地球科学进展 ›› 2020, Vol. 35 ›› Issue (9): 924 -932. doi: 10.11867/j.issn.1001-8166.2020.077

综述与评述 上一篇    下一篇

牙形石( U-Th/He热定年技术的研究进展
蔡长娥 1, 2( ),陈鸿 1, 2( ),尚文亮 1, 2,倪凤玲 1, 2   
  1. 1.重庆科技学院复杂油气田勘探开发重庆市重点实验室,重庆 401331
    2.重庆科技学院石油与天然气工程学院,重庆 401331
  • 收稿日期:2020-05-18 修回日期:2020-07-12 出版日期:2020-09-10
  • 通讯作者: 陈鸿 E-mail:ccecai@163.com;981801204@qq.com
  • 基金资助:
    国家自然科学基金项目“自然演化碎屑锆石裂变径迹的初始径迹长度及径迹长度的影响因素探究”(41802154);重庆市自然科学基金面上项目“沉积盆地碎屑锆石裂变径迹退火温度的研究”(cstc2019jcyj-msxmX0764)

Research Progress of Conodont U-Th/He Thermochronology

Chang'e Cai 1, 2( ),Hong Chen 1, 2( ),Wenliang Shang 1, 2,Fengling Ni 1, 2   

  1. 1.Chongqing Key Labrotary of Complex Oil and Gas Exploration and Development,Chongqing University of Science and Technology,Chongqing 401331,China
    2.School of Petroleum Engineering,Chongqing University of Science and Technology,Chongqing 401331,China
  • Received:2020-05-18 Revised:2020-07-12 Online:2020-09-10 Published:2020-10-28
  • Contact: Hong Chen E-mail:ccecai@163.com;981801204@qq.com
  • About author:Cai Chang'e(1986-),female,Jingzhou City,Hubei Province,Lecturer. Research areas include low temperature thermochronology and petroleum geology. E-mail: ccecai@163.com
  • Supported by:
    the National Natural Science Foundation of China "The initial track length of detrital zircon fission track obtained from natural evolution samples and its influence factors"(41802154);The Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission "The study of annealing temperature of detrital zircon fission track in sedimentary basin"(cstc2019jcyj-msxmX0764)

海相碳酸盐岩地层缺乏有效的古温标恢复其复杂的热演化历史。研究认为广泛分布于古生界地层中的牙形石适用于碳酸盐岩地层热历史恢复。重点阐述了牙形石(U-Th)/He定年的基本原理、分析测试方法和牙形石He年龄的影响因素。热扩散实验揭示了牙形石He封闭温度为60~70 °C。牙形石(U-Th)/He年龄与有效铀浓度呈明显负相关性,认为甲酸溶解过程中发生的母核元素U损失、成岩作用过程中U和Th元素的流动性、初始He过量、母核同位素非均匀分布等因素是导致牙形石(U-Th)/He开放系统行为的主要原因。分析得出牙形石色变指数越高,牙形石变得越脆,母核同位素损失的可能性增加,牙形石He年龄也越古老且分散性较大;牙形石的组织类型也会影响牙形石内部母核同位素分布和元素迁移,其显微结构变化会导致牙形石He年龄的分散。最后探讨了现阶段牙形石(U-Th)/He热定年体系研究中尚存在的问题,就未来研究发展方向做出展望,期望能有效推动牙形石(U-Th)/He热定年技术相关理论和技术的深入发展。

Given the lacking of effective geothermometer, it is difficult to reconstruct the complex thermal evolution history of marine carbonate rocks. It is considered that conodonts widely distributed in Paleozoic strata are suitable for the reconstruction of thermal history of carbonate strata. In this study, we mainly discussed the basic principle and experimental test method of conodont (U-Th)/He thermochronology, and the influencing factors of conodont (U-Th)/He ages. The thermal diffusion experiment reveals that the closure temperature of conodont (U-Th)/He is 60°~70°. Conodont samples have strong inverse relationship between effective uranium concentration and (U-Th)/He data. The main reasons for the open-system behavior in conodont (U-Th)/He are possible U loss during dissolution procedure using formic acid, the fluidity of U and Th elements during diagenesis, excessive initial He, and the non-uniform parent isotope distributions, etc. The higher CAI values the conodonts have, the more brittle the conodonts will become; the possibility of parent isotope loss will increase, and consistently they have older (U-Th)/He dates and substantially more scattered individual dates. Conodont tissue type also affects the parent isotope distribution and element migration of conodonts, and the change of its microstructure leads to the dispersion of conodont (U-Th)/He dates. Finally, we explored the existing problems and put forward the future hot research and development direction of conodont (U-Th)/He thermal dating system, so as to promote the deep development of relative theory and technology of conodont (U-Th)/He thermochronology.

中图分类号: 

图1 He扩散信息Micro CT图像
(a) 球体内每个连续的壳层(用 Ve 1Ve 2Ve 3表示)可能保留越来越少的He,直到外层其中仅保留50%~67%的He;(b)Micro CT图像显示了侵蚀后保留的体积( Ve)和原始体积( Vt) [ 25 ]
Fig.1 He diffusion information microscopic CT image
(a) In the glass sphere each sequential shell (denoted by volumes Ve 1Ve 2, Ve 3), potentially retains less and less He until the outer shell where only 50%~67% of the He is retained; (b) Micro CT image showing the eroded grain ( Ve) and the 20.4 μm thick layer removed from the original volume ( Vt) [ 25 ]
图2 牙形石分步加热He扩散实验的Arrhenius[ 8 ]
灰色符号是实验初始或最终阶段的点,没有用于回归计算 D 0/ a 2Ea和封闭温度; D为扩散系数, a为扩散半径, T为Kelvin温度
Fig.2 Arrhenius plot for step-heating He diffusion experiments on conodonts[ 8 ]
Grey symbols are points from initial or final stages of the experiment that were not used in regressions to calculate D 0/ a 2, Ea, and closure temperatures. D is the diffusion coefficient, a is the grain radius, and T is the Kelvin temperature
图3 牙形石的(U-Th)/He年龄与eU关系图
(a) 数据来自参考文献[ 10 ]; (b)数据来自参考文献[ 9 ]
Fig.3 Relationship between corrected (U-Th)/He ages and eU concentration for conodonts
(a) Data from reference[ 10 ]; (b) Data from reference[ 9 ]
图4 牙形石的(U-Th)/He年龄与Th/U关系图(数据来自参考文献[ 9 ])
Fig.4 Relationship between corrected (U-Th)/He ages and Th/U ratio for conodonts (data from reference[ 9 ])
图5 CAI1-8牙形石的颜色标准及相应的地质温度范围[ 13 , 14 ]
Fig.5 Color standards for conodonts of CAI 1 through 8 and the corresponding geologic temperature range[ 13 , 14 ]
图6 牙形石(U-Th/He年龄与CAI的关系图(数据来自参考文献[ 10 ])
Fig.6 Relationship between corrected (U-Th)/He ages and CAI for conodonts (data from reference[ 10 ])
1 Ehrenberg S N, Nadeau P H. Sandstone vs carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships [J]. AAPG Bulletin, 2005, 89(4): 435-445.
2 Yan Weipeng, Yang Tao, Li Xin, et al. Geological characteristics and exploration potential of lacustrine carbonate rocks in China [J]. China Petroleum Exploration, 2014, 19(4):11-17.
闫伟鹏,杨涛,李欣,等. 中国陆上湖相碳酸盐岩地质特征及勘探潜力[J]. 中国石油勘探, 2014, 19(4): 11-17.
3 Ma Xinhua, Yang Yu, Wen Long, et al. Distribution and exploration direction of large and medium-sized marine carbonate gas fields in Sichuan basin [J]. Petroleum Exploration and Development, 2019, 46(1): 1-13.
马新华,杨雨,文龙,等. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发, 2019, 46(1): 1-13.
4 Qiu Nansheng, Li Huili, Jin Zhijun, et al. Study on the geothermometer of free radicals in organic matter for the reconstruction of the thermal history of marine carbonate succession [J]. Acta Geologica Sinica, 2006, 80(3): 390-397.
邱楠生,李慧莉,金之钧,等.碳酸盐岩层系热历史恢复的有机质自由基古温标研究[J].地质学报,2006, 80(3): 390-397.
5 Powell J W, Schneider D A, Desrochers A, et al. Low-temperature thermochronology of Anticosti Island: A case study on the application of conodont (U-Th)/He thermochronology to carbonate basin analysis [J]. Marine & Petroleum Geology, 2018, 96: 441-456.
6 Alexandre C, Cecile G, Maurice P, et al. 4He behavior in calcite filling viewed by (U-Th)/He dating, 4He diffusion and crystallographic studies[J]. Geochimica et Cosmochimica Acta, 2014, 125: 414-432.
7 Copeland P, Cox K, Watson E B, et al. The potential of crinoids as (U-Th-Sm)/He thermochronometers [J]. Earth and Planetary Science Letters, 2015, 422: 1-10.
8 Peppe D J, Reiners P W. Conodont (U-Th)/He thermochronology: Initial results, potential, and problems [J]. Earth and Planetary Science Letters, 2007, 258(3/4): 569-580.
9 Landman R L, Flowers R M, Rosenau N A, et al. Conodont (U-Th)/He thermochronology: A case study from the Illinois Basin [J]. Earth and Planetary Science Letters, 2016, 456: 55-65.
10 Bidgoli T S, Tyrrell J P, M?ller A, et al. Conodont thermochronology of exhumed footwalls of low-angle normal faults: A pilot study in the Mormon Mountains, Tule Springs Hills, and Beaver Dam Mountains, southeastern Nevada and southwestern Utah [J]. Chemical Geology, 2018, 495: 1-17.
11 Sweet W C, Donoghue P C J. Condonts: Past, present, future [J]. Journal of Paleontology, 2001, 75(6): 1 174-1 184.
12 Epstein A G, Epstein J B, Harris L D. Incipient metamorphism, structural anomalies, and oil gas potential in the Applachian basin determined from conodont color [J]. Geological Society of America Abstrats with Programs, 1974, 6(1): 723-724.
13 Epstein A G, Epstein J B, Harris L D, et al. Conodont color alteration: An index to organic metamorphism [J]. USGS Professional Paper, 1977, 995: 1-27.
14 Rejebian V A, Harris A G, Huebner S. Conodont color and textural alteration: An index to regional metamorphism, contact metamorphism, and hydrothermal alteration[J]. Geological Society of America Bulletin, 1987, 99(4): 471-479.
15 Jiang Wu, Lu Tingqing, Luo Yuqiong. The application of conodont CAI in carbonate oil-gas fields exploration[J]. Petroleum Exploration and Development, 1999, 26(2): 46-48.
蒋武,陆廷清,罗玉琼.牙形石色变在碳酸盐岩油气田勘探中的应用[J].石油勘探与开发,1999, 26(2): 46-48.
16 Wernicke R S, Lippolt H J. Dating of vein specularite using internal (U-Th)/He isochrones [J]. Geophysical Research Letters, 1994, 21(5): 345-347.
17 Trueman C N, Orr P. Chemical taphonomy of biomineralized tissues [J]. Palaeontology, 2013, 56(3): 475-486.
18 Reynard B, Balter V. Trace elements and their isotopes in bones and teeth: Diet, environments, diagenesis, and dating of archeological and paleontological samples [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 416: 4-16.
19 Wright J. Conodont geochemistry: A key to the Paleozoic [J]. Courier Forschungsinstitut Senckenberg, 1990, 118: 277-305.
20 Millard A R, Hedges R E M. A diffusion-adsorption model of uranium uptake by archaeological bone [J]. Geochimica et Cosmochimica Acta, 1996, 60(12): 2 139-2 152.
21 Pike A W G, Hedges R E M. Sample geometry and U uptake in archaeological teeth: Implications for U-series and ESR dating [J]. Quaternary Science Reviews, 2001, 20(5): 1 021-1 025.
22 Trotter J A, Eggins S M. Chemical systematics of conodont apatite determined by laser ablation ICPMS [J]. Chemical Geology, 2006, 233(3): 196-216.
23 Jeppsson L, Anehus R. A buffered formic acid technique for conodont extraction[J]. Journal of Paleontology, 1995, 69(4): 790-794.
24 Jeppsson L, Anehus R, Fredholm D. The optimal acetate buffered acetic acid technique for extracting phosphatic fossils [J]. Journal of Paleontology, 1999, 73(5): 964-972.
25 Evans N J, Mcinnes B I A, Squelch A P, et al. Application of X-ray micro-computed tomography in (U-Th)/He thermochronology [J]. Chemical Geology, 2008, 257(1/2): 101-113.
26 Farley K A, Wolf R A, Silver L T. The effects of long alpha stopping distances on (U-Th)/He age [J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4 223-4 229.
27 Farley K A. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite[J]. Journal of Geophysical Research, 2000, 105(B2): 2 903-2 914.
28 Shuster D L , Farley K A, Sisterson M J, et al. Quantifying the diffusion kinetics and spatial distributions of radiogenic 4He in minerals containing proton-induced 3He [J]. Earth and Planetary Science Letters, 2004, 217(1): 19-32.
29 Shuster D L, Flowers R M, Farley K A. The influence of natural radiation damage on helium diffusion kinetics in apatite[J]. Earth and Planetary Science Letters, 2006, 249(3): 148-161.
30 Stockli D F. Regional Timing and Spatial Distribution of Miocene Extension in the Northern Basin and Range Province [D]. Stanford,Califoria: Stanford University, 1999.
31 Spiegel C, Kohn B, Belton D, et al. Apatite (U-Th-Sm)/He thermochronology of rapidly cooled samples: The effect of He implantation [J]. Earth and Planetary Science Letters, 2009, 285(1): 105-114.
32 Murray K E, Orme D A, Reiners P W. Effects of U-Th-rich grain boundary phases on apatite helium ages[J]. Chemical Geology, 2014, 390: 135-151.
33 Fuchs A. Determination of the burial temperature in the Ordovician of Thuringia and Scandinavia by means of conodont color[J]. Neues Jahrbuch für Geologie und Palaeontologie-Monatshefte, 1989, 7: 390-399.
34 Ebneth S, Diener A, Buhl D, et al. Strontium isotope systematics of conodonts: Middle Devonian, Eifel Mountains, Germany[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1997, 132(1): 79-96.
35 N?th S. Conodont color (CAI) versus microcrystalline and textural changes in Upper Triassic conodonts from Northwest Germany [J]. Facies, 1998, 38(1): 165-173.
36 K?nigshof P. Conodont deformation patterns and textural alteration in Paleozoic conodonts: Examples from Germany and France[J]. Palaeobiodiversity and Palaeoenvironments, 2003, 83(1): 149-156.
37 Sanz-López J, Blanco-Ferrera S. Overgrowths of large authigenic apatite crystals on the surface of conodonts from Cantabrian limestones (Spain) [J]. Facies, 2012, 58(4): 707-726.
38 Garcia-Lopez S, Brime C, Bastida F, et al. Simultaneous use of thermal indicators to analyse the transition from diagenesis to metamorphism: An example from the Variscan Belt of northwest Spain [J]. Geological Magazine, 1997, 134(3): 323-334.
39 Trotter J A, Fitz Gerald J D, Kokkonen H, et al. New insights into the ultrastructure, permeability, and integrity of conodont apatite determined by transmission electron microscopy [J]. Lethaia, 2007, 40(2): 97-110.
40 Trueman C N, Tuross N. Trace Elements in recent and fossil bone apatite [J]. Reviews in Mineralogy & Geochemistry, 2002, 48: 489-521.
[1] 焦若鸿,许长海,张向涛,阙晓铭. 锆石裂变径迹(ZFT)年代学:进展与应用[J]. 地球科学进展, 2011, 26(2): 171-182.
[2] 常远,许长海,周祖翼. (U-Th)/He测年技术:α离子射出效应及其校正[J]. 地球科学进展, 2010, 25(4): 418-427.
[3] 吴堑虹,刘厚昌. (U-Th)/He定年——低温热年代学研究的一种新技术[J]. 地球科学进展, 2002, 17(1): 126-131.
[4] 李荣西,魏家庸,杨卫东,郭庆军. 87Sr/ 86Sr研究海平面变化与全球对比问题[J]. 地球科学进展, 2000, 15(6): 729-733.
阅读次数
全文


摘要