地球科学进展 ›› 2005, Vol. 20 ›› Issue (2): 185 -192. doi: 10.11867/j.issn.1001-8166.2005.02.0185

综述与评述 上一篇    下一篇

内陆湖泊的水质遥感监测研究
吕恒 1,2,江南 1,李新国 1,2   
  1. 1.中国科学院南京地理与湖泊研究所,江苏 南京 210008;2. 中国科学院研究生院,北京 100039
  • 收稿日期:2004-01-05 修回日期:2004-05-25 出版日期:2005-02-25
  • 通讯作者: 吕恒 E-mail:henglu@niglas.ac.cn
  • 基金资助:

    中国科学院知识创新工程重要方向项目“长江中下游洪水孕灾环境变化、致灾机理与减灾对策”(编号:KZCX3-SW-331);江苏省自然科学基金项目“太湖藻类水华遥感监测与成因分析”(编号:BK2002149)资助.

THE STUDY ON WATER QUALITY OF INLAND LAKE MONITORING BY REMOTE SENSING

Lü Heng 1,2;JIANG Nan 1;LI Xin-guo 1,2   

  1. 1.Nanjing Institute of Geography & Limnology ,Chinese Academy of Sciences, Nanjing 210008,China;2.Graduate School of Chinese Academy of Sciences, Beijing 100039,China
  • Received:2004-01-05 Revised:2004-05-25 Online:2005-02-25 Published:2005-02-25

介绍了内陆湖泊水质遥感监测的特点及遥感监测水质的机理,总结了国内外近年来用于内陆湖泊水质参数反演的3种常用方法:经验模型、生物光学模型和神经网络模型,并分析了3种模型的优缺点;同时指出了影响内陆湖泊水质遥感监测精度的关键因素;提出了内陆湖泊水质遥感监测研究重点和方向。

The characteristic and theory of water quality of inland lake monitoring using remote sensing are addressed in this paper. Inland lake water quality remote sensing differs from ocean color remote sensing, which demands remote sensing data with high spatial & spectral resolution and complex inversion algorithm.The advantages and disadvantages of three common methods of water quality quantity inversion: empirical model, bio-optical model, artificial neural network model are discussed in this paper. Empirical model is a simple and convenient model, but not an universal model, the model only fit to the given region and lake, and to construct the empiric model needs a lot of sampling data, furthermore the empirical model just only precisely retrieve the water quality parameters in the given range, and the retrieve precision will fall greatly beyond the range. Bio-optical model is an universal and robust model, which can retrieve water quality parameters only from radiance or reflectance on the remote sensor without the support of in-site data, However, this is based on the comprehension of the absorption coefficient, scatter coefficient and volume scatter of the pure water , suspended substance , chlorophyll and yellow substances. Neural network model is an efficient inversion way, which can simulate complex relation and utilize various kinds of remote sensing data, and which can deal with vast data in the litter time, but the neural network model is dependent on the training data and the model construction needs a lot of time and much experience. The neural network model is a “classifier” not an “extractor”. The factors determining water quality retrieval accuracy are also analyzed, the atmosphere plays an important role in the water quality parameters inversion, and the accurate atmosphere correction model must be developed for water quality remote sensing.Finally, the future directions and the key points in this filed are proposed, the water quality parameters solar reflection response rule should be carefully investigated and the spectral reflection database of characteristic water of China is supposed to build in the near future. Radar remote sensing and hyperspectral technology should be emphasized in the future research on the water quality remote sensing. In China, researches on the theory of bio-optical model and the measurement of absorption coefficient and scatter coefficient of water quality parameters of Chinese characteristic lakes ought to be strengthen.

中图分类号: 

[1]Wang Sumin, Dou Hongshen. Chinese Lake Record[M]. Beijing: Science Press,1998.[王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998.]
[2]International Ocean Colour Coordinating Group. IOCCG Report No. 3: Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters[R]. Canada :IOCCG Project Office, 2000.[3]Sathyendranath S, Morel A. Remote Sensing Applications in Marine Science and Technology[M]. London: Kluwer Academic Publishers, 1983.
[4]Carpenter D J, Carpenter S M. Modeling inland water quality using landsat data[J].Remote Sensing of Environment,1983, 13:345-352.
[5]Verdin J P. Monitoring water quality conditions in a large western reservoir with landsat imagery[J]. Photogrammetric Engineering and Remote Sensing,1985, 51(3): 343-353.
[6]Ritchie J C. Comparison of landsat MSS pixel array sizes for estimating water quality[J]. Photogrammetric Engineering and Remote Sensing,1987, 53(11):1 549-1 553.
[7]Dekker A G, Peters S W. The use of the Thematic Mapper for the analysis of eutrophic lakes:A case study in the Netherlands[J]. International Journal of Remote Sensing, 1993, 14(5): 799-821.
[8]Baban S J. Detecting water quality parameters in the Norfolk Broads,U K, using Landsat imagery[J]. International Journal of Remote Sensing, 1993, 14(7):1 247-1 267.
[9]TASSAN S. A numerical model for the detection of sediment concentration in stratified river plumes using Thematic Mapper data[J]. International Journal of  Remote Sensing, 1997,18(12): 2 699-2 705.
[10]Wang X J, Ma T. Application of remote sensing techniques in monitoring and assessing the water quality of Taihu lake[J]. Bulletin of Environmental Contamination and Toxicology, 2001,67: 863-870.
[11]Darecki M. Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms[J]. Continental Shelf Research, 2003,23:237-250.
[12]Lathrop R G, Lillesand T M. Use of thematic mapper data to assess water quality in Green bay and Central lake Michigan[J]. Photogrammetric Engineering and Remote Sensing, 1986, 52(5): 671-680.
[13]Bagheri S. Remote sensing of nearshore water quality using bio-optical modeling and retrieval techniques[J]. International Journal of Remote Sensing, 1990,11(2):289-299.
[14]Topliss B J, Almos C L. Algorithms for remote sensing of high concentration,inorganic suspended sediment[J]. International Journal of Remote Sensing, 1990,11(6):947-966.
[15]Ekstrand S. Landsat TM based quantification of chlorophyll-a during algae blooms in coastal waters[J]. International Journal of Remote Sensing, 1992,13(10):1 913-1 926.
[16]Gitelson A, Garbuzov G. Quantitative remote sensing methods for real-time monitoring of inland waters quality[J]. International Journal of Remote Sensing, 1993,14(7):1 269-1 295.
[17]Carder K L, Chen F R, Lee Z P. Semianalytic Moderate Resolution Imaging Spectrometer algorithms for cholorphyll and absorption with bio-optical domains based on nitrate-depletion temperatures[J]. Journal of Geophysical Research, 1999, 104: 5 403-5 421.
[18]Bukata R P, Brution J E. Optical water quality model of lake Ontario. 2. Determination of chlorophyll and suspended mineral concentrations of natural waters from submersible and low altitude remote sensors[J]. Applied Optics, 1981, 20: 1 704-1 714.
[19]Roesler C S, Perry M J. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance[J]. Journal of Geophysical Research, 1995,100:13 279-13 294.
[20]Garver S A,Siegel D A. Inherent optical property inversion of ocean colour spectra and its biogeochemical interpretation 1.Time series from the Sargasso sea[J]. Journal of Geophysical Research, 1997, 102:18 607-18 625.
[21]Lee Z P, Carder K L. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization[J]. Applied Optics, 1999, 38:3 831-3 843.
[22]Sathyendranath S, Prieur L. A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters[J]. International Journal of Remote Sensing, 1989, 10(8):1 373-1 394.
[23]Lahet F , Ouillon S. A Three-component model of ocean colour and its application in the Ebro river Mouth area[J]. Remote sensing of Environment, 2000, 72:181-190.
[24]Kondratyev K Y. Water quality remote sensing in the visible spectrum[J]. International Journal of Remote Sensing, 1998, 19(5): 957-979.
[25]Vos R J, Hakvoort J H M. Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes[J]. Science of the Total Environment, 2003,312:221-243.
[26]Cong Shuang. Neural Network Theory and Applications Based on the ToolBox of MATLAB[M]. Hefei: University of Science & Technology of China, 1998.[丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学,1998.]
[27]Keiner L E, Yan X H. A Neural Network Model for Estimating sea surface Chlorophyll and sediments from thematic mapper imagery[J]. Remote Sensing of Environment, 1998, 66:153-165.
[28]Buckton D, O'Mongain E. The use of neural networks for the estimation of oceanic constituents load on the MERIS instrument[J]. International Journal of Remote Sensing, 1999, 20(9):1 841-1 851.
[29]Schiller H, Doerffer R. Neural network for cmulation of an inverse model—Operational derivation of case II water properties from MERIS data[J]. International Journal of Remote Sensing, 1999, 20(9): 1 735-1 746.
[30]Gross L, Thiria S. Applying artificial neural network methodology to ocean color remote sensing[J]. Ecological Modelling, 1999,120:237-246.
[31]Karul C, Soyupak S. Case studies on the use of neural networks in eutrophication modelling[J]. Ecological Modelling, 2000,134:145-152.
[32]Thiemann S , Kaufmann H. Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS-1C statellite data in the Mecklenburg lake district ,Germany[J]. Remote Sensing of Environment, 2000, 73:227-235.
[33]Zhang Y Z. Application of an empirical neutral network to surface water quality estimation in the gulf of Finland using combined optical data and microwave data[J]. Remote Sensing of Environment, 2002, 81:327-336.
[34]Zhan Haigang, Shi Ping, Chen Chuqun. Ocean chlorophyll concentrations inversion based on artifical neural network[J]. Chinese Science Bulletin, 2000,45(17):1 879-1 884.[詹海刚,施平,陈楚群. 利用神经网络反演海水叶绿素浓度[J]. 科学通报, 2000,45(17):1 879-1 884.]
[35]Zhang Tinglu,He Mingxia. A method to retrieve the ocean chlorophyll-a concentrations in case I water based on artificial neural network[J]. Journal of Remote Sensing,2002,6(1):40-44.[张亭禄,贺明霞.基于人工神经网络的一类水域叶绿素 a浓度反演方法[J]. 遥感学报, 2002,6(1):40-44.]
[36]Wang Jianping, Cheng Shengtong, Jia Haifeng, et al. An artificial neural network model for lake color inversion using TM imagery[J].Environment Science, 2003,24(2):73-76.[王建平,程声通,贾海峰,等.用TM影像进行湖泊水色反演研究的人工神经网络模型[J]. 环境科学,2003,24(2):73-76.]
[37]She Fengning,Cai Qiming. Principal-component supervised classification and its application to image recognition of water quality[J]. Journal of Lake Sciences,1997,9(3):216-268.[佘丰宁, 蔡启铭.主成分监督分类及其在水质特征遥感图像识别中的应用[J].湖泊科学, 1997,9(3):216-268.]
[38]Bukata R,Bruton J,Jerome J.Use of chromaticity in remote measurements of water quality[J].Remote Sensing of Enviromnet,1983,13:161-177.
[39]Hinton J.Application of eigenvector analysis to remote sensing of coastal water quality[J].International Journal of Remote Sensing,1991,12(7):1 441-1 460.
[40]Li Sihai,Wang Hong, Xu Weidong. Research and progress in satellite ocean color remote sensing[J].Advances in Earth Science, 2000,15(2):190-196.[李四海,王宏,许卫东. 海洋水色卫星遥感研究与进展[J]. 地球科学进展, 2000,15(2):190-196.]
[41]Ren Jingping, Zhao Jinping. Progress and prospect of ocean color remote sensing in CASE 2 waters[J]. Advances in Earth Science, 2002,17(3):363-371.[任敬萍, 赵进平. 二类水体水色遥感的主要进展与发展前景[J]. 地球科学进展, 2002,17(3):363-371.]

[1] 宋平, 刘元波, 刘燕春. 陆地水体参数的卫星遥感反演研究进展[J]. 地球科学进展, 2011, 26(7): 731-740.
[2] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[3] 丛丕福,曲丽梅,韩庚辰,杨新梅,王臣立. 辽东湾海水透明度的遥感估算模型[J]. 地球科学进展, 2011, 26(3): 295-299.
[4] 卢善龙,吴炳方,闫娜娜,李发鹏,文美平,王京. 河川径流遥感监测研究进展[J]. 地球科学进展, 2010, 25(8): 820-826.
[5] 张廷军,晋锐,高峰. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展, 2009, 24(9): 963-972.
[6] 徐春亮,陈彦,贾明权,刘增灿,卢海平,童玲. 典型地物后向散射特性的测量与分析[J]. 地球科学进展, 2009, 24(7): 810-816.
[7] 冉有华,李新,王维真,晋 锐. 黑河流域临泽盐碱化草地网格尺度多层土壤水分时空稳定性分析[J]. 地球科学进展, 2009, 24(7): 817-824.
[8] 张廷军,晋 锐,高 峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083.
[9] 陈静生. 陆地水水质全球变化研究进展[J]. 地球科学进展, 1992, 7(4): 71-.
阅读次数
全文


摘要