地球科学进展 ›› 2003, Vol. 18 ›› Issue (5): 764 -772. doi: 10.11867/j.issn.1001-8166.2003.05.0764

研究论文 上一篇    下一篇

大洋钻探对海底热液活动研究的贡献
曾志刚,秦蕴珊   
  1. 中国科学院海洋研究所,山东 青岛 266071
  • 收稿日期:2003-05-23 修回日期:2003-07-25 出版日期:2003-12-20
  • 通讯作者: 曾志刚 E-mail:zgzeng@ms.qdio.ac.cn
  • 基金资助:

    国家重点基础研究发展规划项目“中国边缘海岩石层结构”(编号:G2000046701);国家自然科学基金项目“冲绳海槽热液硫化物的年代学研究”(编号:40176020)资助.

CONTRIBUTION OF OCEAN DRILLING TO THE STUDY OF SEAFLOOR HYDROTHERMAL ACTIVITY

Zeng Zhigang, Qin Yunshan   

  1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
  • Received:2003-05-23 Revised:2003-07-25 Online:2003-12-20 Published:2003-10-01

大洋钻探为海底热液活动研究提供了大量数据资料和样品。在此基础上,通过研究流体-沉积物/岩石相互作用,热、物质通量和流体流动,分析构造对海底热液活动的控制作用,使人们对海底热液循环有所了解,并对深部热液成因石油的特征,海底热液沉积物的空间结构和物质组成,以及深部生物与海底热液活动的关系有了一些认识。未来通过实施IODP,海底热液活动研究将会取得更多新的成果。

Abundant data and samples have been recovered by ocean drilling for studying the seafloor hydrothermal activity. On the basis of these data and samples, we have understood the seafloor hydrothermal circulation by studying the fluid-sediment/rock interaction, the heat and mass flux, the fluid flow, and the tectonics in control of seafloor hydrothermal activity. And we have got some knowledge about the characteristics of seafloor hydrothermal-origin petroleum, the architecture and constitute of seafloor hydrothermal products, and the relationship between the deep biosphere and the seafloor hydrothermal activity by analyzing these data and samples from the ocean drilling. In the future, more achievements of studying seafloor hydrothermal activity will be got by carrying out the Integrated Ocean Drilling Program.

中图分类号: 

[1] RISE Project Group. East Pacific Rise:Hot springs and geophysical experiments[J]. Science, 1980, 207:1 421-1 444.

[2] Kong L,Ryan W B F,Mayer L,et al. Bare-rock drill sites,ODP Legs 106 and 109:Evidence for hydrothermal activity at 23°N in the Mid-Atlantic ridge rift valley [J]. EOS,1985,65:1 106.

[3] Honnorez J,Mevel C,Honnorez-Guerstein B M. Mineralogy and chemistry of sulfide deposits drilled from hydrothermal mound of the snake pit active field,MAR[A]. In:Detrick R,Honnorez J,Bryan W B,et al, eds. Proceedings of the Ocean Drilling Program,Scientific Results [C].1990,106/109:145-162.

[4] Kase K, Yamamoto M, Shibata T. Copper-rich sulfide deposit near 23°N, Mid-Atlantic Ridge:Chemical composition, mineral chemistry and sulfur isotopes[A]. In:Detrick R,Honnorez J,Bryan W B,et al, eds.Proceedings of the Ocean Drilling Program,Scientific Results [C].1990,106/109:163-177.

[5] Goto S,Kinoshita M,Matsubayashi O,et al. Geothermal constraints on the hydrological regime of the TAG active hydrothermal mound, inferred from long-term monitoring [J]. Earth and Planetary Science Letters, 2002, 203(1):149-163.

[6] Davis E E,Becke K. Observations of natural-state fluid pressures and temperatures in young oceanic crust and inferences regarding hydrothermal circulation [J]. Earth and Planetary Science Letters,2002,204(1/2):231-248.

[7] James R H,Rudnicki M D,Palmer M R. The alkali element and boron geochemistry of the Escanaba Trough sediment-hosted hydrothermal system[J]. Earth and Planetary Science Letters,1999,171(1):157-169.

[8] Gieskes J M, Simoneit B R T, Goodfellow W D,et al.Hydrothermal geochemistry of sediments and pore waters in Escanaba Trough—ODP Leg 169[J].Applied Geochemistry,2002,17(11):1 435-1 456.

[9] Buatier M D,Monnin C,Früh-Green G,et al. Fluid-sediment interactions related to hydrothermal circulation in the Eastern Flank of the Juan de Fuca Ridge[J].Chemical Geology,2001,175(3/4):343-360.

[10] Inoue A. Two-dimensional variations of exchangeable cation composition in the terrigenous sediment, eastern flank of the Juan de Fuca Ridge[J]. Marine Geology,2000,162(2/4):501-528.

[11] Andersson E,Simoneit B R T,Holm N G. Amino acid abundances and stereochemistry in hydrothermally altered sediments from the Juan de Fuca Ridge,northeastern Pacific Ocean[J]. Applied Geochemistry,2000,15(8):1 169-1 190.

[12] Simoneit B R T,Sparrow M A. Dissolved organic carbon in interstitial waters from sediments of Middle Valley and Escanaba Trough,Northeast Pacific,ODP Legs 139 and 169[J]. Applied Geochemistry,2002,17(11):1 495-1 502.

[13] Urbat M,Dekkers M J,Krumsiek K. Discharge of hydrothermal fluids through sediment at the Escanaba Trough, Gorda Ridge (ODP Leg 169):Assessing the effects on the rock magnetic signal[J]. Earth and Planetary Science Letters,2000,176(3/4):481-494.

[14] Laverne C,Agrinier P,Hermitte D,et al. Chemical fluxes during hydrothermal alteration of a 1200-m long section of dikes in the oceanic crust,DSDP/ODP Hole 504B[J]. Chemical Geology,2001,181(1/4):73-98.

[15] Bach W,Irber W. Rare earth element mobility in the oceanic lower sheeted dyke complex:Evidence from geochemical data and leaching experiments[J]. Chemical Geology,1998,151(1/4):309-326.

[16] Michard A,Albarede F. The REE content of some hydrothermal fluids[J]. Chemical Geology,1986,55: 51-60.

[17] Gillis K M,Ludden J N,Smith A D. Mobilization of REE during crustal aging in the Troodos Ophiolite,Cyprus [J]. Chemical Geology,1992,98:71-86.

[18] Chan L-H,Alt J C,Teagle D A H. Lithium and lithium isotope profiles through the upper oceanic crust:A study of seawater-basalt exchange at ODP Sites 504B and 896A[J]. Earth and Planetary Science Letters,2002,201(1):187-201.

[19] Hunter A G,Kempton P D,Greenwood P. Low-temperature fluid-rock interaction—An isotopic and mineralogical perspective of upper crustal evolution,eastern flank of the Juan de Fuca Ridge (JdFR),ODP Leg 168[J]. Chemical Geology,1999,155(1/2):3-28.

[20] Elderfield H,Wheat C G,Mottl M J,et al. Fluid and geochemical transport through oceanic crust:A transect across the eastern flank of the Juan de Fuca Ridge[J]. Earth and Planetary Science Letters,1999,172(1/2):151-165.

[21] Elderfield H,Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the oceans [J]. Annual Review of Earth and Planetary Sciences,1996,24:191-224.

[22] Giambalvo E R,Fisher A T,Martin J T,et al. Origin of elevated sediment permeability in a hydrothermal seepage zone,eastern flank of the Juan de Fuca Ridge,and implications for transport of fluid and heat [J]. Journal of Geophysical Research,2000,105:897-912.

[23] Teagle D A H,Alt J C,Chiba H,et al. Strontium and oxygen isotopic constraints on fluid mixing,alteration and mineralization in the TAG hydrothermal deposit[J]. Chemical Geology,1998,149(1/2):1-24.

[24] Teagle D A H,Bickle M J,Alt J C. Recharge flux to ocean-ridge black smoker systems:A geochemical estimate from ODP Hole 504B[J]. Earth and Planetary Science Letters,2003,210:81-89.

[25] Stein C A,Stein S. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow [J]. Journal of Geophysical Research,1994,99:3 081-3 095.

[26] Mottl M J,Wheat C G. Hydrothermal circulation through mid-ocean ridge and anks:Fluxes of heat and magnesium [J]. Geochimica et Cosmochimica Acta,1994,58:2 225-2 237.

[27] Buatier M D,Monnin C,Davis E E,et al. Hydrothermal circulation in the Eastern flank of the Juan de Fuca ridge (Leg ODP 168) [J]. Earth and Planetary Science Letters ,1998,326(3):201-206.

[28] Rudnicki M D,Elderfield H,Mottl M J. Pore fluid advection and reaction in sediments of the eastern flank, Juan de Fuca Ridge,48°N[J]. Earth and Planetary Science Letters,2001,187(1/2):173-189.

[29] Gieskes J M,Simoneit B R T,Shanks W C III,et al. Geochemistry of fluid phases and sediments:Relevance to hydrothermal circulation in Middle Valley,ODP Legs 139 and 169[J]. Applied Geochemistry,2002,17(11): 1 381-1 399.

[30] Kopf A,Behrmann J H,Deyhle A,et al. Isotopic evidence (B, C, O) of deep fluid processes in fault rocks from the active Woodlark Basin detachment zone[J]. Earth and Planetary Science Letters,2003,208(1/2):51-68.

[31] Rushdi A I,Simoneit B R T. Hydrothermal alteration of organic matter in sediments of the Northeastern Pacific Ocean:Part 1.Middle Valley,Juan de Fuca Ridge[J]. Applied Geochemistry,2002,17(11):1 401-1 428.

[32] Simoneit B R T. Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleum from Middle Valley,Northeastern Pacific Ocean[J]. Applied Geochemistry,2002,17(11):1 429-1 433.

[33] Ishibashi J,Sato M,Sano Y,et al. Helium and carbon gas geochemistry of pore fluids from the sediment-rich hydrothermal system in Escanaba Trough[J]. Applied Geochemistry,2002,17(11):1 457-1 466.

[34] Rushdi A I,Simoneit B R T. Hydrothermal alteration of organic matter in sediments of the Northeastern Pacific Ocean:Part 2.Escanaba Trough,Gorda Ridge[J]. Applied Geochemistry,2002,17(11):1 467-1 494.

[35] Zierenberg R A,Fouquet Y,Miller D J,et al. The deep structure of a sea-floor hydrothermal deposit [J]. Nature,1998,392:485-488. 

[36] Zierenberg R A,Miller D J. Overview of Ocean Drilling Program Leg 169: Sedimented Ridges II[A]. In: Zierenberg,R A,Fouquet Y,Miller D J,Normark W R,eds. Proceedings of the Ocean Drilling Program,Scientific Results[C]. 2000,169:1-39.

[37] Humphris S E,Herzig P M,Miller D J,et al. The internal structure of an active seafloor massive sulphide deposit[J]. Nature,1995,377:713-716.

[38] Hannington M,Galley A G,Herzig P M,et al. Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulfide deposits[A]. In:Herzig P M,Humphris S E,Miller J,eds.Proceedings of the Ocean Drilling Program,Scientific Results [C].1998,158:389-415.

[39] Shipboard Scientific Party. Leg 193 summary[A].In:Binns R A,Barriga F J A S,Miller D J,et al, eds. Proceedings of the Ocean Drilling Program,Initial Reports [C].2002,193:1-84.

[40] Cowen J P,Giovannoni S J,Kenig Fabien,et al. Fluids from Aging Ocean Crust that support microbial life [J]. Science,2003,299:120-123.

[41] Furnes H,Staudigel H. Biological mediation in ocean crust alteration:How deep is the deep biosphere? [J]. Earth and Planetary Science Letters,1999,166(3/4):97-103.

[1] 拓守廷,温廷宇,张钊,李阳阳. 大洋钻探计划运行的国际经验及对我国的启示[J]. 地球科学进展, 2021, 36(6): 632-642.
[2] 马鹏飞,刘志飞,拓守廷,蒋璟鑫,许艺炜,胡修棉. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义[J]. 地球科学进展, 2021, 36(6): 643-662.
[3] 康文敏,蔡芫镔,郑慧祯. 福州城市地表温度时空变化与贡献度研究[J]. 地球科学进展, 2020, 35(1): 88-100.
[4] 柳本立,牛百成,屈建军. 多组复合指纹示踪法及其应用[J]. 地球科学进展, 2019, 34(10): 1092-1098.
[5] 汪品先. 未雨绸缪——迎接大洋钻探学术新计划的制定[J]. 地球科学进展, 2017, 32(12): 1229-1235.
[6] 林间, 徐敏, 周志远, 王月. 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12): 1253-1266.
[7] 王风平, 陈云如. 深部生物圈研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1277-1286.
[8] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12): 1287-1296.
[9] 曾静静, 曲建升, 裴惠娟, 董利苹, 廖琴, 刘燕飞, 张志强. 国际气候变化会议回顾与近期热点问题分析[J]. 地球科学进展, 2015, 30(11): 1210-1217.
[10] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[11] 汪品先. 我国参加大洋钻探的近十年回顾与展望[J]. 地球科学进展, 2014, 29(3): 322-326.
[12] 钟广法,游倩. 高分辨率FMS成像测井资料在科学大洋钻探中的应用[J]. 地球科学进展, 2012, 27(3): 347-358.
[13] 杨守业,王权. 冲绳海槽中部热液活动与IODP 331航次初步成果[J]. 地球科学进展, 2011, 26(12): 1282-1289.
[14] 高抒,全体船上科学家. IODP 333航次:科学目标、钻探进展与研究潜力[J]. 地球科学进展, 2011, 26(12): 1290-1299.
[15] 李江涛,周怀阳,彭晓彤,吴自军. 海底热液活动区地微生物学研究中的分子生物学技术[J]. 地球科学进展, 2009, 24(9): 1015-1023.
阅读次数
全文


摘要