地球科学进展 ›› 2021, Vol. 36 ›› Issue (4): 421 -441. doi: 10.11867/j.issn.1001-8166.2021.045

青藏高原综合科学考察研究 上一篇    

青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例
刘方斌 1 , 2 , 3( ), 聂军胜 1 , 2( ), 郑德文 4, 庞建章 5   
  1. 1.兰州大学资源环境学院,西部环境教育部重点实验室,甘肃 兰州 730000
    2.中国科学院青藏高原 地球科学卓越创新中心,北京 100101
    3.山东省地震局,山东 济南 250014
    4.中国科学院广州 地球化学研究所,广东 广州 510640
    5.中国地震局地质研究所,北京 100029
  • 收稿日期:2021-01-06 修回日期:2021-03-25 出版日期:2021-05-31
  • 通讯作者: 聂军胜 E-mail:liufangbin8908@163.com;jnie@lzu.edu.cn
  • 基金资助:
    第二次青藏高原综合科学考察项目“碰撞以来古地理格局与构造地貌过程”(2019QZKK0704)

The Cenozoic Exhumation History and Forcing Mechanism of SE Tibetan Plateau: A Case Study of the Lincang Granite Area

Fangbin LIU 1 , 2 , 3( ), Junsheng NIE 1 , 2( ), Dewen ZHENG 4, Jianzhang PANG 5   

  1. 1.Key Laboratory of Western China's Environmental Systems (Ministry of Education),College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,China
    2.CAS Center for Excellence in Tibetan Plateau Earth Sciences,Chinese Academy of Sciences,Beijing 100101,China
    3.Shandong Earthquake Agency,Ji'nan 250014,China
    4.Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China
    5.Institute of Geology,China Earthquake Administration,Beijing 100029,China
  • Received:2021-01-06 Revised:2021-03-25 Online:2021-05-31 Published:2021-05-31
  • Contact: Junsheng NIE E-mail:liufangbin8908@163.com;jnie@lzu.edu.cn
  • About author:LIU Fangbin (1989-), male, Qingdao City, Shandong Province, Ph.D student. Research areas include low temperature thermochronology. E-mail: liufangbin8908@163.com
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition "Paleogeography and geomorphology process since the collision"(2019QZKK0704)

青藏高原东南缘作为青藏高原的一个重要组成部分,新生代期间经历了显著的构造隆升、断裂活动、气候变化和河流系统的重组,这些过程均伴随着岩石的快速剥露,是当今地学研究的热点地区之一。然而,目前关于东南缘新生代期间的剥露过程及驱动机制仍存在较大争议。为此,选取青藏高原东南缘临沧花岗岩地区为研究对象,采用低温热年代学定年以及热历史模拟方法,系统分析了临沧花岗岩地区新生代期间的剥露过程并探讨了临沧花岗岩岩体快速冷却的驱动机制。认为临沧地区新生代以来经历了3期快速剥露事件,分别为晚始新世、渐新世以及中中新世。综合分析区域气候及地质数据,认为前2期事件是构造隆升所驱动,而后期则归因于亚洲季风的强降水作用。

As an important part of the Tibetan Plateau, the SE Tibetan Plateau experienced significant tectonic uplift, fault activity, climate change, and river system reorganization during the Cenozoic and these processes were accompanied with rapid rock exhumation. Therefore, the SE Tibetan Plateau has become one of the hottest areas of research focus. However, great debate exists regarding the exhumation process and forcing mechanism of the SE Tibetan Plateau during the Cenozoic. Therefore, we select the Lincang granite of the SE Tibetan Plateau as the research area. Firstly, we reconstruct the Cenozoic exhumation history of the Lincang granite area, based on multi-system low temperature thermochronology [including apatite (U-Th)/He, zircon (U-Th)/He and apatite fission track] and thermal history modeling. Secondly, we explore possible forcing mechanisms for the recorded several phases of rapid rock cooling in this area by integrating regional climatic and tectonic data. The preliminary conclusions are as follows: The Lincang granite area experienced three phases of rapid exhumation during the Cenozoic (late Eocene, Oligocene and middle Miocene). Combined with regional climate and geological data, we suggest that the late Eocene rapid cooling event of Lincang granite area was mainly caused by crustal shortening, and the Oligocene rapid cooling event was associated with crustal shortening and lateral extrusion. The occurrence of these two events may be inevitably connected with the oblique subduction of the Indian plate. In contrast, the middle Miocene rapid cooling event was closely related to the Asian summer monsoon intensification. The intensified monsoon precipitation would have likely increased the power of river incision, which accelerated the geomorphic evolution of this region.

中图分类号: 

图1 研究区地质概图及采样点位置
(a)青藏高原东南缘地形及构造图;(b)临沧地区地质图;(c)北侧条带剖面;(d)南侧条带剖面;HFT: 喜马拉雅前陆逆冲带; ISZ: 印度河缝合带; BSZ: 班公缝合带; JSZ: 金沙江缝合带; LSZ: 理塘缝合带; KSZ: 昆仑缝合带; LB: 拉萨地块; QB: 羌塘地块; SGB: 松潘—甘孜地块; GLSZ: 高黎贡剪切带; CSSZ: 崇山剪切带; ASRRSZ: 哀牢山—红河剪切带; ANF: 安宁河断裂; XSXJF: 鲜水河—小江断裂; WDF: 畹町河断裂; NTF: 南汀河断裂; LCF: 澜沧江断裂; SF: 实皆断裂; BSB: 保山地块; LSB: 兰坪—思茅地块; SCB: 华南地块;图a中数据来源于参考文献[ 19 ~ 28 ]
Fig.1 The geological map and sample sites of the study area
(a) The topographic and tectonic map of the SE Tibetan Plateau;(b)The geological map of the Lincang area; (c) The swath profile of the northern transect; (d) The swath profile of the southern transect; HFT: Himalayan Frontal Thrust; ISZ:Indus Suture Zone; BSZ: Bangong Suture Zone; JSZ: Jinsha Suture Zone; LSZ: Litang Suture Zone; KSZ: Kunlun Suture Zone; LB: Lhasa Block; QB: Qiangtang Block; SGB: Songpan-Ganze Block; GLSZ: Gaoligong Shan Shear Zone; CSSZ: Chong Shan Shear Zone; ASRRSZ: Ailao Shan-Red River Shear Zone; ANF: Anninghe Fault; XSXJF: Xianshui-Xiaojiang Fault; WDF: Wanding Fault; NTF: Nantinghe Fault; LCF: Lancang Fault; SF: Sagaing Fault; BSB: Baoshan Block; LSB: Lanping-Simao Block; SCB:South China Block; The data in Figure (a) are from references [19~28]
图1 研究区地质概图及采样点位置
(a)青藏高原东南缘地形及构造图;(b)临沧地区地质图;(c)北侧条带剖面;(d)南侧条带剖面;HFT: 喜马拉雅前陆逆冲带; ISZ: 印度河缝合带; BSZ: 班公缝合带; JSZ: 金沙江缝合带; LSZ: 理塘缝合带; KSZ: 昆仑缝合带; LB: 拉萨地块; QB: 羌塘地块; SGB: 松潘—甘孜地块; GLSZ: 高黎贡剪切带; CSSZ: 崇山剪切带; ASRRSZ: 哀牢山—红河剪切带; ANF: 安宁河断裂; XSXJF: 鲜水河—小江断裂; WDF: 畹町河断裂; NTF: 南汀河断裂; LCF: 澜沧江断裂; SF: 实皆断裂; BSB: 保山地块; LSB: 兰坪—思茅地块; SCB: 华南地块;图a中数据来源于参考文献[ 19 ~ 28 ]
Fig.1 The geological map and sample sites of the study area
(a) The topographic and tectonic map of the SE Tibetan Plateau;(b)The geological map of the Lincang area; (c) The swath profile of the northern transect; (d) The swath profile of the southern transect; HFT: Himalayan Frontal Thrust; ISZ:Indus Suture Zone; BSZ: Bangong Suture Zone; JSZ: Jinsha Suture Zone; LSZ: Litang Suture Zone; KSZ: Kunlun Suture Zone; LB: Lhasa Block; QB: Qiangtang Block; SGB: Songpan-Ganze Block; GLSZ: Gaoligong Shan Shear Zone; CSSZ: Chong Shan Shear Zone; ASRRSZ: Ailao Shan-Red River Shear Zone; ANF: Anninghe Fault; XSXJF: Xianshui-Xiaojiang Fault; WDF: Wanding Fault; NTF: Nantinghe Fault; LCF: Lancang Fault; SF: Sagaing Fault; BSB: Baoshan Block; LSB: Lanping-Simao Block; SCB:South China Block; The data in Figure (a) are from references [19~28]
表1 临沧花岗岩带样品位置
Table 1 The sample sites of the Lincang granite belt
表1 临沧花岗岩带样品位置
Table 1 The sample sites of the Lincang granite belt
表2 临沧花岗岩带磷灰石 (U-Th-Sm)/He定年结果 [ 58 ]
Table 2 The apatite (U-Th-Sm)/He results of the Lincang granite belt [ 58 ]
样品位置 样品编号 U/×10-6 Th/×10-6 Th/U Sm/×10-6 eU1/×10-6

[4He]

/(nmol/g)

半径

/μm

Ft2 原始年龄/Ma 矫正年龄/Ma

误差/

(Ma±1σ)

平均年龄/

(Ma±2σ)

南侧剖面 样品 YN4192-1 44.6 34.1 0.76 108.1 52.6 4.1 53.88 0.72 14.1 19.6 1.2 19.6±2.4
YN4193-1 130.4 9.0 0.07 79.8 132.5 8.3 62.74 0.77 11.5 15.0 0.9 15.5±1.1
YN4193-2 148.0 17.4 0.12 83.9 152.1 10.5 74.20 0.80 12.7 15.8 1.0
YN4193-3 169.5 20.0 0.12 90.8 174.2 10.8 52.44 0.72 11.5 15.8 0.9
YN4194-1 209.6 22.4 0.11 92.7 214.9 15.5 61.95 0.76 13.3 17.4 1.0 16.9±1.1
YN4194-2 201.9 24.0 0.12 105.6 207.5 16.1 63.74 0.77 14.4 18.6 1.1
YN4194-3 173.6 16.1 0.09 77.3 177.3 10.9 55.38 0.74 11.4 15.4 0.9
YN4197-1 199.9 17.6 0.09 92.7 204.0 13.2 39.02 0.64 11.9 18.6 1.1 19.6±1.3
YN4197-2 119.8 8.6 0.07 73.0 121.8 7.8 32.99 0.59 11.8 20.1 1.2
YN4197-3 87.5 6.4 0.07 49.9 89.0 7.3 57.02 0.75 15.2 20.4 1.2
YN41910-1 387.2 38.2 0.10 125.1 396.2 56.0 34.31 0.60 26.1 43.6 2.6 37.9±2.6
YN41910-2 312.7 37.0 0.12 110.4 321.4 35.8 32.65 0.58 20.6 35.5 2.1
YN41910-3 252.9 23.1 0.09 92.5 258.3 30.2 33.80 0.59 21.6 36.4 2.2
YN41911-1 164.2 8.1 0.05 77.7 166.1 14.7 40.34 0.65 16.3 24.9 1.5 26.9±2.3
YN41911-2 46.2 2.6 0.06 50.2 46.9 5.2 45.43 0.69 20.5 29.8 1.8
北侧剖面 样品 YN4201-1 47.9 46.3 0.96 111.1 58.8 7.9 33.25 0.57 24.4 43.0 2.6 43.0±5.2
YN4202-1 263.6 23.8 0.09 114.2 269.2 35.9 35.61 0.61 24.6 40.2 2.4 40.2±4.8
YN4203-1 215.6 18.6 0.09 88.9 220.0 24.9 50.01 0.71 20.9 29.2 1.8 31.0±2.2
YN4203-2 153.4 8.9 0.06 65.8 155.5 18.8 43.72 0.68 22.4 33.0 2.0
YN4203-3 387.8 33.2 0.09 108.9 395.6 47.7 49.86 0.71 22.3 31.3 1.9
YN4208-1 41.4 24.5 0.59 87.8 47.2 7.7 54.91 0.73 29.6 40.7 2.4 35.8±2.5
YN4208-2 27.5 10.6 0.39 83.7 30.0 4.1 65.53 0.77 24.5 31.8 1.9
YN4208-3 34.4 7.5 0.22 67.6 36.2 5.9 73.46 0.80 29.6 37.2 2.2
YN4204-1 63.9 26.9 0.42 114.6 70.2 6.3 27.34 0.50 16.3 32.5 1.9 32.5±3.8
YN4205-1 49.1 7.2 0.15 80.0 50.8 4.9 46.78 0.69 17.7 25.5 1.5 25.5±3.0
YN4206-1 150.7 11.3 0.08 67.1 153.4 22.3 42.41 0.67 26.8 40.2 2.4 41.9±2.9
YN4206-2 104.8 6.6 0.06 52.4 106.4 19.2 67.16 0.78 33.3 42.6 2.6
YN4206-3 173.5 14.7 0.08 70.8 177.0 30.2 53.24 0.73 31.5 43.1 2.6
YN4207-1 182.6 30.0 0.16 102.3 189.7 29.1 28.89 0.53 28.3 53.2 3.2 54.0±4.6
YN4207-2 544.2 237.6 0.44 184.9 600.0 104.3 34.07 0.59 32.1 54.8 3.3
表2 临沧花岗岩带磷灰石 (U-Th-Sm)/He定年结果 [ 58 ]
Table 2 The apatite (U-Th-Sm)/He results of the Lincang granite belt [ 58 ]
样品位置 样品编号 U/×10-6 Th/×10-6 Th/U Sm/×10-6 eU1/×10-6

[4He]

/(nmol/g)

半径

/μm

Ft2 原始年龄/Ma 矫正年龄/Ma

误差/

(Ma±1σ)

平均年龄/

(Ma±2σ)

南侧剖面 样品 YN4192-1 44.6 34.1 0.76 108.1 52.6 4.1 53.88 0.72 14.1 19.6 1.2 19.6±2.4
YN4193-1 130.4 9.0 0.07 79.8 132.5 8.3 62.74 0.77 11.5 15.0 0.9 15.5±1.1
YN4193-2 148.0 17.4 0.12 83.9 152.1 10.5 74.20 0.80 12.7 15.8 1.0
YN4193-3 169.5 20.0 0.12 90.8 174.2 10.8 52.44 0.72 11.5 15.8 0.9
YN4194-1 209.6 22.4 0.11 92.7 214.9 15.5 61.95 0.76 13.3 17.4 1.0 16.9±1.1
YN4194-2 201.9 24.0 0.12 105.6 207.5 16.1 63.74 0.77 14.4 18.6 1.1
YN4194-3 173.6 16.1 0.09 77.3 177.3 10.9 55.38 0.74 11.4 15.4 0.9
YN4197-1 199.9 17.6 0.09 92.7 204.0 13.2 39.02 0.64 11.9 18.6 1.1 19.6±1.3
YN4197-2 119.8 8.6 0.07 73.0 121.8 7.8 32.99 0.59 11.8 20.1 1.2
YN4197-3 87.5 6.4 0.07 49.9 89.0 7.3 57.02 0.75 15.2 20.4 1.2
YN41910-1 387.2 38.2 0.10 125.1 396.2 56.0 34.31 0.60 26.1 43.6 2.6 37.9±2.6
YN41910-2 312.7 37.0 0.12 110.4 321.4 35.8 32.65 0.58 20.6 35.5 2.1
YN41910-3 252.9 23.1 0.09 92.5 258.3 30.2 33.80 0.59 21.6 36.4 2.2
YN41911-1 164.2 8.1 0.05 77.7 166.1 14.7 40.34 0.65 16.3 24.9 1.5 26.9±2.3
YN41911-2 46.2 2.6 0.06 50.2 46.9 5.2 45.43 0.69 20.5 29.8 1.8
北侧剖面 样品 YN4201-1 47.9 46.3 0.96 111.1 58.8 7.9 33.25 0.57 24.4 43.0 2.6 43.0±5.2
YN4202-1 263.6 23.8 0.09 114.2 269.2 35.9 35.61 0.61 24.6 40.2 2.4 40.2±4.8
YN4203-1 215.6 18.6 0.09 88.9 220.0 24.9 50.01 0.71 20.9 29.2 1.8 31.0±2.2
YN4203-2 153.4 8.9 0.06 65.8 155.5 18.8 43.72 0.68 22.4 33.0 2.0
YN4203-3 387.8 33.2 0.09 108.9 395.6 47.7 49.86 0.71 22.3 31.3 1.9
YN4208-1 41.4 24.5 0.59 87.8 47.2 7.7 54.91 0.73 29.6 40.7 2.4 35.8±2.5
YN4208-2 27.5 10.6 0.39 83.7 30.0 4.1 65.53 0.77 24.5 31.8 1.9
YN4208-3 34.4 7.5 0.22 67.6 36.2 5.9 73.46 0.80 29.6 37.2 2.2
YN4204-1 63.9 26.9 0.42 114.6 70.2 6.3 27.34 0.50 16.3 32.5 1.9 32.5±3.8
YN4205-1 49.1 7.2 0.15 80.0 50.8 4.9 46.78 0.69 17.7 25.5 1.5 25.5±3.0
YN4206-1 150.7 11.3 0.08 67.1 153.4 22.3 42.41 0.67 26.8 40.2 2.4 41.9±2.9
YN4206-2 104.8 6.6 0.06 52.4 106.4 19.2 67.16 0.78 33.3 42.6 2.6
YN4206-3 173.5 14.7 0.08 70.8 177.0 30.2 53.24 0.73 31.5 43.1 2.6
YN4207-1 182.6 30.0 0.16 102.3 189.7 29.1 28.89 0.53 28.3 53.2 3.2 54.0±4.6
YN4207-2 544.2 237.6 0.44 184.9 600.0 104.3 34.07 0.59 32.1 54.8 3.3
表3 临沧花岗岩带锆石 (U-Th)/He定年结果 [ 58 ]
Table 3 The zircon (U-Th)/He results of the Lincang granite belt [ 58 ]
样品位置 样品编号 U/×10-6 Th/×10-6 Th/U eU/×10-6 [4He]/ncc 半径/μm Ft 原始年龄/Ma 矫正年龄/Ma

误差/

(Ma±1σ)

平均年龄/

(Ma±2σ)

南侧剖面样品 YN4192-1 1 303.2 202.2 0.16 1 350.8 10.708 63.90 0.79 26.7 34.0 0.6 36.5 ± 0.9
YN4192-2 1 151.4 174.9 0.15 1 192.5 27.068 78.10 0.82 31.4 38.3 1.7
YN4192-3 1 075.5 244.3 0.23 1 132.9 17.403 60.49 0.77 31.7 41.2 0.9
YN4192-4 1 250.3 361.3 0.29 1 335.2 12.994 59.85 0.77 28.2 36.6 0.8
YN4193-1 501.0 147.2 0.29 539.2 26.518 87.37 0.85 28.3 33.1 1.8 37.8 ± 1.7
YN4193-2 927.1 257.4 0.28 994.3 57.542 98.93 0.87 27.4 31.4 1.7
YN4193-3 730.3 209.7 0.29 784.9 58.711 89.27 0.86 37.5 43.7 2.4
YN4193-4 571.5 178.9 0.31 617.7 87.456 67.92 0.81 37.4 46.0 2.5
YN4193-5 564.3 135.7 0.24 600.3 84.213 86.22 0.85 36.8 43.2 2.3
YN4193-6 441.4 72.5 0.16 461.7 44.499 74.21 0.83 32.6 39.3 2.1
YN4194-1 290.0 49.1 0.17 303.6 13.492 55.76 0.77 33.7 43.6 2.4 41.0 ± 2.6
YN4194-2 2 084.4 166.1 0.08 2 138.6 73.573 70.38 0.82 30.3 37.0 2.0
YN4194-3 671.2 153.3 0.23 712.1 21.303 72.64 0.83 36.6 44.3 2.5
YN4195-1 1 912.5 152.8 0.08 1 948.4 38.221 77.63 0.82 30.1 36.7 0.8 36.0 ± 0.9
YN4195-2 1 284.9 169.8 0.13 1 324.8 54.238 97.15 0.85 31.2 36.6 1.6
YN4195-3 1 839.9 301.7 0.16 1 910.8 77.070 92.09 0.85 34.5 40.7 0.9
YN4195-4 1 636.7 237.5 0.15 1 692.5 26.939 72.71 0.81 22.9 28.4 1.8
YN4195-5 1 245.6 208.0 0.17 1 294.5 17.600 75.37 0.82 26.4 32.4 0.8
YN4196-1# 649.7 138.2 0.21 682.1 45.551 105.00 0.86 43.0 49.7 1.0 38.4 ± 0.8
YN4196-2 1 088.3 134.9 0.12 1 120.0 54.256 105.53 0.87 33.5 38.6 0.7
YN4196-3 655.3 154.3 0.24 691.6 42.957 108.69 0.87 34.7 40.0 0.8
YN4196-4 361.5 71.2 0.20 378.2 12.209 88.61 0.84 32.6 38.8 0.7
YN4196-5 641.7 102.4 0.16 665.8 14.158 77.14 0.82 29.3 35.8 0.8
YN4197-1 1 260.8 168.4 0.13 1 309.5 40.031 66.71 0.81 35.9 44.3 2.4 37.2 ± 1.8
YN4197-2 970.1 107.5 0.11 1 002.4 27.887 73.68 0.83 33.5 40.4 2.2
YN4197-3 1 574.8 93.8 0.06 1 608.3 46.683 68.60 0.82 32.9 40.4 2.2
YN4197-4 852.8 77.7 0.09 877.2 17.026 57.63 0.78 26.7 34.2 1.8
YN4197-5 592.1 170.6 0.29 636.5 16.180 73.65 0.83 26.9 32.5 1.7
YN4199-1 856.9 229.6 0.27 910.9 21.594 76.42 0.82 40.1 49.1 1.8 41.9 ± 0.9
YN4199-2 801.6 103.1 0.13 825.8 26.545 81.90 0.83 32.4 39.2 0.8
YN4199-3 1 058.1 291.8 0.28 1 126.7 28.384 68.09 0.79 39.6 49.9 1.1
YN4199-4 564.1 668.6 1.19 721.2 16.968 72.27 0.80 33.7 42.1 0.7
YN4199-5 1 068.7 104.2 0.10 1 093.1 15.885 65.97 0.79 28.6 36.3 1.1
YN41910-1 626.0 94.4 0.15 648.2 17.071 68.14 0.79 45.8 57.6 2.5 60.4 ± 1.4
YN41910-2 568.9 93.8 0.16 590.9 70.984 113.66 0.87 54.1 61.9 1.2
YN41910-3 585.3 76.9 0.13 603.4 36.143 80.76 0.82 47.2 57.3 1.3
YN41910-4 447.9 65.3 0.15 463.2 17.599 83.16 0.83 47.8 57.6 2.4
YN41910-5 739.4 60.0 0.08 753.5 38.027 92.86 0.85 55.2 65.0 1.7 52.7 ± 2.9
YN41911-1 894.6 135.9 0.15 933.0 20.068 53.66 0.76 38.4 50.4 2.8
YN41911-2 505.0 142.6 0.28 542.2 6.008 50.79 0.75 36.1 48.2 2.6
YN41911-3 353.2 162.1 0.46 393.8 5.673 49.81 0.74 40.2 54.0 2.9
YN41911-4 437.8 298.6 0.68 511 8.088 54.44 0.77 47.5 62.0 3.4
YN41912-1 386.7 112.6 0.29 413.1 11.863 72.41 0.80 37.0 46.0 2.0 49.4 ± 1.4
YN41912-2# 854.5 257.9 0.30 915.1 32.106 64.86 0.78 58.1 74.2 1.9
YN41912-3 243.4 22.9 0.09 248.7 6.426 77.42 0.82 40.1 48.9 2.1
YN41912-4 316.7 78.0 0.25 335.0 19.659 89.79 0.84 42.5 50.6 1.1
YN41912-5 780.2 118.8 0.15 808.1 17.192 72.51 0.81 40.0 49.4 1.2
北侧剖面样品 YN4201-1 1 101.2 150.2 0.14 1 136.5 20.364 63.36 0.78 53.7 68.5 1.4 64.3 ± 1.4
YN4201-2 294.0 56.8 0.19 307.4 27.283 107.81 0.87 58.5 67.3 1.3
YN4201-3 865.3 411.7 0.48 962.1 27.869 75.32 0.81 47.4 58.3 1.2
YN4201-4 1 053.8 211.7 0.20 1 103.6 30.307 69.15 0.80 51.7 64.7 1.8
YN4202-1 758.4 144.6 0.19 792.4 41.863 76.61 0.82 53.8 66.0 1.3 60.9 ± 1.3
YN4202-2 920.7 53.3 0.06 933.2 25.210 73.93 0.81 45.6 56.1 1.1
YN4202-3 669.8 202.5 0.30 717.4 20.376 70.32 0.80 59.3 73.9 3.1
YN4202-4 2 721.3 922.7 0.34 2 938.2 150.722 73.21 0.81 56.1 69.7 1.7
YN4202-5 796.5 58.4 0.07 810.2 18.849 67.22 0.79 43.9 55.4 1.2
YN4203-1 1 135.3 138.0 0.12 1 167.7 49.135 66.98 0.79 69.4 87.7 1.7 73.1 ± 1.6
YN4203-2 583.3 131.6 0.23 614.3 34.277 80.92 0.83 72.1 87.3 2.5
YN4203-3 1 276.5 60.9 0.05 1 290.8 28.953 60.45 0.77 50.8 65.9 1.5
YN4203-4 1 203.0 245.4 0.20 1 260.6 20.485 65.46 0.79 48.5 61.4 1.5
YN4203-5 2 495.7 335.5 0.13 2 574.5 125.918 74.58 0.81 62.7 77.3 2.2
YN4204-1 1 235.7 106.0 0.09 1 260.6 59.999 81.47 0.83 57.2 69.1 1.6 70.1 ± 1.5
YN4204-2 1 062.1 131.0 0.12 1 092.9 34.293 69.03 0.80 45.5 74.4 1.7
YN4204-3 583.3 118.7 0.20 611.2 22.788 75.53 0.81 59.4 63.7 1.3
YN4204-4 636.9 228.1 0.36 690.5 44.522 87.16 0.84 51.8 77.7 1.7
YN4205-1 1 989.6 396.0 0.20 2 082.7 115.749 84.60 0.83 66.7 80.0 0.9 81.7 ± 1.3
YN4205-2 753.5 265.8 0.35 816.0 65.111 95.12 0.85 70.1 82.4 1.9
YN4205-3 745.6 210.5 0.28 795.1 77.354 104.14 0.86 70.5 81.7 1.6
YN4205-4 638.0 219.8 0.34 689.7 35.004 83.34 0.83 66.9 80.5 2.2
YN4205-5 973.6 372.4 0.38 1 061.2 67.565 85.07 0.83 75.9 91.0 2.1
YN4207-1# 1 526.1 149.3 0.10 1 561.1 24.707 60.61 0.77 47.3 61.1 1.2 92.1 ± 3.5
YN4207-2 836.0 142.0 0.17 869.4 54.263 87.89 0.84 74.0 88.0 2.5
YN4207-3 1 418.7 235.3 0.17 1 474.0 101.849 77.23 0.82 78.3 95.8 2.4
YN4207-4# 3 765.9 653.8 0.17 3 919.5 54.291 69.69 0.80 23.5 29.5 1.0
表3 临沧花岗岩带锆石 (U-Th)/He定年结果 [ 58 ]
Table 3 The zircon (U-Th)/He results of the Lincang granite belt [ 58 ]
样品位置 样品编号 U/×10-6 Th/×10-6 Th/U eU/×10-6 [4He]/ncc 半径/μm Ft 原始年龄/Ma 矫正年龄/Ma

误差/

(Ma±1σ)

平均年龄/

(Ma±2σ)

南侧剖面样品 YN4192-1 1 303.2 202.2 0.16 1 350.8 10.708 63.90 0.79 26.7 34.0 0.6 36.5 ± 0.9
YN4192-2 1 151.4 174.9 0.15 1 192.5 27.068 78.10 0.82 31.4 38.3 1.7
YN4192-3 1 075.5 244.3 0.23 1 132.9 17.403 60.49 0.77 31.7 41.2 0.9
YN4192-4 1 250.3 361.3 0.29 1 335.2 12.994 59.85 0.77 28.2 36.6 0.8
YN4193-1 501.0 147.2 0.29 539.2 26.518 87.37 0.85 28.3 33.1 1.8 37.8 ± 1.7
YN4193-2 927.1 257.4 0.28 994.3 57.542 98.93 0.87 27.4 31.4 1.7
YN4193-3 730.3 209.7 0.29 784.9 58.711 89.27 0.86 37.5 43.7 2.4
YN4193-4 571.5 178.9 0.31 617.7 87.456 67.92 0.81 37.4 46.0 2.5
YN4193-5 564.3 135.7 0.24 600.3 84.213 86.22 0.85 36.8 43.2 2.3
YN4193-6 441.4 72.5 0.16 461.7 44.499 74.21 0.83 32.6 39.3 2.1
YN4194-1 290.0 49.1 0.17 303.6 13.492 55.76 0.77 33.7 43.6 2.4 41.0 ± 2.6
YN4194-2 2 084.4 166.1 0.08 2 138.6 73.573 70.38 0.82 30.3 37.0 2.0
YN4194-3 671.2 153.3 0.23 712.1 21.303 72.64 0.83 36.6 44.3 2.5
YN4195-1 1 912.5 152.8 0.08 1 948.4 38.221 77.63 0.82 30.1 36.7 0.8 36.0 ± 0.9
YN4195-2 1 284.9 169.8 0.13 1 324.8 54.238 97.15 0.85 31.2 36.6 1.6
YN4195-3 1 839.9 301.7 0.16 1 910.8 77.070 92.09 0.85 34.5 40.7 0.9
YN4195-4 1 636.7 237.5 0.15 1 692.5 26.939 72.71 0.81 22.9 28.4 1.8
YN4195-5 1 245.6 208.0 0.17 1 294.5 17.600 75.37 0.82 26.4 32.4 0.8
YN4196-1# 649.7 138.2 0.21 682.1 45.551 105.00 0.86 43.0 49.7 1.0 38.4 ± 0.8
YN4196-2 1 088.3 134.9 0.12 1 120.0 54.256 105.53 0.87 33.5 38.6 0.7
YN4196-3 655.3 154.3 0.24 691.6 42.957 108.69 0.87 34.7 40.0 0.8
YN4196-4 361.5 71.2 0.20 378.2 12.209 88.61 0.84 32.6 38.8 0.7
YN4196-5 641.7 102.4 0.16 665.8 14.158 77.14 0.82 29.3 35.8 0.8
YN4197-1 1 260.8 168.4 0.13 1 309.5 40.031 66.71 0.81 35.9 44.3 2.4 37.2 ± 1.8
YN4197-2 970.1 107.5 0.11 1 002.4 27.887 73.68 0.83 33.5 40.4 2.2
YN4197-3 1 574.8 93.8 0.06 1 608.3 46.683 68.60 0.82 32.9 40.4 2.2
YN4197-4 852.8 77.7 0.09 877.2 17.026 57.63 0.78 26.7 34.2 1.8
YN4197-5 592.1 170.6 0.29 636.5 16.180 73.65 0.83 26.9 32.5 1.7
YN4199-1 856.9 229.6 0.27 910.9 21.594 76.42 0.82 40.1 49.1 1.8 41.9 ± 0.9
YN4199-2 801.6 103.1 0.13 825.8 26.545 81.90 0.83 32.4 39.2 0.8
YN4199-3 1 058.1 291.8 0.28 1 126.7 28.384 68.09 0.79 39.6 49.9 1.1
YN4199-4 564.1 668.6 1.19 721.2 16.968 72.27 0.80 33.7 42.1 0.7
YN4199-5 1 068.7 104.2 0.10 1 093.1 15.885 65.97 0.79 28.6 36.3 1.1
YN41910-1 626.0 94.4 0.15 648.2 17.071 68.14 0.79 45.8 57.6 2.5 60.4 ± 1.4
YN41910-2 568.9 93.8 0.16 590.9 70.984 113.66 0.87 54.1 61.9 1.2
YN41910-3 585.3 76.9 0.13 603.4 36.143 80.76 0.82 47.2 57.3 1.3
YN41910-4 447.9 65.3 0.15 463.2 17.599 83.16 0.83 47.8 57.6 2.4
YN41910-5 739.4 60.0 0.08 753.5 38.027 92.86 0.85 55.2 65.0 1.7 52.7 ± 2.9
YN41911-1 894.6 135.9 0.15 933.0 20.068 53.66 0.76 38.4 50.4 2.8
YN41911-2 505.0 142.6 0.28 542.2 6.008 50.79 0.75 36.1 48.2 2.6
YN41911-3 353.2 162.1 0.46 393.8 5.673 49.81 0.74 40.2 54.0 2.9
YN41911-4 437.8 298.6 0.68 511 8.088 54.44 0.77 47.5 62.0 3.4
YN41912-1 386.7 112.6 0.29 413.1 11.863 72.41 0.80 37.0 46.0 2.0 49.4 ± 1.4
YN41912-2# 854.5 257.9 0.30 915.1 32.106 64.86 0.78 58.1 74.2 1.9
YN41912-3 243.4 22.9 0.09 248.7 6.426 77.42 0.82 40.1 48.9 2.1
YN41912-4 316.7 78.0 0.25 335.0 19.659 89.79 0.84 42.5 50.6 1.1
YN41912-5 780.2 118.8 0.15 808.1 17.192 72.51 0.81 40.0 49.4 1.2
北侧剖面样品 YN4201-1 1 101.2 150.2 0.14 1 136.5 20.364 63.36 0.78 53.7 68.5 1.4 64.3 ± 1.4
YN4201-2 294.0 56.8 0.19 307.4 27.283 107.81 0.87 58.5 67.3 1.3
YN4201-3 865.3 411.7 0.48 962.1 27.869 75.32 0.81 47.4 58.3 1.2
YN4201-4 1 053.8 211.7 0.20 1 103.6 30.307 69.15 0.80 51.7 64.7 1.8
YN4202-1 758.4 144.6 0.19 792.4 41.863 76.61 0.82 53.8 66.0 1.3 60.9 ± 1.3
YN4202-2 920.7 53.3 0.06 933.2 25.210 73.93 0.81 45.6 56.1 1.1
YN4202-3 669.8 202.5 0.30 717.4 20.376 70.32 0.80 59.3 73.9 3.1
YN4202-4 2 721.3 922.7 0.34 2 938.2 150.722 73.21 0.81 56.1 69.7 1.7
YN4202-5 796.5 58.4 0.07 810.2 18.849 67.22 0.79 43.9 55.4 1.2
YN4203-1 1 135.3 138.0 0.12 1 167.7 49.135 66.98 0.79 69.4 87.7 1.7 73.1 ± 1.6
YN4203-2 583.3 131.6 0.23 614.3 34.277 80.92 0.83 72.1 87.3 2.5
YN4203-3 1 276.5 60.9 0.05 1 290.8 28.953 60.45 0.77 50.8 65.9 1.5
YN4203-4 1 203.0 245.4 0.20 1 260.6 20.485 65.46 0.79 48.5 61.4 1.5
YN4203-5 2 495.7 335.5 0.13 2 574.5 125.918 74.58 0.81 62.7 77.3 2.2
YN4204-1 1 235.7 106.0 0.09 1 260.6 59.999 81.47 0.83 57.2 69.1 1.6 70.1 ± 1.5
YN4204-2 1 062.1 131.0 0.12 1 092.9 34.293 69.03 0.80 45.5 74.4 1.7
YN4204-3 583.3 118.7 0.20 611.2 22.788 75.53 0.81 59.4 63.7 1.3
YN4204-4 636.9 228.1 0.36 690.5 44.522 87.16 0.84 51.8 77.7 1.7
YN4205-1 1 989.6 396.0 0.20 2 082.7 115.749 84.60 0.83 66.7 80.0 0.9 81.7 ± 1.3
YN4205-2 753.5 265.8 0.35 816.0 65.111 95.12 0.85 70.1 82.4 1.9
YN4205-3 745.6 210.5 0.28 795.1 77.354 104.14 0.86 70.5 81.7 1.6
YN4205-4 638.0 219.8 0.34 689.7 35.004 83.34 0.83 66.9 80.5 2.2
YN4205-5 973.6 372.4 0.38 1 061.2 67.565 85.07 0.83 75.9 91.0 2.1
YN4207-1# 1 526.1 149.3 0.10 1 561.1 24.707 60.61 0.77 47.3 61.1 1.2 92.1 ± 3.5
YN4207-2 836.0 142.0 0.17 869.4 54.263 87.89 0.84 74.0 88.0 2.5
YN4207-3 1 418.7 235.3 0.17 1 474.0 101.849 77.23 0.82 78.3 95.8 2.4
YN4207-4# 3 765.9 653.8 0.17 3 919.5 54.291 69.69 0.80 23.5 29.5 1.0
表4 临沧花岗岩带磷灰石裂变径迹结果
Table 4 The apatite fission track results of Lincang granite belt
表4 临沧花岗岩带磷灰石裂变径迹结果
Table 4 The apatite fission track results of Lincang granite belt
图2 临沧花岗岩带磷灰石和锆石(U-Th)/He年龄-eU/有效半径关系图
(a)~(d)北侧剖面;(e)~(h)南侧剖面
Fig.2 AHe and ZHe ages versus effective uranium content [eU] and equivalent sphere radius for two transects from the Lincang granite belt
(a)~(d) Northern transect; (e)~(h) Southern transect
图2 临沧花岗岩带磷灰石和锆石(U-Th)/He年龄-eU/有效半径关系图
(a)~(d)北侧剖面;(e)~(h)南侧剖面
Fig.2 AHe and ZHe ages versus effective uranium content [eU] and equivalent sphere radius for two transects from the Lincang granite belt
(a)~(d) Northern transect; (e)~(h) Southern transect
图3 临沧花岗岩带磷灰石裂变径迹辐射图
Fig.3 Radial plots of six AFT samples from the Lincang granite belt
图3 临沧花岗岩带磷灰石裂变径迹辐射图
Fig.3 Radial plots of six AFT samples from the Lincang granite belt
图4 临沧花岗岩带磷灰石和锆石(U-Th)/He年龄—海拔关系图
(a)北侧剖面;(b)南侧剖面
Fig.4 Apatite and Zircon (U-Th)/He age versus elevation plots of Lincang granite belt
(a) Northern transect; (b) Southern transect
图4 临沧花岗岩带磷灰石和锆石(U-Th)/He年龄—海拔关系图
(a)北侧剖面;(b)南侧剖面
Fig.4 Apatite and Zircon (U-Th)/He age versus elevation plots of Lincang granite belt
(a) Northern transect; (b) Southern transect
图5 临沧花岗岩带磷灰石(U-Th)/He年龄—海拔关系图
Fig.5 The AHe age versus elevation plot the Lincang granite belt
图5 临沧花岗岩带磷灰石(U-Th)/He年龄—海拔关系图
Fig.5 The AHe age versus elevation plot the Lincang granite belt
图6 临沧花岗岩带AFT年龄—海拔关系图
Fig.6 The AFT age versus elevation plot of the Lincang granite belt
图6 临沧花岗岩带AFT年龄—海拔关系图
Fig.6 The AFT age versus elevation plot of the Lincang granite belt
图7 南侧剖面伪海拔—年龄关系图
Fig.7 The age versus Pseudo-elevation plot of the southern section
图7 南侧剖面伪海拔—年龄关系图
Fig.7 The age versus Pseudo-elevation plot of the southern section
图8 临沧花岗岩带北、南剖面热历史模拟
(a)北侧剖面;(b)南侧剖面;青色线和品红线是关于最冷(蓝线)和最热(红线)样品热史的95%可信区间。AHePRZ: 磷灰石(U-Th)/He部分保存带;ZHePRZ:锆石(U-Th)/He部分保存带;AFTPAZ:磷灰石裂变径迹部分退火带
Fig.8 The thermal histories for the northern transect and southern transect from the Lincang granite belt
(a)Northern transect;(b)Southern transect;The cyan and magenta lines are the 95% credible intervals about the coldest (blue line) and hottest (red line) sample thermal histories.AHePRZ: Apatite He Partial Retention Zone; ZHePRZ: Zircon He Partial Retention Zone; AFTPAZ: Apatite Fission Track Partial Annealing Zone
图8 临沧花岗岩带北、南剖面热历史模拟
(a)北侧剖面;(b)南侧剖面;青色线和品红线是关于最冷(蓝线)和最热(红线)样品热史的95%可信区间。AHePRZ: 磷灰石(U-Th)/He部分保存带;ZHePRZ:锆石(U-Th)/He部分保存带;AFTPAZ:磷灰石裂变径迹部分退火带
Fig.8 The thermal histories for the northern transect and southern transect from the Lincang granite belt
(a)Northern transect;(b)Southern transect;The cyan and magenta lines are the 95% credible intervals about the coldest (blue line) and hottest (red line) sample thermal histories.AHePRZ: Apatite He Partial Retention Zone; ZHePRZ: Zircon He Partial Retention Zone; AFTPAZ: Apatite Fission Track Partial Annealing Zone
图9 青藏高原东南缘晚始新世(a)、渐新世(b)、中中新世(c)以及现今(d)形变示意图[ 72 ~ 74 ]
LCF: 澜沧江断裂; ALSRR: 哀牢山—红河剪切带
Fig.9 Schematic map showing the deformation in the SE Tibetan Plateau at Late Eocene (a), Oligocene (b), Middle Miocene (c) and present (d)[ 72 ~ 74 ]
LCF: Lancang Fault; ALSRR: Ailao Shan-Red Rvier shear zone
图9 青藏高原东南缘晚始新世(a)、渐新世(b)、中中新世(c)以及现今(d)形变示意图[ 72 ~ 74 ]
LCF: 澜沧江断裂; ALSRR: 哀牢山—红河剪切带
Fig.9 Schematic map showing the deformation in the SE Tibetan Plateau at Late Eocene (a), Oligocene (b), Middle Miocene (c) and present (d)[ 72 ~ 74 ]
LCF: Lancang Fault; ALSRR: Ailao Shan-Red Rvier shear zone
1 MOLNAR P,TAPPONNIER P. Cenozoic tectonics of Asia:Effects of a continental collision:Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science,1975,189(4 201):419-426.
MOLNAR P,TAPPONNIER P. Cenozoic tectonics of Asia:Effects of a continental collision:Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science,1975,189(4 201):419-426.
2 TAPPONNIER P,XU Zhiqin,ROGER F,et al. Oblique stepwiserise and growth of the Tibet Plateau[J]. Science,2001,294(5 547):1 671-1 677.
TAPPONNIER P,XU Zhiqin,ROGER F,et al. Oblique stepwiserise and growth of the Tibet Plateau[J]. Science,2001,294(5 547):1 671-1 677.
3 YIN An,HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28(1):211-280.
YIN An,HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28(1):211-280.
4 BAI Ling,SONG Bowen,LI Guohui,et al. Seismic activity in the Himalayan orogenic belt and its related geohazards[J]. Advances in Earth Science,2019,34(6):629-639.
BAI Ling,SONG Bowen,LI Guohui,et al. Seismic activity in the Himalayan orogenic belt and its related geohazards[J]. Advances in Earth Science,2019,34(6):629-639.
白玲,宋博文,李国辉,等. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展,2019,34(6):629-639.
白玲,宋博文,李国辉,等. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展,2019,34(6):629-639.
5 LI Jijun,FANG Xiaomin. Study on the uplift of Qinghai-Tibetan Plateau and environmental change[J]. Chinese Science Bulletin,1998,43(15):1 568-1 574.
LI Jijun,FANG Xiaomin. Study on the uplift of Qinghai-Tibetan Plateau and environmental change[J]. Chinese Science Bulletin,1998,43(15):1 568-1 574.
李吉均,方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报,1998,43(15):1 568-1 574.
李吉均,方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报,1998,43(15):1 568-1 574.
6 LIU Dongsheng,ZHENG Mianping,GUO Zhengtang. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia[J]. Quaternary Sciences,1998,3:194-204.
LIU Dongsheng,ZHENG Mianping,GUO Zhengtang. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia[J]. Quaternary Sciences,1998,3:194-204.
刘东生,郑绵平,郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究,1998,3:194-204.
刘东生,郑绵平,郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究,1998,3:194-204.
7 PAN Baotian,LI Jijun,CHEN Fahu.Qinghai-Tibetan Plateau:A driver and amplifier of global climatic changes[J]. Journal of Lanzhou University (Natural Sciences),1995,31(3):120-128.
PAN Baotian,LI Jijun,CHEN Fahu.Qinghai-Tibetan Plateau:A driver and amplifier of global climatic changes[J]. Journal of Lanzhou University (Natural Sciences),1995,31(3):120-128.
潘保田,李吉均,陈发虎. 青藏高原:全球气候变化的驱动机与放大器——Ⅰ新生代气候变化的基本特征[J]. 兰州大学学报:自然科学版,1995,31(3):120-128.
潘保田,李吉均,陈发虎. 青藏高原:全球气候变化的驱动机与放大器——Ⅰ新生代气候变化的基本特征[J]. 兰州大学学报:自然科学版,1995,31(3):120-128.
8 PAN Baotian,LI Jijun,CHEN Fahu. Qinghai-Xizang (Tibetan):A driver and amplifier of global climatic changes[J]. Journal of Lanzhou University (Natural Sciences),1995,31(4):160-167.
PAN Baotian,LI Jijun,CHEN Fahu. Qinghai-Xizang (Tibetan):A driver and amplifier of global climatic changes[J]. Journal of Lanzhou University (Natural Sciences),1995,31(4):160-167.
潘保田,李吉均,陈发虎. 青藏高原:全球气候变化的驱动机与放大器——Ⅱ青藏高原隆起的基本过程[J]. 兰州大学学报:自然科学版,1995,31(4):160-167.
潘保田,李吉均,陈发虎. 青藏高原:全球气候变化的驱动机与放大器——Ⅱ青藏高原隆起的基本过程[J]. 兰州大学学报:自然科学版,1995,31(4):160-167.
9 PAN Baotian,LI Jijun,CHEN Fahu. Qinghai-Tibetan Plateau:A driver and amplifier of global climatic changes[J]. Journal of Lanzhou University (Natural Sciences),1996,32(1):108-115.
PAN Baotian,LI Jijun,CHEN Fahu. Qinghai-Tibetan Plateau:A driver and amplifier of global climatic changes[J]. Journal of Lanzhou University (Natural Sciences),1996,32(1):108-115.
潘保田,李吉均,陈发虎. 青藏高原:全球气候变化的驱动机与放大器——Ⅲ.青藏高原隆起对气候变化的影响[J]. 兰州大学学报:自然科学版,1996,32(1):108-115.
潘保田,李吉均,陈发虎. 青藏高原:全球气候变化的驱动机与放大器——Ⅲ.青藏高原隆起对气候变化的影响[J]. 兰州大学学报:自然科学版,1996,32(1):108-115.
10 AN Zhisheng,JOHN E K,WARREN L P,et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature,2001,411:62-66.
AN Zhisheng,JOHN E K,WARREN L P,et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature,2001,411:62-66.
11 WANG Xiuxi.Applications of low temperature thermochronology in the tectonogeomorphology evolution of the Tibetan Plateau[J]. Advances in Earth Science,2017,32(3):234-244.
WANG Xiuxi.Applications of low temperature thermochronology in the tectonogeomorphology evolution of the Tibetan Plateau[J]. Advances in Earth Science,2017,32(3):234-244.
王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展,2017,32(3):234-244.
王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展,2017,32(3):234-244.
12 CLARK M K,ROYDEN L H. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology,2000,28(8):703-706.
CLARK M K,ROYDEN L H. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology,2000,28(8):703-706.
13 DUPONT-NIVET G,KRIJGSMAN W,LANGEREIS C G,et al. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature,2007,445:635-638.
DUPONT-NIVET G,KRIJGSMAN W,LANGEREIS C G,et al. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature,2007,445:635-638.
14 HARRISON T M,CHEN Wenji,LELOUP P H,et al. An early Miocene transition in deformation regime within the Red River fault zone,Yunnan,and its significance for Indo-Asian tectonics[J]. Journal of Geophysical Research:Solid Earth,1992,97(B5):7 159-7 182.
HARRISON T M,CHEN Wenji,LELOUP P H,et al. An early Miocene transition in deformation regime within the Red River fault zone,Yunnan,and its significance for Indo-Asian tectonics[J]. Journal of Geophysical Research:Solid Earth,1992,97(B5):7 159-7 182.
15 MOLNAR P,ENGLAND P,MARTINOD J. Mantle dynamics,uplift of the Tibetan Plateau,and the Indian Monsoon[J]. Reviews of Geophysics,1993,31(4):357-396.
MOLNAR P,ENGLAND P,MARTINOD J. Mantle dynamics,uplift of the Tibetan Plateau,and the Indian Monsoon[J]. Reviews of Geophysics,1993,31(4):357-396.
16 ROYDEN L H,BURCHFIEL B C,KING R W,et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science,1997,276(5 313):788-790.
ROYDEN L H,BURCHFIEL B C,KING R W,et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science,1997,276(5 313):788-790.
17 FANG Xiaomin.Phased uplift of the Tibetan Plateau[J]. Science and Technology Review,2017,35(6):42-50.
FANG Xiaomin.Phased uplift of the Tibetan Plateau[J]. Science and Technology Review,2017,35(6):42-50.
方小敏. 青藏高原隆升阶段性[J]. 科技导报,2017,35(6):42-50.
方小敏. 青藏高原隆升阶段性[J]. 科技导报,2017,35(6):42-50.
18 ZHANG Bo,ZHANG Jinjiang,ZHONG Dalai,et al. Architecture,kinematics and thermochronology analysis in Lancangjiang Structural Zone,in western Yunnan[J]. Chinese Journal of Geology,2009,44(3):889-909.
ZHANG Bo,ZHANG Jinjiang,ZHONG Dalai,et al. Architecture,kinematics and thermochronology analysis in Lancangjiang Structural Zone,in western Yunnan[J]. Chinese Journal of Geology,2009,44(3):889-909.
张波,张进江,钟大赉,等.滇西澜沧江构造带及邻区几何学、运动学和构造年代学分析[J]. 地质科学,2009,44(3):889-909.
张波,张进江,钟大赉,等.滇西澜沧江构造带及邻区几何学、运动学和构造年代学分析[J]. 地质科学,2009,44(3):889-909.
19 CAO Kai,WANG Guocan,LELOUP P H,et al. Oligocene-Early Miocene topographic relief generation of southeastern Tibet triggered by thrusting[J]. Tectonics,2019,38(1):374-391.
CAO Kai,WANG Guocan,LELOUP P H,et al. Oligocene-Early Miocene topographic relief generation of southeastern Tibet triggered by thrusting[J]. Tectonics,2019,38(1):374-391.
20 LIU Jing,ZHANG Jinyu,MCPHOLLIPS D,et al. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet,revealed by low-temperature thermochronology[J]. Earth and Planetary Science Letters,2018,490:62-76.
LIU Jing,ZHANG Jinyu,MCPHOLLIPS D,et al. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet,revealed by low-temperature thermochronology[J]. Earth and Planetary Science Letters,2018,490:62-76.
21 OUIMET W,WHIPPLE K,ROYDEN L,et al. Regional incision of the eastern margin of the Tibetan Plateau[J]. Lithosphere,2010,2:50-63.
OUIMET W,WHIPPLE K,ROYDEN L,et al. Regional incision of the eastern margin of the Tibetan Plateau[J]. Lithosphere,2010,2:50-63.
22 REPLUMAZ A,JOSE M SAN,MARGIRIER A,et al. Tectonic control on rapid late Miocene-Quaternary incision of the Mekong River knickzone,Southeast Tibetan Plateau[J]. Tectonics,2020,39(2). DOI:10.1029/2019TC005782.
REPLUMAZ A,JOSE M SAN,MARGIRIER A,et al. Tectonic control on rapid late Miocene-Quaternary incision of the Mekong River knickzone,Southeast Tibetan Plateau[J]. Tectonics,2020,39(2). DOI:10.1029/2019TC005782.
doi: 10.1029/2019TC005782.    
23 WANG Gang,WAN Jinglin,WANG Erqi,et al. Late Cenozoic to recent transtensional deformation across the Southern part of the Gaoligong shear zone between the Indian plate and SE margin of the Tibetan Plateau and its tectonic origin[J]. Tectonophysics,2008,460:1-20.
WANG Gang,WAN Jinglin,WANG Erqi,et al. Late Cenozoic to recent transtensional deformation across the Southern part of the Gaoligong shear zone between the Indian plate and SE margin of the Tibetan Plateau and its tectonic origin[J]. Tectonophysics,2008,460:1-20.
24 WANG Yang,ZHANG Bo,SCHOENBOHM L M,et al. Late Cenozoic tectonic evolution of the Ailao Shan-Red River fault (SE Tibet):Implications for kinematic change during plateau growth[J]. Tectonics,2016,35:1 969-1 988.
WANG Yang,ZHANG Bo,SCHOENBOHM L M,et al. Late Cenozoic tectonic evolution of the Ailao Shan-Red River fault (SE Tibet):Implications for kinematic change during plateau growth[J]. Tectonics,2016,35:1 969-1 988.
25 WANG Yang,ZHANG Peizhen,SCHOENBOHM L M,et al.Two-phase exhumation along major shear zones in the SE Tibetan Plateau in the Late Cenozoic[J]. Tectonics,2018,37:2 675-2 694.
WANG Yang,ZHANG Peizhen,SCHOENBOHM L M,et al.Two-phase exhumation along major shear zones in the SE Tibetan Plateau in the Late Cenozoic[J]. Tectonics,2018,37:2 675-2 694.
26 WANG Yang,WANG Yuejun,ZHANG Peizhen,et al. Intracontinental deformation within the India-Eurasia oblique convergence zone:Case studies on the Nantinghe and Dayingjiang faults[J]. Geological Society of America Bulletin,2020,132(3/4):850-862.
WANG Yang,WANG Yuejun,ZHANG Peizhen,et al. Intracontinental deformation within the India-Eurasia oblique convergence zone:Case studies on the Nantinghe and Dayingjiang faults[J]. Geological Society of America Bulletin,2020,132(3/4):850-862.
27 REN Longlong,ZHANG Bo,ZHENG Dewen,et al. Tectonic transformation and its exhumation history of the Ailao Shan-Red River shear zone in Oligocene:Evidences from apatite fission track thermochronology of the southern segment of the Ailao Shan range[J]. Acta Petrologica Sinica,2020,36(6): 1 787-1 802.
REN Longlong,ZHANG Bo,ZHENG Dewen,et al. Tectonic transformation and its exhumation history of the Ailao Shan-Red River shear zone in Oligocene:Evidences from apatite fission track thermochronology of the southern segment of the Ailao Shan range[J]. Acta Petrologica Sinica,2020,36(6): 1 787-1 802.
任龙龙,张波,郑德文,等. 哀牢山—红河剪切带渐新世的构造体制转换与剥露历史:来自哀牢山南段磷灰石裂变径迹的证据[J].岩石学报,2020,36(6):1 787-1 802.
任龙龙,张波,郑德文,等. 哀牢山—红河剪切带渐新世的构造体制转换与剥露历史:来自哀牢山南段磷灰石裂变径迹的证据[J].岩石学报,2020,36(6):1 787-1 802.
28 GE Yukui,LIU Jing,ZHANG Jinyu,et al. Spatio-temporal variation in rock exhumation linked to large-scale shear zones in the southeastern Tibetan Plateau[J]. Science China Earth Sciences,2020,63(4):512-532.
GE Yukui,LIU Jing,ZHANG Jinyu,et al. Spatio-temporal variation in rock exhumation linked to large-scale shear zones in the southeastern Tibetan Plateau[J]. Science China Earth Sciences,2020,63(4):512-532.
29 NIE Junsheng,RUETENIK G,GALLAGHER K,et al. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation[J]. Nature Geoscience,2018,11:944-948.
NIE Junsheng,RUETENIK G,GALLAGHER K,et al. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation[J]. Nature Geoscience,2018,11:944-948.
30 Xiong OU,REPLUMAZ A,BEEK P VAN DER. Contrasting exhumation histories and relief development within the Three Rivers Region (Southeast Tibet)[J]. Solid Earth Discuss,2020. DOI:10.5194/se-2020-172.
Xiong OU,REPLUMAZ A,BEEK P VAN DER. Contrasting exhumation histories and relief development within the Three Rivers Region (Southeast Tibet)[J]. Solid Earth Discuss,2020. DOI:10.5194/se-2020-172.
doi: 10.5194/se-2020-172.    
31 DONG Guochen,MO Xuanxue,ZHAO Zhidan,et al. Zircon U-Pb dating and the petrological and geochemical constraints on Lincang granite in Western Yunnan,China:Implications for the closure of the Paleo-Tethys Ocean[J]. Journal of Asian Earth Sciences,2013,62:282-294.
DONG Guochen,MO Xuanxue,ZHAO Zhidan,et al. Zircon U-Pb dating and the petrological and geochemical constraints on Lincang granite in Western Yunnan,China:Implications for the closure of the Paleo-Tethys Ocean[J]. Journal of Asian Earth Sciences,2013,62:282-294.
32 SHI Xiaobin,QIU Xuelin,LIU Hailing,et al. Cenozoic cooling history of Lincang granitoid batholith,western Yunnan:Evidence from fission track data[J]. Chinese Journal of Geophysics,2006,49(1):129-137.
SHI Xiaobin,QIU Xuelin,LIU Hailing,et al. Cenozoic cooling history of Lincang granitoid batholith,western Yunnan:Evidence from fission track data[J]. Chinese Journal of Geophysics,2006,49(1):129-137.
33 FAN Weiming,PENG Touping,WANG Yuejun. Triassic magmatism in the southern Lancangjiang zone,southwestern China and its constraints on the tectonic evolution of Paleo-Tethys[J].Earth Science Frontiers,2009,16(6):291-302.
FAN Weiming,PENG Touping,WANG Yuejun. Triassic magmatism in the southern Lancangjiang zone,southwestern China and its constraints on the tectonic evolution of Paleo-Tethys[J].Earth Science Frontiers,2009,16(6):291-302.
范蔚茗,彭头平,王岳军. 滇西古特提斯俯冲—碰撞过程的岩浆作用记录[J].地学前缘,2009,16(6):291-302.
范蔚茗,彭头平,王岳军. 滇西古特提斯俯冲—碰撞过程的岩浆作用记录[J].地学前缘,2009,16(6):291-302.
34 FAN Weiming,WANG Yuejun,ZHANG Yanhua,et al. Paleotethyan subduction process revealed from Triassic blueschists in the Lancang tectonic belt of Southwest China[J]. Tectonophysics,2015,662:95-108.
FAN Weiming,WANG Yuejun,ZHANG Yanhua,et al. Paleotethyan subduction process revealed from Triassic blueschists in the Lancang tectonic belt of Southwest China[J]. Tectonophysics,2015,662:95-108.
35 YANG Zhende. A huge granite nappe[J]. Yunnan Geology,1995,14(2):99-108.
YANG Zhende. A huge granite nappe[J]. Yunnan Geology,1995,14(2):99-108.
杨振德. 一条巨型花岗岩推覆体[J].云南地质,1995,14(2):99-108.
杨振德. 一条巨型花岗岩推覆体[J].云南地质,1995,14(2):99-108.
36 YANG Zhende. Thrust-imbricate structure and nappe of Lincang granite[J]. Scientia Geologica Sinica,1996,31(2):130-139.
YANG Zhende. Thrust-imbricate structure and nappe of Lincang granite[J]. Scientia Geologica Sinica,1996,31(2):130-139.
杨振德. 云南临沧花岗岩的冲断叠瓦构造与推覆构造[J].地质科学,1996,31(2):130-139.
杨振德. 云南临沧花岗岩的冲断叠瓦构造与推覆构造[J].地质科学,1996,31(2):130-139.
37 DUAN Jianzhong. Characteristics of Cenozoic strike-slip (transformation) convergence structure in Sanjiang area,Western Yunnan[J]. Yunnan Geology,1999,18(2):99-111.
DUAN Jianzhong. Characteristics of Cenozoic strike-slip (transformation) convergence structure in Sanjiang area,Western Yunnan[J]. Yunnan Geology,1999,18(2):99-111.
段建中. 滇西三江地区新生代走滑(转换)会聚构造特征[J]. 云南地质,1999,18(2):99-111.
段建中. 滇西三江地区新生代走滑(转换)会聚构造特征[J]. 云南地质,1999,18(2):99-111.
38 DUAN Jianzhong,TAN Xiaohong. The nature and feature of Cenozoic main strike-slip fault in the three-river area of west Yunnan[J]. Yunnan Geology,2000,19(1):8-23.
DUAN Jianzhong,TAN Xiaohong. The nature and feature of Cenozoic main strike-slip fault in the three-river area of west Yunnan[J]. Yunnan Geology,2000,19(1):8-23.
段建中,谭筱虹. 滇西三江地区亲生代主要走滑断裂性质及特征[J]. 云南地质,2000,19(1):8-23.
段建中,谭筱虹. 滇西三江地区亲生代主要走滑断裂性质及特征[J]. 云南地质,2000,19(1):8-23.
39 LI Guangxun. A preliminary study of some thrust-nappe structures in Lanping Basin[J]. Yunnan Geology,1994,13(2):203-215.
LI Guangxun. A preliminary study of some thrust-nappe structures in Lanping Basin[J]. Yunnan Geology,1994,13(2):203-215.
李光勋. 兰坪盆地某些逆冲推覆构造研究[J]. 云南地质,1994,13(2):203-215.
李光勋. 兰坪盆地某些逆冲推覆构造研究[J]. 云南地质,1994,13(2):203-215.
40 WU Genyao. Tertiary thrusting-nappe structures in northwest Yunnan,China[J]. Geotectonica et Metallogenia,1994,4:331-338.
WU Genyao. Tertiary thrusting-nappe structures in northwest Yunnan,China[J]. Geotectonica et Metallogenia,1994,4:331-338.
吴根耀. 滇西北地区第三纪的逆冲—推覆构造[J]. 大地构造与成矿学,1994,4:331-338.
吴根耀. 滇西北地区第三纪的逆冲—推覆构造[J]. 大地构造与成矿学,1994,4:331-338.
41 WU Zhonghai,LONG Changxing,FAN Taoyuan,et al. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China,2015,34(1):1-31.
WU Zhonghai,LONG Changxing,FAN Taoyuan,et al. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China,2015,34(1):1-31.
吴中海,龙长兴,范桃园,等. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报,2015,134(1):1-31.
吴中海,龙长兴,范桃园,等. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报,2015,134(1):1-31.
42 BURCHFIEL B C,CHEN Zhiliang. Tectonics of the Southeastern Tibetan Plateau and its adjacent foreland[M]//Medaris L G. Geological Society of America Memoirs,2012.
BURCHFIEL B C,CHEN Zhiliang. Tectonics of the Southeastern Tibetan Plateau and its adjacent foreland[M]//Medaris L G. Geological Society of America Memoirs,2012.
43 AKCIZ S,BURCHFIEL B C,CROWLEY J L,et al. Geometry,kinematics,and regional significance of the Chong Shan shear zone,Eastern Himalayan Syntaxis,Yunnan,China[J]. Geosphere,2008,4(1):292-314.
AKCIZ S,BURCHFIEL B C,CROWLEY J L,et al. Geometry,kinematics,and regional significance of the Chong Shan shear zone,Eastern Himalayan Syntaxis,Yunnan,China[J]. Geosphere,2008,4(1):292-314.
44 CAO Shuyun,NEUBAUER F,LIU Junlai,et al. Exhumation of the Diancang Shan metamorphic complex along the Ailao Shan-Red River belt,southwestern Yunnan,China:Evidence from 40Ar/39Ar thermochronology[J]. Journal of Asian Earth Sciences,2011,42(3):525-550.
CAO Shuyun,NEUBAUER F,LIU Junlai,et al. Exhumation of the Diancang Shan metamorphic complex along the Ailao Shan-Red River belt,southwestern Yunnan,China:Evidence from 40Ar/39Ar thermochronology[J]. Journal of Asian Earth Sciences,2011,42(3):525-550.
45 WANG Erqi,BURCHFIEL B C. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the Eastern Himalayan Syntaxis[J].International Geology Review,1997,39(3):191-219.
WANG Erqi,BURCHFIEL B C. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the Eastern Himalayan Syntaxis[J].International Geology Review,1997,39(3):191-219.
46 WANG Yuejun,FAN Weiming,ZHANG Yanhua,et al. Kinematics and 40Ar/39Ar geochronology of the Gaoligong and Chongshan shear systems,western Yunnan,China:Implications for early Oligocene tectonic extrusion of SE Asia[J]. Tectonophysics,2006,418(3):235-254.
WANG Yuejun,FAN Weiming,ZHANG Yanhua,et al. Kinematics and 40Ar/39Ar geochronology of the Gaoligong and Chongshan shear systems,western Yunnan,China:Implications for early Oligocene tectonic extrusion of SE Asia[J]. Tectonophysics,2006,418(3):235-254.
47 ZHANG Bo,ZHANG Jinjiang,ZHONG Dalai. Structure,kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone,western Yunnan,China[J]. Journal of Structural Geology,2010,32(4):445-463.
ZHANG Bo,ZHANG Jinjiang,ZHONG Dalai. Structure,kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone,western Yunnan,China[J]. Journal of Structural Geology,2010,32(4):445-463.
48 LELOUP P H,ARNAUD N,LACASSIN R,et al. New constraints on the structure,thermochronology,and timing of the Ailao Shan-Red River shear Zone,SE Asia[J]. Journal of Geophysical Research:Solid Earth,2001,106(B4):6 683-6 732.
LELOUP P H,ARNAUD N,LACASSIN R,et al. New constraints on the structure,thermochronology,and timing of the Ailao Shan-Red River shear Zone,SE Asia[J]. Journal of Geophysical Research:Solid Earth,2001,106(B4):6 683-6 732.
49 LELOUP P H,HARRISON T M,RYERSON F J,et al. Structural,petrological and thermal evolution of a Tertiary ductile strike-slip-shear zone,Diancang Shan,Yunnan[J]. Journal of Geophysical Research:Solid Earth,1993,98(B4):6 715-6 743.
LELOUP P H,HARRISON T M,RYERSON F J,et al. Structural,petrological and thermal evolution of a Tertiary ductile strike-slip-shear zone,Diancang Shan,Yunnan[J]. Journal of Geophysical Research:Solid Earth,1993,98(B4):6 715-6 743.
50 LELOUP P H,LACASSIN R,TAPPONNIER P,et al. The Ailao Shan-Red River shear zone (Yunnan,China),Tertiary transform boundary of Indochina[J]. Tectonophysics,1995,251(1/4):3-10.
LELOUP P H,LACASSIN R,TAPPONNIER P,et al. The Ailao Shan-Red River shear zone (Yunnan,China),Tertiary transform boundary of Indochina[J]. Tectonophysics,1995,251(1/4):3-10.
51 GILLEY L D,HARRISON T M,LELOUP P H,et al. Direct dating of left-lateral deformation along the Red River shear zone,China and Vietnam[J]. Journal of Geophysical Research:Solid Earth,2003,108(B2). DOI:10.1029/2001JB001726.
GILLEY L D,HARRISON T M,LELOUP P H,et al. Direct dating of left-lateral deformation along the Red River shear zone,China and Vietnam[J]. Journal of Geophysical Research:Solid Earth,2003,108(B2). DOI:10.1029/2001JB001726.
doi: 10.1029/2001JB001726.    
52 LIU Jing,TAPPONNIER P,Gaudemer Y,et al. Quantifying landscape differences across the Tibetan Plateau:Implications for topographic relief evolution[J]. Journal of Geophysical Research:Earth Surface, 2008,113(F4). DOI:10.1029/2007JF000897.
LIU Jing,TAPPONNIER P,Gaudemer Y,et al. Quantifying landscape differences across the Tibetan Plateau:Implications for topographic relief evolution[J]. Journal of Geophysical Research:Earth Surface, 2008,113(F4). DOI:10.1029/2007JF000897.
doi: 10.1029/2007JF000897.    
53 YANG R,FELLIN M G,HERMAN F,et al.Spatial and temporal pattern of erosion in the Three Rivers Region,southeastern Tibet[J]. Earth and Planetary Science Letters,2016,433:10-20.
YANG R,FELLIN M G,HERMAN F,et al.Spatial and temporal pattern of erosion in the Three Rivers Region,southeastern Tibet[J]. Earth and Planetary Science Letters,2016,433:10-20.
54 HENNIG D,LEHMANN B,FREI D,et al. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys:U-Pb age and Nd-Sr isotope data from the southern Lancangjiang zone,Yunnan,China[J]. Lithos,2009,113(3/4):408-422.
HENNIG D,LEHMANN B,FREI D,et al. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys:U-Pb age and Nd-Sr isotope data from the southern Lancangjiang zone,Yunnan,China[J]. Lithos,2009,113(3/4):408-422.
55 BENJAMIN M T,JOHNSON N M,NAESER C W. Recent rapid uplift in the Bolivian Andes:Evidence from fission-track dating[J]. Geology,1987,15(7):680-683.
BENJAMIN M T,JOHNSON N M,NAESER C W. Recent rapid uplift in the Bolivian Andes:Evidence from fission-track dating[J]. Geology,1987,15(7):680-683.
56 FITZGERALD P G,SANDIFORD M,BARRETT P J,et al.Asymmetric extension associated with uplift and subsidence in the Transantarctic Mountains and Ross Embayment[J]. Earth and Planetary Science Letters,1986,81(1):67-78.
FITZGERALD P G,SANDIFORD M,BARRETT P J,et al.Asymmetric extension associated with uplift and subsidence in the Transantarctic Mountains and Ross Embayment[J]. Earth and Planetary Science Letters,1986,81(1):67-78.
57 WILDMAN M,BROWN R,BEUCHER R,et al. The chronology and tectonic style of landscape evolution along the elevated Atlantic continental margin of South Africa resolved by joint apatite fission track and (U-Th-Sm)/He thermochronology[J]. Tectonics,2016,35(3):511-545.
WILDMAN M,BROWN R,BEUCHER R,et al. The chronology and tectonic style of landscape evolution along the elevated Atlantic continental margin of South Africa resolved by joint apatite fission track and (U-Th-Sm)/He thermochronology[J]. Tectonics,2016,35(3):511-545.
58 LIU Fangbin,DANISIK M,ZHENG Dewen,et al. Distinguishing tectonic versus climatic forcing on landscape evolution: An example from SE Tibetan Plateau[J]. Geological Society of America Bulletin,2020,133(1/2):233-242.
LIU Fangbin,DANISIK M,ZHENG Dewen,et al. Distinguishing tectonic versus climatic forcing on landscape evolution: An example from SE Tibetan Plateau[J]. Geological Society of America Bulletin,2020,133(1/2):233-242.
59 HURFORD A J,GREEN P F. The zeta age calibration of fission-track dating[J]. Chemical Geology,1983,41:285-317.
HURFORD A J,GREEN P F. The zeta age calibration of fission-track dating[J]. Chemical Geology,1983,41:285-317.
60 PANG Jianzhang,YU Jingxing,ZHENG Dewen,et al. Constraints of new apatite fission-track ages on the tectonic pattern and geomorphic development of the northern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences,2019,181. DOI:10.1016/j.jseaes.2019.103909.
PANG Jianzhang,YU Jingxing,ZHENG Dewen,et al. Constraints of new apatite fission-track ages on the tectonic pattern and geomorphic development of the northern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences,2019,181. DOI:10.1016/j.jseaes.2019.103909.
doi: 10.1016/j.jseaes.2019.103909.    
61 SHUSTER D L,FARELY K A. The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite[J]. Geochimica et Cosmochimica Acta,2009,73(1):183-196.
SHUSTER D L,FARELY K A. The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite[J]. Geochimica et Cosmochimica Acta,2009,73(1):183-196.
62 GLEADOW A J W,DUDDY I R,GREEN P F,et al. Confined fission track lengths in apatite:A diagnostic tool for thermal history analysis[J]. Contributions to Mineralogy Petrology,1986,94(4):405-415.
GLEADOW A J W,DUDDY I R,GREEN P F,et al. Confined fission track lengths in apatite:A diagnostic tool for thermal history analysis[J]. Contributions to Mineralogy Petrology,1986,94(4):405-415.
63 BRAUN J. Estimating exhumation rate and relief evolution by spectral analysis of age-elevation datasets[J]. Terra Nova,2010,14(3):210-214.
BRAUN J. Estimating exhumation rate and relief evolution by spectral analysis of age-elevation datasets[J]. Terra Nova,2010,14(3):210-214.
64 BRAUN J. Quantifying the effect of recent relief changes on age-elevation relationships[J]. Earth and Planetary Science Letters,2002,200(3/4):331-343.
BRAUN J. Quantifying the effect of recent relief changes on age-elevation relationships[J]. Earth and Planetary Science Letters,2002,200(3/4):331-343.
65 KANG Wenjun,XU Xiwei,YU Guihua,et al. Differential late-Cenozoic uplift across the Dongjiu-Milin Fault Zone in the Eastern Himalayan Syntaxis revealed by low-temperature thermochronology[J]. Journal of Asian Earth Sciences,2019,179:189-199.
KANG Wenjun,XU Xiwei,YU Guihua,et al. Differential late-Cenozoic uplift across the Dongjiu-Milin Fault Zone in the Eastern Himalayan Syntaxis revealed by low-temperature thermochronology[J]. Journal of Asian Earth Sciences,2019,179:189-199.
66 REINERS P W,BRANDON M T. Using thermochronology to understand orgenic erosion [J]. Annual Review of Earth and Planetary Sciences,2006,34(34):419-466.
REINERS P W,BRANDON M T. Using thermochronology to understand orgenic erosion [J]. Annual Review of Earth and Planetary Sciences,2006,34(34):419-466.
67 GALLAGHER K.Transdimensional inverse thermal history modeling for quantitative thermochronology[J]. Journal of Geophysical Research:Solid Earth,2012,117(B2). DOI:10.1029/2011JB008825.
GALLAGHER K.Transdimensional inverse thermal history modeling for quantitative thermochronology[J]. Journal of Geophysical Research:Solid Earth,2012,117(B2). DOI:10.1029/2011JB008825.
doi: 10.1029/2011JB008825.    
68 KETCHAM R A,CARTER A,DONELICK R A,et al. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist,2007,92(5/6):799-810.
KETCHAM R A,CARTER A,DONELICK R A,et al. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist,2007,92(5/6):799-810.
69 FLOWERS R M,KETCHAM R A,SHUSTER D L,et al. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model[J]. Geochimica et Cosmochimica Acta,2009,73(8):2 347-2 365.
FLOWERS R M,KETCHAM R A,SHUSTER D L,et al. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model[J]. Geochimica et Cosmochimica Acta,2009,73(8):2 347-2 365.
70 GUENTHNER W R,REINERS P W,KETCHAM R A,et al.Helium diffusion in natural zircon:Radiation damage,anisotropy,and the interpretation of zircon (U-Th)/He thermochronology[J]. American Journal of Science,2013,313(3):145-198.
GUENTHNER W R,REINERS P W,KETCHAM R A,et al.Helium diffusion in natural zircon:Radiation damage,anisotropy,and the interpretation of zircon (U-Th)/He thermochronology[J]. American Journal of Science,2013,313(3):145-198.
71 RICHARDSON N J,DENSMORE A L,SEWARD D,et al.Extraordinary denudation in the Sichuan Basin:Insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau[J]. Journal of Geophysical Research,2008,113(B4):B04409.
RICHARDSON N J,DENSMORE A L,SEWARD D,et al.Extraordinary denudation in the Sichuan Basin:Insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau[J]. Journal of Geophysical Research,2008,113(B4):B04409.
72 TIAN Yuntao,KOHN B P,QIU Nansheng,et al. Eocene to Miocene out-of-sequence deformation in the eastern Tibetan Plateau:Insights from shortening structures in the Sichuan Basin[J]. Journal of Geophysical Research:Solid Earth,2018,123(2):1 840-1 855.
TIAN Yuntao,KOHN B P,QIU Nansheng,et al. Eocene to Miocene out-of-sequence deformation in the eastern Tibetan Plateau:Insights from shortening structures in the Sichuan Basin[J]. Journal of Geophysical Research:Solid Earth,2018,123(2):1 840-1 855.
73 DENG Jun,WANG Qingfei,LI Gongjian,et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region,southwestern China[J]. Earth Science Reviews,2014,138:268-299.
DENG Jun,WANG Qingfei,LI Gongjian,et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region,southwestern China[J]. Earth Science Reviews,2014,138:268-299.
74 LI Shihu,SU Tao,SPICER R A,et al. Oligocene deformation of the Chuandian terrane in the SE margin of the Tibetan Plateau related to the extrusion of Indochina[J]. Tectonics,2020,39(7):e2019TC005974.
LI Shihu,SU Tao,SPICER R A,et al. Oligocene deformation of the Chuandian terrane in the SE margin of the Tibetan Plateau related to the extrusion of Indochina[J]. Tectonics,2020,39(7):e2019TC005974.
75 MULLER R,SETON M,ZAHIROVIC S,et al. Ocean basin evolution and global-scale plate reorganization events since Pangea Breakup[J]. Annual Review of Earth and Planetary Sciences,2016,44(1):107-138.
MULLER R,SETON M,ZAHIROVIC S,et al. Ocean basin evolution and global-scale plate reorganization events since Pangea Breakup[J]. Annual Review of Earth and Planetary Sciences,2016,44(1):107-138.
76 HE Kezhao,ZHAO Chonghe,HE Haosheng,et al. Intracontinental rift and orogeny in western Yunan[M]. Wuhan:China University of Geosciences Press,1996.
HE Kezhao,ZHAO Chonghe,HE Haosheng,et al. Intracontinental rift and orogeny in western Yunan[M]. Wuhan:China University of Geosciences Press,1996.
何科昭,赵崇贺,何浩生,等. 滇西陆内裂谷与造山作用[M]. 武汉:中国地质大学出版社,1996.
何科昭,赵崇贺,何浩生,等. 滇西陆内裂谷与造山作用[M]. 武汉:中国地质大学出版社,1996.
77 ZHONG Kanghui,LIU Zhaochang,SHU Liangshu,et al. The Cenozoic strike-slip kinematics of the Lancangjiang fault zone[J]. Geological Review,2004,50(1):1-8.
ZHONG Kanghui,LIU Zhaochang,SHU Liangshu,et al. The Cenozoic strike-slip kinematics of the Lancangjiang fault zone[J]. Geological Review,2004,50(1):1-8.
钟康惠,刘肇昌,舒良树,等. 澜沧江断裂带的新生代走滑运动学特点[J]. 地质论评,2004,50(1):1-8.
钟康惠,刘肇昌,舒良树,等. 澜沧江断裂带的新生代走滑运动学特点[J]. 地质论评,2004,50(1):1-8.
78 CHUNG S L,CHU Meifei,ZHANG Yuquan,et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth Science Reviews,2005,68(3/4):173-196.
CHUNG S L,CHU Meifei,ZHANG Yuquan,et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth Science Reviews,2005,68(3/4):173-196.
79 HOKE G D,LIU Jing,HREN M T,et al. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene[J]. Earth and Planetary Science Letters,2014,394(10):270-278.
HOKE G D,LIU Jing,HREN M T,et al. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene[J]. Earth and Planetary Science Letters,2014,394(10):270-278.
80 GOURBET L,LELOUP P H,PAQUETTE J L,et al. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan Plateau evolution[J]. Tectonophysics,2017,700/701:162-179.
GOURBET L,LELOUP P H,PAQUETTE J L,et al. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan Plateau evolution[J]. Tectonophysics,2017,700/701:162-179.
81 LI Shanying,CURRIE B S,ROWLEY D B,et al. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau:Constraints on the tectonic evolution of the region[J]. Earth and Planetary Science Letters,2015,432:415-424.
LI Shanying,CURRIE B S,ROWLEY D B,et al. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau:Constraints on the tectonic evolution of the region[J]. Earth and Planetary Science Letters,2015,432:415-424.
82 WU Jing,ZHANG Kexin,XU Yadong,et al. Paleoelevations in the Jianchuan Basin of the southeastern Tibetan Plateau based on stable isotope and pollen grain analyses[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2018,510:93-108.
WU Jing,ZHANG Kexin,XU Yadong,et al. Paleoelevations in the Jianchuan Basin of the southeastern Tibetan Plateau based on stable isotope and pollen grain analyses[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2018,510:93-108.
83 CLIFT P D. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean[J]. Earth and Planetary Science Letters,2006,241(3/4):571-580.
CLIFT P D. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean[J]. Earth and Planetary Science Letters,2006,241(3/4):571-580.
84 SORREL P,EYMARD I,LELOUP P H,et al. Wet tropical climate in SE Tibet during the Late Eocene[J]. Scientific Reports,2017,7(1):7 809.
SORREL P,EYMARD I,LELOUP P H,et al. Wet tropical climate in SE Tibet during the Late Eocene[J]. Scientific Reports,2017,7(1):7 809.
85 Bureau of Geology and Mineral Resources of Yunnan Province.Atlas of the sedimentary facies and palaeogeography of Yunnan[M]. Kunming:Yunnan Science and Techology Press,1995.
Bureau of Geology and Mineral Resources of Yunnan Province.Atlas of the sedimentary facies and palaeogeography of Yunnan[M]. Kunming:Yunnan Science and Techology Press,1995.
云南省地质矿产局. 云南岩相古地理图集[M]. 昆明:云南科技出版社,1995.
云南省地质矿产局. 云南岩相古地理图集[M]. 昆明:云南科技出版社,1995.
86 NIE Junsheng,STEVENS T,RITTNER M,et al. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment[J]. Nature Communications,2015,6:8 511.
NIE Junsheng,STEVENS T,RITTNER M,et al. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment[J]. Nature Communications,2015,6:8 511.
87 GUO Zhengtang,PENG Shuzhen,HAO Qingzhen,et al. Origin of the Miocene-Pliocene Red-Earth Formation at Xifeng in Northern China and implications for paleoenvironments[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2001,170(1/):11-26.
GUO Zhengtang,PENG Shuzhen,HAO Qingzhen,et al. Origin of the Miocene-Pliocene Red-Earth Formation at Xifeng in Northern China and implications for paleoenvironments[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2001,170(1/):11-26.
88 WANG Erqi,KIRBY E,FURLONG K P. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience,2012,5(9):640-645.
WANG Erqi,KIRBY E,FURLONG K P. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience,2012,5(9):640-645.
89 ZHANG Huiping,OSKIN M E,LIU Jing,et al. Pulsed exhumation of interior eastern Tibet:Implications for relief generation mechanisms and the origin of high-elevation planation surfaces[J]. Earth and Planetary Science Letters,2016,449:176-185.
ZHANG Huiping,OSKIN M E,LIU Jing,et al. Pulsed exhumation of interior eastern Tibet:Implications for relief generation mechanisms and the origin of high-elevation planation surfaces[J]. Earth and Planetary Science Letters,2016,449:176-185.
90 ROYDEN L H,BURCHFIEL B C,HILST R D VAN DER.The geological evolution of the Tibetan Plateau[J]. Science,2008,321(5 892):1 054-1 058.
ROYDEN L H,BURCHFIEL B C,HILST R D VAN DER.The geological evolution of the Tibetan Plateau[J]. Science,2008,321(5 892):1 054-1 058.
91 DENG Xianze,TAO Yan,XIONG Feng,et al. Cenozoic tectonic evolution of the SE Tibetan Plateau[C]//The eighth national symposium on metallogenic theory and prospecting.2017.
DENG Xianze,TAO Yan,XIONG Feng,et al. Cenozoic tectonic evolution of the SE Tibetan Plateau[C]//The eighth national symposium on metallogenic theory and prospecting.2017.
邓贤泽,陶琰,熊风,等. 青藏高原东南缘新生代构造演化[C]//第八届全国成矿理论与找矿方法学术讨论会论文摘要文集.2017.
邓贤泽,陶琰,熊风,等. 青藏高原东南缘新生代构造演化[C]//第八届全国成矿理论与找矿方法学术讨论会论文摘要文集.2017.
92 LI Shihu,JI Xueping,HARRISON T,et al. Uplift of the Hengduan Mountains on the southeastern margin of the Tibetan Plateau in the late Miocene and its paleoenvironmental impact on hominoid diversity[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2020,553. DOI:10.1016/j.palaeo.2020.109794.
LI Shihu,JI Xueping,HARRISON T,et al. Uplift of the Hengduan Mountains on the southeastern margin of the Tibetan Plateau in the late Miocene and its paleoenvironmental impact on hominoid diversity[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2020,553. DOI:10.1016/j.palaeo.2020.109794.
doi: 10.1016/j.palaeo.2020.109794.    
93 MOLNAR P,BOOS W R,BATTISTI D S. Orographic controls on climate and paleoclimate of Asia:Thermal and mechanical roles for the Tibetan Plateau[J]. Annual Review of Earth and Planetary Sciences,2010,38(1):77-102.
MOLNAR P,BOOS W R,BATTISTI D S. Orographic controls on climate and paleoclimate of Asia:Thermal and mechanical roles for the Tibetan Plateau[J]. Annual Review of Earth and Planetary Sciences,2010,38(1):77-102.
94 NIE Junsheng,REN Xueping,SAYOR J E,et al.Magnetic polarity stratigraphy,provenance,and paleoclimate analysis of Cenozoic strata in the Qaidam Basin,NE Tibetan Plateau[J]. Geological Society of America Bulletin,2020,132(1/2):310-320.
NIE Junsheng,REN Xueping,SAYOR J E,et al.Magnetic polarity stratigraphy,provenance,and paleoclimate analysis of Cenozoic strata in the Qaidam Basin,NE Tibetan Plateau[J]. Geological Society of America Bulletin,2020,132(1/2):310-320.
95 REN Xueping,NIE Junsheng,SAYOR J E,et al. Temperature control on silicate weathering intensity and evolution of the Neogene East Asian summer monsoon[J]. Geophysical Research Letters,2020,47:e2020GL088808.
REN Xueping,NIE Junsheng,SAYOR J E,et al. Temperature control on silicate weathering intensity and evolution of the Neogene East Asian summer monsoon[J]. Geophysical Research Letters,2020,47:e2020GL088808.
96 HUANG Jian,ZHOU Zhekun. Middle Miocene climatic optimum flora from Yunnan,southwest China[C]//XIV IPC and X IOPC,2016.
HUANG Jian,ZHOU Zhekun. Middle Miocene climatic optimum flora from Yunnan,southwest China[C]//XIV IPC and X IOPC,2016.
97 ZHANG Bo,ZHANG Jinjiang,ZHONG Dalai,et al. Architecture,kinematics and thermochronology analysis in Lancangjiang Structural Zone,in western Yunnan [J]. Chinese Journal of Geology,2009,44(3):889-909.
ZHANG Bo,ZHANG Jinjiang,ZHONG Dalai,et al. Architecture,kinematics and thermochronology analysis in Lancangjiang Structural Zone,in western Yunnan [J]. Chinese Journal of Geology,2009,44(3):889-909.
98 CLARK M K,BUSH J W M,ROYDEN L H. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau[J]. Geophysical Journal International,2005,162(2):575-590.
CLARK M K,BUSH J W M,ROYDEN L H. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau[J]. Geophysical Journal International,2005,162(2):575-590.
99 JI Shunchuan,NIE Junsheng,LECHLER A,et al. A symmetrical CO2 peak and asymmetrical climate change during the middle Miocene[J]. Earth and Planetary Science Letters,2018,499:134-144.
JI Shunchuan,NIE Junsheng,LECHLER A,et al. A symmetrical CO2 peak and asymmetrical climate change during the middle Miocene[J]. Earth and Planetary Science Letters,2018,499:134-144.
100 SHI Zhengguo,SHA Yingying,LIU Xiaodong. Effect of Yunnan-Guizhou topography at the southeastern Tibetan Plateau on the Indian monsoon[J]. Journal of Climate,2016,30(4):1 259-1 272.
SHI Zhengguo,SHA Yingying,LIU Xiaodong. Effect of Yunnan-Guizhou topography at the southeastern Tibetan Plateau on the Indian monsoon[J]. Journal of Climate,2016,30(4):1 259-1 272.
101 BAO Lang,WANG Nan,NI Zhiyao,et al.Influence of the Tibetan Plateau uplift on climate evolution in southwestern China:From the monsoon perspective[J]. Journal of Earth Environment,2018,9(5):444-454.
BAO Lang,WANG Nan,NI Zhiyao,et al.Influence of the Tibetan Plateau uplift on climate evolution in southwestern China:From the monsoon perspective[J]. Journal of Earth Environment,2018,9(5):444-454.
包浪,王楠,倪志耀,等. 青藏高原隆升对我国西南地区气候的影响——从季风角度研究[J]. 地球环境学报,2018,9(5):444-454.
包浪,王楠,倪志耀,等. 青藏高原隆升对我国西南地区气候的影响——从季风角度研究[J]. 地球环境学报,2018,9(5):444-454.
102 CLEMENS S C,PRELL W L,SUN Youbin,et al. Southern hemisphere forcing of Pliocene δ18O and the evolution of Indo-Asian monsoons[J]. Paleoceanography and Paleoclimatology,2008,23(4). DOI:10.1029/2008PA001638.
CLEMENS S C,PRELL W L,SUN Youbin,et al. Southern hemisphere forcing of Pliocene δ18O and the evolution of Indo-Asian monsoons[J]. Paleoceanography and Paleoclimatology,2008,23(4). DOI:10.1029/2008PA001638.
doi: 10.1029/2008PA001638.    
103 FENG Song,FU Qiang. Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics,2013,13(6):10 081-10 094.
FENG Song,FU Qiang. Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics,2013,13(6):10 081-10 094.
104 GROVES K,ALLEN M,SAVILLE C,et al. Monsoon-driven incision and exhumation of the Eastern Tibetan Plateau[C]//EGU General Assembly,2021.
GROVES K,ALLEN M,SAVILLE C,et al. Monsoon-driven incision and exhumation of the Eastern Tibetan Plateau[C]//EGU General Assembly,2021.
105 DING Lin,MAKSATBEK S,CAI Fulong,et al. Processes of initial collision and suturing between India and Asia[J]. Science China Earth Sciences,2017,47(3):293-309.
DING Lin,MAKSATBEK S,CAI Fulong,et al. Processes of initial collision and suturing between India and Asia[J]. Science China Earth Sciences,2017,47(3):293-309.
丁林,MAKSATBEK S,蔡福龙,等. 印度与欧亚大陆初始碰撞时限,封闭方式和过程[J]. 中国科学:地球科学,2017,47(3):293-309.
丁林,MAKSATBEK S,蔡福龙,等. 印度与欧亚大陆初始碰撞时限,封闭方式和过程[J]. 中国科学:地球科学,2017,47(3):293-309.
106 XIAO Wenjiao,AO Songjian,YANG Lei,et al. Anatomy of composition and nature of plate convergence:Insights for alternative thoughts for terminal India-Eurasia collision[J]. Science China Earth Sciences,2017,47(6):631-656.
XIAO Wenjiao,AO Songjian,YANG Lei,et al. Anatomy of composition and nature of plate convergence:Insights for alternative thoughts for terminal India-Eurasia collision[J]. Science China Earth Sciences,2017,47(6):631-656.
肖文交,敖松坚,杨磊,等.喜马拉雅汇聚带结构—属性解剖及印度—欧亚大陆最终拼贴格局[J]. 中国科学:地球科学,2017,47(6):631-656.
肖文交,敖松坚,杨磊,等.喜马拉雅汇聚带结构—属性解剖及印度—欧亚大陆最终拼贴格局[J]. 中国科学:地球科学,2017,47(6):631-656.
107 WANG Erqi. A discussion on the timing of the initial collision between the Indian and Asian continents[J]. Science China Earth Sciences,2017,47(3):284-292.
WANG Erqi. A discussion on the timing of the initial collision between the Indian and Asian continents[J]. Science China Earth Sciences,2017,47(3):284-292.
王二七.关于印度与欧亚大陆初始碰撞时间的讨论[J]. 中国科学:地球科学,2017,47(3):284-292.
王二七.关于印度与欧亚大陆初始碰撞时间的讨论[J]. 中国科学:地球科学,2017,47(3):284-292.
[1] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[2] 王斌, 常宏, 段克勤. 秦岭新生代构造隆升与环境效应:进展与问题[J]. 地球科学进展, 2017, 32(7): 707-715.
[3] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[4] 王汝建, 肖文申, 章陶亮, 聂森艳. 极地地质钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1236-1244.
[5] 张洪瑞, 刘传联, 梁丹. 热带海洋生产力:现代过程与地质记录[J]. 地球科学进展, 2016, 31(3): 277-285.
[6] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[7] 陈汉林, 陈沈强, 林秀斌. 帕米尔弧形构造带新生代构造演化研究进展[J]. 地球科学进展, 2014, 29(8): 890-902.
[8] 郑洪波, 郭正堂, 邓涛. 新生代东亚地形、水系与生物地理演变——第三届地球系统科学大会拾翠[J]. 地球科学进展, 2014, 29(11): 1280-1286.
[9] 王斌,郑洪波,王平,何忠. 渭河盆地新生代地层与沉积演化研究: 现状和问题[J]. 地球科学进展, 2013, 28(10): 1126-1135.
[10] 刘纪远,邵全琴, 延晓冬, 樊江文, 邓祥征, 战金艳, 高学杰, 黄麟, 徐新良, 胡云峰, 王军邦, 匡文慧. 土地利用变化对全球气候影响的研究进展与方法初探[J]. 地球科学进展, 2011, 26(10): 1015-1022.
[11] 常远,许长海,周祖翼. (U-Th)/He测年技术:α离子射出效应及其校正[J]. 地球科学进展, 2010, 25(4): 418-427.
[12] 丁汝鑫,王利,许长海,周祖翼. 大别造山带与毗邻沉积盆地间剥蚀沉积关系的裂变径迹热史模拟定量对比[J]. 地球科学进展, 2009, 24(8): 942-946.
[13] 田军. 新生代的气候节律:赤道太平洋IODP-320、321航次[J]. 地球科学进展, 2009, 24(12): 1357-1361.
[14] 邵景安,李阳兵,魏朝富,谢德体. 区域土地利用变化驱动力研究前景展望[J]. 地球科学进展, 2007, 22(8): 798-809.
[15] 丁汝鑫,周祖翼,王玮. 利用低温热年代学数据计算造山带剥露速率[J]. 地球科学进展, 2007, 22(5): 447-456.
阅读次数
全文


摘要