地球科学进展 ›› 2003, Vol. 18 ›› Issue (3): 380 -385. doi: 10.11867/j.issn.1001-8166.2003.03.0380

研究论文 上一篇    下一篇

平流层—对流层交换研究进展
杨健,吕达仁   
  1. 中国科学院大气物理研究所中层大气与全球环境探测实验室,北京 100029
  • 收稿日期:2002-10-25 修回日期:2003-03-18 出版日期:2003-06-01
  • 通讯作者: 杨健 E-mail:yangjian_iap@yahoo.com
  • 基金资助:

    国家自然科学基金项目“航空业对平流层下部、对流层上部辐射—光化学过程影响”(编号:49875001);中国科学院大气物理研究所知识创新重大项目“上对流层、下平流层过程及其气候效应研究”(编号:8-3102)资助.

PROGRESSES IN THE STUDY OF STRATOSPHERE-TROPOSPHERE EXCHANGE

Yang Jian,Lü Daren   

  1. Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029,China
  • Received:2002-10-25 Revised:2003-03-18 Online:2003-06-01 Published:2003-06-01

平流层与对流层之间的物质输送和混合(STE)是控制自然和人为排放的化学痕量物质对大气成分影响的一个重要过程。STE可以影响温室气体在上对流层和下平流层中的垂直分布,进而影响气候。要预报全球气候变化就必须了解平流层与对流层之间动力、化学及辐射的耦合。从 STE研究的尺度问题,热带和中纬度地区STE研究以及我国STE研究现状进行了评述。STE具有多种尺度和形式,热带外平流层由波强迫驱动的全球尺度环流,可以诊断长时间尺度的STE,它不能充分描述短时间尺度过程。热带外低平流层环流不能简单地描述为纬向平均,要正确描述痕量气体的分布必须包含纬向非对称的天气尺度过程。热带地区的滴漏管理论提供了一个新的诊断 STE框架。目前对中纬度地区对流层顶折叠和切断低压的研究是比较充分的。

The Stratosphere-Troposphere Exchange (STE) of air mass and chemical species is an important process influencing the effects of trace chemical species emitted from natural and anthropogenic sources on the atmospheric composition.  STE may affect climate by altering the vertical distributions of greenhouse gases in the upper troposphere and low stratosphere.  Dynamical, chemical and radiative coupling between stratosphere and troposphere are among the many important processes that must be understood for prediction of global change. The paper reviews some main progresses in STE studies focusing on scale questions, researches in tropic and mid-latitude areas and also in China.  STE are multi-scale interaction processes. The wave in the extra-tropical stratosphere induced forces drive a kind of global-scale circulation, which is a useful measure of global-scale stratosphere-troposphere exchange, especially on seasonal or longer timescales.  But it is not suitable for describing short timescale processes. The circulation in the extra-tropical lower stratosphere cannot be simple regarded as zonal averaged. The distribution of some trace species cannot be simulated exactly if the model excludes the latitudinal asymmetry synoptic scale processes.  The theory of “leaky pipes” presents a new quantitative diagnostic framework to interpret measured results and compare them with model results. Tropopause folding and cut-off low in mid-latitude were well studied in the past.

中图分类号: 

[1] Ramaswamy V,Schwarzkopf M D,Shine K P. Radiation forcing of climate from halocarbon-induced global stratospheric ozone loss[J]. Nature,1992,355:810-812.

[2] Toumi R,Bekki S, Law K S. Indirect influence of ozone depletion on climate forcing by clouds[J]. Nature, 1994,372:348-351.

[3] Brewer A M. Evidence for a world circulation provided by the measurement of helium and water vapor distribution in the stratosphere[J].Quarterly Journal of Royal Meteorologilal Society,1949,75:351-363.

[4] Dobson A E,Hintsa E J,Weinstock E M, et al. Origin and distribution of polyatomicmolecules in the atmosphere[J]. Proceedings of the Royal Society of London,1956,A236:187-193.

[5] Carr E S,Harwood R S,Mote P W, et al.Tropical stratospheric water vapor measured by the microwave limb sounder (MLS) [J]. Geophysical Research Letters,1995,22:691-694.

[6] Shapiro M A.Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere[J]. Journal of Atmospheric Science,1980,37: 994-1 004.

[7] Holton J R. On the global exchange of mass between the stratosphere and troposphere[J]. Journal of Atmopheric Science,1990,47:392-395.

[8] Haynes P H, Marks C J, McInyrre M E, et al. On the “downward control” of the extratropical diabatic circulations by eddy-induced mean zonal force[J]. Journal Atmospheric Science,1991,48:651-678.

[9] Holton J R, Haynes P H, McIntyre M E, et al. Stratosphere-troposphere exchange[J]. Reviews of Geophysics, 1995,33:403-439.

[10] Fels S B. Radiative-dynamical interactions in the middle atmosphere[J]. Advances in Geophysics, 1985, 28A:277-300.

[11] Yulaeva E,Holton J R,Wallace J M.On the cause of the annual cycle in tropical lower-stratospheric temperatures[J]. Journal of Atmospheric Science,1994,51:169-174.

[12] Rosenlof K H. Seasonal cycle of the residual mean meridional circulation in the stratosphere[J]. Journal of Geophysical Research,1995,100:5 173-5 191.

[13] Holton J R.Troposphere-stratosphere exchange of trace constituents: The water vapor puzzle[A]. In: Hotlon J R, Mastsuno T, eds. Dynamics of the Middle Atmosphere[C]. Tokyo, Japan: Terra Scientific Publishing Company,1980. 369-385.

[14] Reed R J. A study of a characteristic type of upper level frontogenesis[J]. Journal of Meteorology, 1955,12:226-237.

[15] Hoskins B J,McIntyre M E,Robertson A W.On the use and significance of isentropic potential vorticity maps[J]. Quarterty Journal of the Royal Meteorological Society,1985,3:887-946.

[16] Vaughan G, Price J D, Howells A.Transport into the troposphere in a tropopause fold[J]. Quarterly Journal of the Royal Meteorological Society,1994,120:1 085-1 103.

[17] Allam R J,Tuck A F.Transport of water vapor in a stratosphere-troposphere general circulation model, Π: TraJectories[J]. Quarterly Journal of the Royal Meteorological Society,1984,110:357-792.

[18] Kelly K K,Tuck A F,Heidt L E,et al. A comparison of ER-2 measurements of stratospheric water vapor between the 1987 Antarctic and 1989 Arctic airborne missions[J]. Geophysical Research Letters,1990,17(4):465-468.

[19] Ancellet G,Pelon J,Beekmann M,et al. Ground-based lidar studies of ozone exchanges between the stratosphere and the troposphere[J].Journal of Geophysical Research,1991,96:22 401-22 422.

[20] Wirth V. Diabatic heating in an axisymmetric cut-off cyclone and related stratosphere troposphere exchange[J]. Quarterty Journal of the Royal Meteorological Society,1995,121:127-147.

[21] Intergovemmental Panel on Climate Change, The third assessment report, Climate Change. The Scientific Basis: Atmospheric Chemistry and Greenhouse Gases[]. IPCC, 2001.

[22] Hoerling M P,Schaak T K,Lenzen A J. A global analysis of stratospheric tropospheric exchange during northern winter[J]. Monthly Weather Review,1993,121:162-172.

[23] Newell R E,Gould-Stewart S. A stratospheric fountain? [J]. Journal Atmospheric Science,1981,38: 2 789-2 796.

[24] Sherwood S C. A“stratospheric drain”over the Maritime continent[J]. Geophysical Research Letters, 2000, 27:677-680.

[25] Gettelman A, Holton J R, Douglass A R. Simulations of water vapor in the lower stratosphere and upper troposphere[J]. Journal of Geophysical Research,2000,105:9 003-9 023.

[26] Holton J R,Gettelman A. Horizontal transport and the dehydration of the stratosphere[J]. Geophysical Research Letters,2001,14:2 799-2 802.

[27] Trepte C R, Hitchman M H.Tropical stratospheric circulation deduced from satellite aerosol data[J]. Nature, 1992,355:626-628.

[28] Plumb R A.“Tropical pipe” model of stratospheric transport[J]. Journal of Geophysical Research,1996,101: 3 957-3 972.

[29] Volk C M, Elkins J W, Fahey D W, et al. Quantifying transport between the tropical and mid-latitude lower stratosphere[J]. Scinece,1996,272:1 763-1 768.

[30] Kley D, Stone E J. In situ measurements of the mixing ratio of water vapor in the stratosphere[J]. Journal of Atmospheric Science,1979,36:2 513-2 524.

[31] Mote P W, Roscnlof K H, McIntyre M E, et al. An atmospheric tape recorder:The imprint of tropical tropopause temperature on stratospheric water vapor[J]. Journal of Geophysical Research,1996,101:3 989-4 006.

[32] Plumb R A,Bell R C.A model of the quasi-biennial oscillation on an equatorial beta-plane[J]. Quarterly Journal of the Royal Meteorological Society,1982,108:335-352.

[33] Carr E S, Harwood R S, Mote P M, et al.Tropical stratospheric water vapor measured by the microwave limb sounder (MLS) [J]. Geophysical Research Letters,1995,22:691-694.

[34] Marco A G,Bengtsson L.Potential role of the quasi-biennial oscillation in the stratosphere-troposphere exchange as found in water vapor in general circulation model experiments[J]. Journal of the Geophysical Research,1999,104:6 003-6 019.

[35] Danielsen E F. Stratospheric-tropospheric exchange based on radioactivity, ozone, and potential vorticity[J]. Journal of Atmos pheric Sciences,1968,25:502-518.

[36] Danielsen E F, Mohnen V A. ProJect Duststorm report: Ozone transport, in situ measurements, and meteorological analyses of tropopause folding[J]. Journal of Geophysical Research,1977,82:5 867-5 877.

[37] World Meteorological Organization. Atmospheric ozone 1985:Reprot of WMO Scientific Group[R]. Geneva: WMO, 1986.

[38] Browell E V.Tropopause fold structure determined from airborn lidar and in situ measurements[J]. Journal of Geophysical Research,1987,92:2 112-2 120.

[39] Kritz M S. Air mass origins and troposphere-to-stratosphere exchange associated with midlatitude cyclogenesis and tropopause folding inferred from 7be measurements[J]. Journal of Geophysical Research,1991,96:17 405-17 414.

[40] Keyser D A, Shapiro M A. A review of the structure and dynamics of upper level frontal zones[J]. Monthly Weather Review,1986,118:1 914-1 921.

[41] Hoskins B J. The mathematical theory of frontogenesis[J]. Annual of Reviews Fluid Mechanics, 1982, 14:131-151.

[42] Bush A B G, Peltier W R. Tropopause folds and synoptic-scale baroclinic wave life cycles[J]. Journal of Atmospheric Science,1994,51:1 581-1 604.

[43] Lamarque J F, Hess P G. Cross-tropopause mass exchange and potential vorticity budget in a simulated tropopause folding[J]. Journal of Atmospheric Science,1994,51:2 246-2 269.

[44] Palmen E,Newton C W.Atmospheric Circulation Systems[M]. New York: Academic Press,1969.

[45] Price J D,Vaughan G. Statistical studies of cut-off-low systems[J] . Annales Geophysicae, 1992,10:96-102.

[46] Hoskins B J. Towards a PV-θ view of the general circulation [J]. Tellus,1991,43:27-35.

[47] Bamber D J. Vertical profiles of tropospheric gases: Chemical consequences of stratospheric intrusions[J]. Atmospheric Environment,1984,18:1 759-1 766.

[48] Price J D,Vaughan G. On the potential for stratosphere-troposphere exchange in cut-off low systems[J]. Quaterly Journal of the Royal Meteorological Society,1993,119:343-365.

[1] 刘许柯,付云翀,周卫健,张丽,赵国庆. 宇宙成因核素 7Be10Be示踪大气垂直传输交换研究进展[J]. 地球科学进展, 2020, 35(10): 1016-1028.
[2] 刘玮, 田文寿, 舒建川, 张健恺, 胡定珠. 热带平流层准两年振荡对热带对流层顶和深对流活动的影响[J]. 地球科学进展, 2015, 30(6): 724-736.
[3] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[4] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[5] 胡玥, 刘传琨, 卢粤晗, 刘杰, 郑春苗. 环境同位素在黑河流域水循环研究中的应用[J]. 地球科学进展, 2014, 29(10): 1158-1166.
[6] 张麋鸣,陈立奇,汪建君. 南大洋二甲基硫海—气交换过程研究进展[J]. 地球科学进展, 2013, 28(9): 1015-1024.
[7] 郭凤霞,鞠晓雨,陈聪. 估算闪电产生氮氧化物量的研究回顾与进展[J]. 地球科学进展, 2013, 28(3): 305-317.
[8] 张朝林, 宋长青. “中国地区整层大气甲烷柱总量及其垂直分布特征研究”研究成果介绍[J]. 地球科学进展, 2013, 28(11): 1285-1286.
[9] 胡宁,张朝林,仲跻芹,李玉焕. 大气对流层平流层交换(STE)研究进展[J]. 地球科学进展, 2011, 26(4): 375-385.
[10] 林云萍,赵春生. 对流层大气氧化性研究进展[J]. 地球科学进展, 2009, 24(5): 488-496.
[11] 吕达仁,卞建春,陈洪滨,陈月娟,陈泽宇,胡永云,刘毅,任荣彩,田文寿. 平流层大气过程研究的前沿与重要性[J]. 地球科学进展, 2009, 24(3): 221-227.
[12] 胡永云,丁 峰,夏 炎. 全球变化条件下的平流层大气长期变化趋势[J]. 地球科学进展, 2009, 24(3): 242-251.
[13] 卞建春. 上对流层/下平流层大气垂直结构研究进展[J]. 地球科学进展, 2009, 24(3): 262-271.
[14] 陈文,魏科. 大气准定常行星波异常传播及其在平流层影响东亚冬季气候中的作用[J]. 地球科学进展, 2009, 24(3): 272-285.
[15] 郄秀书,吕达仁,卞建春,杨 静. 中高层大气瞬态发光事件(TLEs)及可能的影响[J]. 地球科学进展, 2009, 24(3): 286-296.
阅读次数
全文


摘要