 726-742.
[27] Goldhaber M B, Orr W L. Kinetic controls on thermochemical sulfate reduction as a source of sedimentary H2S[A]. In: Vairavamurthy M A, Schoonen M A, eds.Geochemical Transformations of sedimentary Sulfur(ACS Symposium series 612)[C]. Washington DC: American Chemical Society, 1995.
[28] Cross M M, Manning D A C, Bottrell S H, et al. Thermochemical sulphate reduction (TSR): Experimental determination of reaction kinetics and implications of the observed reaction rates for petroleum reservoirs [J]. Organic Geochemistry, 2004, 35:393-404.
[29] Trudinger P A, Chambers L A. Low temperature sulphate reduction: biological versus abiological[J]. Canadian Journal of Earth Science,1985, 22: 1 910-1 918.
[30] Cai Chunfang, Bo Meiwen, Ma Ting, et al. Approach to Fluid-Rock Interaction in Tarim Basin[M]. Beijing: Geological Publishing House, 1997. [蔡春芳,博梅文,马亭,等. 塔里木盆地流体—岩石相互作用研究[M]. 北京:地质出版社, 1997.]
[31] Rooney M A. Carbon isotopic ratios of light hydrocarbons as indicators of thermochemical sulfate reduction[A]. In: Grimalt J O, ed. Organic Geochemistry: Applications to Energy, Climate, Environment and Human History [C]. San Sewbastian: A I G O A, 1995. 523-525.
[32] Cai Chunfang, Hu W S, Worden R H. Thermochemical sulphate reduction in Cambro-Ordovician carbonates in central Tarim[J]. Marine and Petroleum Geology, 2001, 18:729-741. 
[33] Sassen R. Geochemical and carbon isotopic studies of crude oil destruction, bitumen precipitation and sulfate reduction in the deep Smackover Formation[J]. Organic Geochemistry,1988, 12:351-361. 
[34] Worden R H, Smalley P C, Oxtoby N H. The effect of thermochemical sulfate reduction upon formation water salinity and oxygen isotopes in carbon gas reservoirs[J]. Geochimica et Cosmochimica Acta, 1996, 60:3 925-3 931.
 [35] Worden R H, Smalley P C. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation Abu Dhabi[J]. Chemical Geology,1996, 133:157-171.
[36] Worden R H, Smalley P C. Does methane react during thermochemical sulphate reduction? Proof from the Khuff Formation, Abu Dhabi[A]. In: Wanty R, Seal R R, eds.Water-Rock Interaction 2004 [C]. London: Taylar and Francis Group, 2004. 1 049-1 053.
[37] Powell T G, MacQueen R W. Precipitation of sulfide ores and organic matter: Sulfade reactions at Pine Point, Canada[J]. Science,1984, 224:63-66.[38] Orr W L, Sinninghe Damst  J S. Geochemistry of sulfur in petroleum systems[A]. In: Orr W L,  White C M, eds. Geochemistry of Sulfur in Fossil Fuels [C]. Washington DC: American Chemical Society,1990.2-29. 
[39] Manzano B K, Fowler M G, Machel H G. The influence of thermochemical sulfate reduction on hydrocarbon composition in Nisku reservoirs, Brazeau river area, Alberta, Canada[J]. Organic Geochemistry, 1997, 27:507-521.
[40] Vairavamurthy A, Mopper K. Geochemical formation of organosulphur compounds (thiols) by addition of H2S to sedimentary organic matter[J].Nature,1987, 329: 623-625.
[41] Sinninghe Damst  J S, Rijpstra W I C, Kock-van Dalen, et al. Quenching of labile functionalised lipids by inorganic sulfur species: Evidence for the formation of sedimentary organic sulfur compounds at the early stages of diagenesis[J].Geochimica et Cosmochimica Acta,1990,53:1 343-1 355. 
[42] Leif R N, Simoneit B R T. The role of alkenes produced during hydrous pyrolysis of a shale[J]. Organic Geochemistry, 2000, 31:1 189-1 208.
[43] Seewald H C. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: Constraints from mineral buffered laboratory experiments[J]. Geochimica et Cosmochimica Acta,2001, 65:1 641-1 664. 
[44] Hanin S, Adam P, Kowalewski I, et al. Bridgehead alkylated 2-thiaadamantanes: Novel markers for sulfurisation processes occurring under high thermal stress in deep petroleum reservoirs[J]. Chemical Communications, 2002,(16):1 750-1 751.
[45] Schmid J C, Connan J, Albrecht P. Occurrence and geochemical significance of long-chain dialkylthiacyclopentanes[J].Nature,1987, 329:54-56.
[46] Li Jianfeng, Lan Fangxiao, Guo Jianmin. Origin of H2S from Ordovician reservoirs in Changqing Gas Field[A]. In: Liang Digang,et al, eds. The 8th National Organic Geochemistry Proceedings[C]. Beijing: Petroleum Industry Press, 2002. 188-192. [李剑锋,蔺方哓,郭建民. 长庆气田奥陶系储层天然气中硫化氢的成因分析[A].见:梁狄刚,等.有机地球化学研究新进展——第8届全国有机地球化学学术会议文集[C]. 北京:石油工业出版社, 2002. 188-192.]
 [47] Liu Wenjun, Zheng Rongcai. Thermochemical sulfate reduction and Huayuan Pb and Zn deposits [J].Science in China(D), 2000, 20(5): 456-464. [刘文均,郑荣才. 硫酸盐热化学还原反应与花垣铅锌矿床[J]. 中国科学D辑, 2000, 20(5): 456-464.]

[1] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[2] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[3] 鲁易, 张稳, 李婷婷, 周筠珺. 大气甲烷浓度变化的源汇因素模拟研究进展[J]. 地球科学进展, 2015, 30(7): 763-772.
[4] 李玉红, 詹力扬, 陈立奇. 北冰洋CH 4研究进展[J]. 地球科学进展, 2014, 29(12): 1355-1361.
[5] 吴自军,任德章,周怀阳. 海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响[J]. 地球科学进展, 2013, 28(7): 765-773.
[6] 陈雅丽,储雪蕾,张兴亮,翟明国. 纳米离子探针分析在地球早期生命研究中的应用[J]. 地球科学进展, 2013, 28(5): 588-596.
[7] 赵吉,李靖宇,周玉,白玉涛,于景丽. 甲烷氧化与氨氧化微生物及其耦合功能[J]. 地球科学进展, 2012, 27(6): 651-659.
[8] 孙治雷,何拥军,李 军,黄 威,李 清,李季伟,王 丰. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11): 1262-1273.
[9] 于新生, 李丽娜,胡亚丽,兰志刚. 海洋中溶解甲烷的原位检测技术研究进展[J]. 地球科学进展, 2011, 26(10): 1030-1037.
[10] 向 荣,刘 芳,陈 忠,颜 文,陈木宏. 冷泉区底栖有孔虫研究进展[J]. 地球科学进展, 2010, 25(2): 193-202.
[11] 郎赟超,刘丛强,Satake H.,WuJiahong,李思亮. 贵阳地表水—地下水的硫和氯同位素组成特征及其污染物示踪意义[J]. 地球科学进展, 2008, 23(2): 151-159.
[12] 李清,王家生,王晓芹,陈祈,陈洪仁. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
[13] 赵玉龙,刘志飞. 古新世—始新世最热事件对地球表层循环的影响及其触发机制[J]. 地球科学进展, 2007, 22(4): 341-349.
[14] 蒲毅彬,吴青柏,蒋观利. 封闭系统中多孔介质甲烷水合物的CT实验研究[J]. 地球科学进展, 2007, 22(4): 362-368.
[15] 冯东,陈多福. 海底沉积物孔隙水钡循环对天然气渗漏的指示[J]. 地球科学进展, 2007, 22(1): 49-57.
阅读次数
全文


摘要