地球科学进展 ›› 2020, Vol. 35 ›› Issue (7): 691 -703. doi: 10.11867/j.issn.1001-8166.2020.058

综述与评述 上一篇    下一篇

流域风化过程稳定锶同位素的分馏与示踪
赖正( ),苏妮( ),吴舟扬,连尔刚,杨承帆,李芳亮,杨守业   
  1. 同济大学 海洋地质国家重点实验室,上海 200092
  • 收稿日期:2020-04-03 修回日期:2020-06-03 出版日期:2020-07-10
  • 通讯作者: 苏妮 E-mail:zhenglai@tongji.edu.cn;nsu@tongji.edu.cn
  • 基金资助:
    青岛海洋科学与技术国家实验室开放基金项目“多同位素示踪极端事件对东海沉积物源汇关键过程的影响”(QNLM2016ORO0211);国家自然科学基金项目“山溪性入海河流物源变异及对气候事件的响应”(41776062)

Stable Strontium Isotopic Fractionation During Chemical Weathering in Drainage Basins: Mechanisms and Applications

Zheng Lai( ),Ni Su( ),Zhouyang Wu,Ergang Lian,Chengfan Yang,Fangliang Li,Shouye Yang   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2020-04-03 Revised:2020-06-03 Online:2020-07-10 Published:2020-08-21
  • Contact: Ni Su E-mail:zhenglai@tongji.edu.cn;nsu@tongji.edu.cn
  • About author:Lai Zheng(1995-), male, Ganzhou City, Jiangxi Province, Master student. Research areas include marine geology. E-mail: zhenglai@tongji.edu.cn
  • Supported by:
    the Open Financial Grant from the Qingdao National Laboratory for Marine Science and Technology “Multi-isotope tracing of sediment source-to-sink process in East China Sea affected by extreme event”(QNLM2016ORP0211);The National Natural Science Foundation of China “Heterogeneity in mountainous river sources with the response to climate event”(41776062)

稳定锶同位素( δ88/86Sr)是近年来新兴的一种非传统稳定同位素,应用其示踪大陆风化过程与海洋锶循环已成为学术界一个研究热点。目前稳定锶同位素质谱测试精度可优于0.03‰,自然界不同地质体 δ88/86Sr的变化范围为-3.65‰~1.68‰。研究发现,流域风化过程中原生矿物的差异性溶解、次生矿物的形成与吸附作用、碳酸钙沉淀以及生物作用都会使得流体相 δ88/86Sr升高,而固体相 δ88/86Sr降低,从而导致稳定锶同位素在河流溶解态和颗粒态具有不同的地球化学行为。河流沉积物 δ88/86Sr随着风化强度的增强而降低,具有示踪流域化学风化强度的潜力。同时,当前亟需深入研究表生风化过程中稳定锶同位素的分馏机制及制约因素,这是运用河水 δ88/86Sr示踪流域化学风化的关键,也为深入理解全球海洋锶循环提供借鉴。

The new non-traditional stable strontium (Sr) isotope has aroused great attention from academic scholars in terms of the continental weathering and marine Sr cycle. The analytical precision of stable Sr isotope using mass spectrometry is better than 0.03‰. The compiled δ88/ 86Sr values vary from -3.65‰ to 1.68‰ in natural reservoirs. Recent findings indicate that multiple processes can cause stable Sr isotope fractionation in Earth surface, including the incongruent dissolution of primary minerals, the formation and adsorption of secondary minerals, the precipitation of calcium carbonate, and the biological cycling. These processes lead to higher δ88/ 86Sr in the liquid phase and lower δ88/ 86Sr in the solid phase, and thus result in different geochemical behavior of stable Sr isotopes in water and sediment during the weathering processes. The δ88/ 86Sr values of river sediment decrease with the increase of weathering intensity, which has the potential to indicate chemical weathering intensity. Meanwhile, further study on the fractionation mechanisms and constraints of stable Sr isotopes in river water plays an important role in tracing chemical weathering processes within the watershed, which will lead to a better understanding of the global ocean Sr cycle.

中图分类号: 

图1 标准海水 IAPSO的稳定 Sr同位素组成的不同质谱测试方法对比
部分数据误差表示方法由2SE转化为2SD
Fig.1 Comparison of δ88/86Sr values for IAPSO measured by different mass spectrometry methods
Errors of 2SE are converted to 2SD
图2 自然界储库中稳定 Sr同位素组成
竖轴为硅酸盐地球的 δ 88/86Sr平均组成(0.27‰~0.30‰),据参考文献[ 15 , 16 , 18 ]修改;数据来自参考文献[3~5,7,9,11~22,25~27,29~31,35,36,38,41~53,55,56,65~68]
Fig.2 Stable strontium isotopic compositions in
natural reservoirs
The solid line represents the δ 88/86Sr values of the Bulk Silicate Earth average (0.27‰~0.30‰), modified after references[15,16,18]; Data source from references[3~5,7,9,11~22,25~27,29~31,35,36,38,41~53,55,56,65~68]
图3 不同流域各类型样品中 δ88/86SrSr浓度变化范围
淡黄色条带为硅酸盐地球的 δ 88/86Sr平均组成(0.27‰~0.30‰),据参考文献[ 15 , 16 , 18 ]修改;数据来源:木兰溪数据来自参考文献[ 78 ],西江数据来自参考文献[ 43 ],Hou-Ku河数据来自参考文献[ 44 ],Cleddau河数据来自参考文献[ 50 ],Lemon Creek冰川流域数据来自参考文献[ 46 ],Akuliarusiarsuup Kuua河数据来自参考文献[ 49 ]
Fig.3 Variation of δ88/86Sr values and Sr contents in various types of samples
The light yellow band represents the δ 88/86Sr values of the Bulk Silicate Earth average (0.27‰~0.30‰), modified after references[15,16,18]. Data source: Mulan River data from reference[ 78 ], Xijiang River data from reference[ 43 ], Hou-Ku River data from reference[ 44 ], Cleddau River data from reference[ 50 ], Lemon Creek glacier data from reference[ 46 ], Akuliarusiarsuup Kuua River data from reference[ 49 ]
图4 世界不同河流水体 δ88/86Sr vs. Sr/Na关系图
阴影区域表示世界不同河流 δ 88/86Sr的变化范围 [ 52 ];碳酸盐岩和硅酸盐岩端元的 δ 88/86Sr分别为-0.05‰~0.23‰和0.08‰~0.46‰;两端元的Sr/Na(摩尔浓度比)据参考文献[ 86 ]修改;数据来源:(a)来自参考文献[ 43 ];(b)来自参考文献[ 44 ];(c)来自参考文献[ 50 ];(d)来自参考文献[ 46 ];(e)来自参考文献[ 45 ];(f)来自参考文献[ 49 ];(g)来自参考文献[ 52 ]
Fig.4 Plot of δ88/86Sr versus Sr/Na for river waters worldwide
The shaded area shows the range in riverine δ 88/86Sr values worldwide [ 52 ]. The δ 88/86Sr values of carbonate and silicate endmembers are -0.05‰~0.23‰ and 0.08‰~0.46‰, respectively. The Sr/Na ratios (molar ratio) of the two end members modified after reference[ 86 ]. Data source: (a) Data from reference[ 43 ]; (b) Data from reference[ 44 ]; (c) Data from reference[ 50 ]; (d) Data from reference[ 46 ]; (e) Data from reference[ 45 ]; (f) Data from reference[ 49 ]; (g) Data from reference[ 52 ]
1 Veizer J. Strontium isotopes in seawater through time [J]. Annual Review of Earth and Planetary Sciences, 1987, 17: 141- 167.
2 Nier A O. The isotopic constitution of Strontium, Barium, Bismuth, Thallium and Mercury [J]. Physical Review, 1938, 54( 4): 275- 278.
3 Fietzke J, Eisenhauer A. Determination of temperature-dependent stable strontium isotope ( 88Sr/ 86Sr) fractionation via bracketing standard MC-ICP-MS [J]. Geochemistry, Geophysics, Geosystems, 2006, 7( 8). DOI: 10.1029/2006GC001243.
doi: 10.1029/2006GC001243    
4 Ohno T, Hirata T. Simultaneous determination of mass-dependent isotopic fractionation and radiogenic isotope variation of strontium in geochemical samples by multiple collector-ICP-mass spectrometry [J]. Analytical Sciences, 2007, 23( 11): 1 275- 1 280.
5 Yang L, Peter C, Panne U, et al. Use of Zr for mass bias correction in strontium isotope ratio determinations using MC-ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 2008, 23( 9): 1 269- 1 274.
6 Krabbenh?ft A, Fietzke J, Eisenhauer A, et al. Determination of radiogenic and stable strontium isotope ratios ( 87Sr/ 86Sr; δ88/86Sr) by thermal ionization mass spectrometry applying an 87Sr/ 84 Sr double spike [J]. Journal of Analytical Atomic Spectrometry, 2009, 24( 9): 1 267- 1 271.
7 Liu H C, You C F, Huang K F, et al. Determination of 87Sr/ 86Sr and δ88/86Sr ratios in plant materials using MC-ICP-MS [J]. Analytical and Bioanalytical Chemistry, 2016, 408( 2): 387- 397.
8 Kramchaninov A Y, Chernyshev I V, Shatagin K N. Isotope analysis of strontium by multicollector inductively-coupled plasma mass spectrometry: High-precision combined measurement of 88Sr/ 86Sr and 87Sr/ 86Sr isotope ratios [J]. Journal of Analytical Chemistry, 2012, 67( 14): 1 084- 1 092.
9 Liu H C, You C F, Huang K F, et al. Precise determination of triple Sr isotopes ( δ87Sr and δ88Sr) using MC-ICP-MS [J]. Talanta, 2012, 88: 338- 344.
10 Irrgeher J, Prohaska T, Sturgeon R E, et al. Determination of strontium isotope amount ratios in biological tissues using MC-ICPMS [J]. Analytical Methods, 2013, 5( 7): 1 687- 1 694.
11 Ma J L, Wei G J, Liu Y, et al. Precise measurement of stable ( δ88/86Sr) and radiogenic ( 87Sr/ 86Sr) strontium isotope ratios in geological standard reference materials using MC-ICP-MS [J]. Chinese Science Bulletin, 2013, 58( 25): 3 111- 3 118.
12 Shalev N, Segal I, Lazar B, et al. Precise determination of δ88/86Sr in natural samples by double-spike MC-ICP-MS and its TIMS verification[J]. Journal of Analytical Atomic Spectrometry, 2013, 28( 6): 940- 944.
13 Neymark L A, Premo W R, Mel'nikov N N, et al. Precise determination of δ88Sr in rocks, minerals, and waters by double-spike TIMS: A powerful tool in the study of geological, hydrological and biological processes [J]. Journal of Analytical Atomic Spectrometry, 2014, 29( 1): 65- 75.
14 Scher H D, Griffith E M, Buckley Jr W P. Accuracy and precision of 88Sr/ 86Sr and 87Sr/ 86Sr measurements by MC-ICPMS compromised by high barium concentrations [J]. Geochemistry, Geophysics, Geosystems, 2014, 15( 2): 499- 508.
15 Moynier F, Agranier A, Hezel D C, et al. Sr stable isotope composition of Earth, the Moon, Mars, Vesta and meteorites [J]. Earth and Planetary Science Letters, 2010, 300( 3/4): 359- 366.
16 Charlier B L A, Nowell G M, Parkinson I J, et al. High temperature strontium stable isotope behaviour in the early solar system and planetary bodies [J]. Earth and Planetary Science Letters, 2012, 329/330: 31- 40.
17 Charlier B L A, Tissot F L H, Dauphas N, et al. Nucleosynthetic, radiogenic and stable strontium isotopic variations in fine- and coarse-grained refractory inclusions from Allende [J]. Geochimica et Cosmochimica Acta, 2019, 265: 413- 430.
18 Amsellem E, Moynier F, Day J M D, et al. The stable strontium isotopic composition of ocean island basalts, mid-ocean ridge basalts, and komatiites [J]. Chemical Geology, 2018, 483: 595- 602.
19 Charlier B L A, Parkinson I J, Burton K W, et al. Stable strontium isotopic heterogeneity in the solar system from double-spike data [J]. Geochemical Perspectives Letters, 2017, 4: 35- 40.
20 Halicz L, Segal I, Fruchter N, et al. Strontium stable isotopes fractionate in the soil environments? [J]. Earth and Planetary Science Letters, 2008, 272( 1/2): 406- 411.
21 Ohno T, Komiya T, Ueno Y, et al. Determination of 88Sr/ 86Sr mass-dependent isotopic fractionation and radiogenic isotope variation of 87Sr/ 86Sr in the Neoproterozoic Doushantuo Formation [J]. Gondwana Research, 2008, 14( 1/2): 126- 133.
22 De Souza G F, Reynolds B C, Kiczka M, et al. Evidence for mass-dependent isotopic fractionation of strontium in a glaciated granitic watershed [J]. Geochimica et Cosmochimica Acta, 2010, 74( 9): 2 596- 2 614.
23 Krabbenh?ft A. Stable Strontium Isotope ( δ88/86Sr) Fractionation in the Marine Realm: A Pilot Study [D]. Kiel: Christian-Albrechts-Universit?t zu Kiel, 2011.
24 Liebetrau V, Haeckel M, Eisenhauer A, et al. Paired Sr isotope ( 87Sr/ 86Sr, δ88/86Sr) systematic of pore water profiles: A new perspective in marine weathering and seepage studies [C]// Goldschmidt Conference Abstracts. Prague: GeoScience World, 2011.
25 B?hm F, Eisenhauer A, Tang J, et al. Strontium isotope fractionation of planktic foraminifera and inorganic calcite [J]. Geochimica et Cosmochimica Acta, 2012, 93: 300- 314.
26 Voigt J, Hathorne E C, Frank M, et al. Variability of carbonate diagenesis in equatorial Pacific sediments deduced from radiogenic and stable Sr isotopes [J]. Geochimica et Cosmochimica Acta, 2015, 148: 360- 377.
27 Widanagamage I H, Griffith E M, Singer D M, et al. Controls on stable Sr-isotope fractionation in continental barite [J]. Chemical Geology, 2015, 411: 215- 227.
28 Voigt M, Pearce C R, Baldermann A, et al. Stable and radiogenic strontium isotope fractionation during hydrothermal seawater-basalt interaction [J]. Geochimica et Cosmochimica Acta, 2018, 240: 131- 151.
29 Müller M N, Krabbenh?ft A, Vollstaedt H, et al. Stable isotope fractionation of strontium in coccolithophore calcite: Influence of temperature and carbonate chemistry [J]. Geobiology, 2018, 16( 3): 297- 306.
30 Shalev N, Gavrieli I, Halicz L, et al. Enrichment of 88Sr in continental waters due to calcium carbonate precipitation [J]. Earth and Planetary Science Letters, 2017, 459: 381- 393.
31 Fruchter N, Lazar B, Nishri A, et al. 88Sr/ 86Sr fractionation and calcite accumulation rate in the Sea of Galilee [J]. Geochimica et Cosmochimica Acta, 2017, 215: 17- 32.
32 AlKhatib M, Eisenhauer A. Calcium and strontium isotope fractionation during precipitation from aqueous solutions as a function of temperature and reaction rate; II. Aragonite [J]. Geochimica et Cosmochimica Acta, 2017, 209: 320- 342.
33 AlKhatib M, Eisenhauer A. Calcium and strontium isotope fractionation in aqueous solutions as a function of temperature and reaction rate; I. Calcite [J]. Geochimica et Cosmochimica Acta, 2017, 209: 296- 319.
34 Fruchter N, Eisenhauer A, Dietzel M, et al. 88Sr/ 86Sr fractionation in inorganic aragonite and in corals [J]. Geochimica et Cosmochimica Acta, 2016, 178: 268- 280.
35 Rüggeberg A, Fietzke J, Liebetrau V, et al. Stable strontium isotopes ( δ88/86Sr) in cold-water corals — A new proxy for reconstruction of intermediate ocean water temperatures [J]. Earth and Planetary Science Letters, 2008, 269( 3/4): 570- 575.
36 Stevenson E I, Hermoso M, Rickaby R E M, et al. Controls on stable strontium isotope fractionation in coccolithophores with implications for the marine Sr cycle [J]. Geochimica et Cosmochimica Acta, 2014, 128: 225- 235.
37 Vollstaedt H, Eisenhauer A, Krabbenh?ft A, et al. The Paleozoic δ88/ 86Sr record of marine carbonates-Implications to ocean carbonate chemistry and mass extinction events [C]// EGU General Assembly Conference Abstracts. Vienna: EGU General Assembly, 2011.
38 Vollstaedt H, Eisenhauer A, Wallmann K, et al. The Phanerozoic δ88/86Sr record of seawater: New constraints on past changes in oceanic carbonate fluxes [J]. Geochimica et Cosmochimica Acta, 2014, 128: 249- 265.
39 Wang J Y, Jacobson A D, Zhang H, et al. Coupled δ44/40Ca, δ88/86Sr, and 87Sr/ 86Sr geochemistry across the end-Permian mass extinction event [J]. Geochimica et Cosmochimica Acta, 2019, 262: 143- 165.
40 Le Houedec S, McCulloch M, Trotter J, et al. Conodont apatite δ88/86Sr and δ44/40Ca compositions and implications for the evolution of Palaeozoic to early Mesozoic seawater [J]. Chemical Geology, 2017, 453: 55- 65.
41 Chao H C, You C F, Liu H C, et al. The origin and migration of mud volcano fluids in Taiwan: Evidence from hydrogen, oxygen, and strontium isotopic compositions [J]. Geochimica et Cosmochimica Acta, 2013, 114: 29- 51.
42 Neymark L A, Premo W R, Emsbo P. Combined radiogenic ( 87Sr/ 86Sr, 234U/ 238U) and stable ( δ88Sr) isotope systematics as tracers of anthropogenic groundwater contamination within the Williston Basin USA [J]. Applied Geochemistry, 2018, 96: 11- 23.
43 Wei G J, Ma J L, Liu Y, et al. Seasonal changes in the radiogenic and stable strontium isotopic composition of Xijiang River water: Implications for chemical weathering [J]. Chemical Geology, 2013, 343: 67- 75.
44 Chao H C, You C F, Liu H C, et al. Evidence for stable Sr isotope fractionation by silicate weathering in a small sedimentary watershed in southwestern Taiwan [J]. Geochimica et Cosmochimica Acta, 2015, 165: 324- 341.
45 Stevenson R, Pearce C R, Rosa E, et al. Weathering processes, catchment geology and river management impacts on radiogenic ( 87Sr/ 86Sr) and stable ( δ88/86Sr) strontium isotope compositions of Canadian boreal rivers [J]. Chemical Geology, 2018, 486: 50- 60.
46 Stevenson E I, Aciego S M, Chutcharavan P, et al. Insights into combined radiogenic and stable strontium isotopes as tracers for weathering processes in subglacial environments [J]. Chemical Geology, 2016, 429: 33- 43.
47 Andrews M G, Jacobson A D. The radiogenic and stable Sr isotope geochemistry of basalt weathering in Iceland: Role of hydrothermal calcite and implications for long-term climate regulation [J]. Geochimica et Cosmochimica Acta, 2017, 215: 247- 262.
48 Shalev N, Lazar B, Halicz L, et al. Strontium isotope fractionation in soils and pedogenic processes [J]. Procedia Earth and Planetary Science, 2013, 7: 790- 793.
49 Andrews M G, Jacobson A D. Controls on the solute geochemistry of subglacial discharge from the Russell Glacier, Greenland Ice Sheet determined by radiogenic and stable Sr isotope ratios [J]. Geochimica et Cosmochimica Acta, 2018, 239: 312- 329.
50 Andrews M G, Jacobson A D, Lehn G O, et al. Radiogenic and stable Sr isotope ratios ( 87Sr/ 86Sr, δ88/86Sr) as tracers of riverine cation sources and biogeochemical cycling in the Milford Sound region of Fiordland, New Zealand [J]. Geochimica et Cosmochimica Acta, 2016, 173: 284- 303.
51 Krabbenh?ft A, Eisenhauer A, B?hm F, et al. Constraining the marine strontium budget with natural strontium isotope fractionations ( 87Sr/ 86Sr *, δ88/86Sr) of carbonates, hydrothermal solutions and river waters [J]. Geochimica et Cosmochimica Acta, 2010, 74( 14): 4 097- 4 109.
52 Pearce C R, Parkinson I J, Gaillardet J, et al. Characterising the stable ( δ88/86Sr) and radiogenic ( 87Sr/ 86Sr) isotopic composition of strontium in rainwater [J]. Chemical Geology, 2015, 409: 54- 60.
53 Knudson K J, Williams H M, Buikstra J E, et al. Introducing δ88/86Sr analysis in archaeology: A demonstration of the utility of strontium isotope fractionation in paleodietary studies [J]. Journal of Archaeological Science, 2010, 37( 9): 2 352- 2 364.
54 Lewis J, Pike A W G, Coath C D, et al. Strontium concentration, radiogenic ( 87Sr/ 86Sr) and stable ( δ88Sr) strontium isotope systematics in a controlled feeding study [J]. STAR: Science & Technology of Archaeological Research, 2017, 3( 1): 45- 57.
55 Hajj F, Poszwa A, Bouchez J, et al. Radiogenic and “stable” strontium isotopes in provenance studies: A review and first results on archaeological wood from shipwrecks [J]. Journal of Archaeological Science, 2017, 86: 24- 49.
56 Liu H C, You C F, Zhou H Y, et al. Effect of calcite precipitation on stable strontium isotopic compositions: Insights from riverine and pool waters in a karst cave [J]. Chemical Geology, 2017, 456: 85- 97.
57 Liu H C, You C F, Tu Y J. Stable strontium isotopic fractionation during sorption onto magnetic nano-humid acid coated iron oxide particles [C]// EGU General Assembly Conference Abstracts. Vienna: EGU General Assembly, 2012.
58 Li Fushan, Han Guilin. Advances in applications of non-traditional stable strontium (δ88 / 86sr) isotope in geochemistry [J]. Earth and Environment, 2011, 39( 4): 585- 591.
李富山, 韩贵琳. 非传统稳定同位素锶( δ88 /86Sr)的地球化学研究进展[J]. 地球与环境, 2011, 39( 4): 585- 591.
59 Li Baichan, Feng Lanping, Wang Qian, et al. Advances of stable strontium isotopes ( δ88/86Sr) in marine geochemical cycle [J]. Geological Science and Technology Information, 2018, 37( 4): 100- 105.
李百蝉, 冯兰平, 王倩,等, 稳定锶同位素在海洋地球化学循环中的研究进展[J]. 地质科技情报, 2018, 37( 4): 100- 105.
60 Yang Shouye, Wei Gangjian, Shi Xuefa. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin [J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2015, 34( 5): 902- 910.
杨守业, 韦刚健, 石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报, 2015, 34( 5): 902- 910.
61 Ma Yingjun, Liu Congqiang. Geochemistry of strontium isotopes in the crust weathering system [J]. Acta Mineralogica Sinica, 1998, 18( 3): 350- 358.
马英军, 刘丛强. 地壳风化系统中的Sr同位素地球化学[J]. 矿物学报, 1998, 18( 3): 350- 358.
62 Ma Yingjun, Liu Congqiang. Using strontium isotopes to trace nutrient element circulation and hydrochemical evolution within an ecosystem [J]. Advances in Earth Science, 1999, 14( 4): 64- 70.
马英军, 刘丛强. 生态系统营养离子循环及水化学演化的锶同位素示踪[J]. 地球科学进展, 1999, 14( 4): 64- 70.
63 Albare?de F, Beard B. Analytical methods for non-traditional isotopes [J]. Reviews in Mineralogy and Geochemistry, 2004, 55( 1): 113- 152.
64 Chao H C, You C F, Liu H C, et al. Evidence for stable Sr isotope fractionation by silicate weathering in a small sedimentary watershed in southwestern Taiwan [J]. Geochimica et Cosmochimica Acta, 2015, 165: 324- 341.
65 Krabbenh?ft A, Fietzke J, Eisenhauer A, et al. Determination of radiogenic and stable strontium isotope ratios ( 87Sr/ 86Sr; δ88/86Sr) by thermal ionization mass spectrometry applying an 87Sr/ 84Sr double spike [J]. Journal of Analytical Atomic Spectrometry, 2009, 24( 9): 1 267- 1 271.
66 Bullen T, Chadwick O. Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence in Hawaii [J]. Chemical Geology, 2016, 422: 25- 45.
67 Raddatz J, Liebetrau V, Rüggeberg A, et al. Stable Sr-isotope, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios in the scleractinian cold-water coral Lophelia pertusa [J]. Chemical Geology, 2013, 352: 143- 152.
68 Pearce C R, Parkinson I J, Gaillardet J, et al. Reassessing the stable ( δ88/86Sr) and radiogenic ( 87Sr/ 86Sr) strontium isotopic composition of marine inputs [J]. Geochimica et Cosmochimica Acta, 2015, 157: 125- 146.
69 Faure G, Powell J L. Strontium Isotope Geology [M]. Berlin Germany: Springer-Verlag Berlin Heidelberg, 1972.
70 Mitchell A, Brown G H, Fuge R. Minor and trace element export from a glacierized Alpine headwater catchment (Haut Glacier d'Arolla, Switzerland) [J]. Hydrological Processes, 2001, 15( 18): 3 499- 3 524.
71 Parker A. An index of weathering for silicate rocks [J]. Geological Magazine, 1970, 107( 6): 501- 504.
72 Nesbitt H W, Young G. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299( 5 885): 715- 717.
73 Fedo C M, Wayne Nesbitt H, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance [J]. Geology, 1995, 23( 10): 921- 924.
74 Harnois L. The CIW index: A new chemical index of weathering [J]. Sedimentary Geology, 1988, 55: 319- 322.
75 Duzgoren-Aydin N, Aydin A, Malpas J. Re-assessment of chemical weathering indices: Case study on pyroclastic rocks of Hong Kong [J]. Engineering Geology, 2002, 63( 1/2): 99- 119.
76 Shao J, Yang S, Li C. Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of fluvial sediments [J]. Sedimentary Geology, 2012, 265/266: 110- 120.
77 Buggle B, Glaser B, Hambach U, et al. An evaluation of geochemical weathering indices in loess-paleosol studies [J]. 2011, 240( 1/2): 12- 21.
78 Wu Zhouyang. The Strontium Cycle in a Small Mountainous River and Fractionation Mechanisms of Stable Strontium Isotope [D]. Shanghai: Tongji University, 2019.
吴舟扬. 山地小流域的Sr循环及稳定Sr同位素分馏机制探究[D]. 上海: 同济大学, 2019.
79 Suresh P, Dosseto A, Handley H, et al. Assessment of a sequential phase extraction procedure for uranium-series isotope analysis of soils and sediments [J]. Applied Radiation and Isotopes, 2014, 83: 47- 55.
80 Tessier A, Campbell P G, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51( 7): 844- 851.
81 Gaillardet J, Dupré B, Allègre C. Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer? [J]. Geochimica et Cosmochimica Acta, 1999, 63( 23/24): 4 037- 4 051.
82 Dellinger M, Gaillardet J, Bouchez J, et al. Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion [J]. Earth and Planetary Science Letters, 2014, 401: 359- 372.
83 Guo Y, Yang S, Su N, et al. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices [J]. Geochimica et Cosmochimica Acta, 2018, 227: 48- 63.
84 Ohno T, Hirata T. Stable isotope geochemistry of strontium using MC-ICP-MS [J]. Geochimica et Cosmochimica Acta, 2006, 70( 18): A453- A453.
85 Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years [J]. American Journal of Science, 1983, 283( 7): 641- 683.
86 Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO 2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159( 1/4): 3- 30.
87 Palmer M, Edmond J. Controls over the strontium isotope composition of river water [J]. Geochimica et Cosmochimica Acta, 1992, 56( 5): 2 099- 2 111.
88 Krishnaswami S, Trivedi J, Sarin M, et al. Strontium isotopes and rubidium in the Ganga-Brahmaputra river system: Weathering in the Himalaya, fluxes to the Bay of Bengal and contributions to the evolution of oceanic 87Sr/ 86Sr [J]. Earth and Planetary Science Letters, 1992, 109( 1/2): 243- 253.
89 Brennan S R, Fernandez D P, Mackey G, et al. Strontium isotope variation and carbonate versus silicate weathering in rivers from across Alaska: Implications for provenance studies[J]. Chemical Geology, 2014, 389: 167- 181.
90 Singh S K, Kumar A, France-Lanord C. Sr and 87Sr/ 86Sr in waters and sediments of the Brahmaputra river system: Silicate weathering, CO 2 consumption and Sr flux[J]. Chemical Geology, 2006, 234( 3): 308- 320.
91 Négrel P, Allègre C J, Dupré B, et al. Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: The Congo Basin case[J]. Earth and Planetary Science Letters, 1993, 120( 1): 59- 76.
92 Viers J, Dupre B, Braun J, et al. Major and trace element abundances, and strontium isotopes in the Nyong basin rivers (Cameroon): Constraints on chemical weathering processes and elements transport mechanisms in humid tropical environments[J]. Chemical Geology, 2000, 169( 1): 211- 241.
93 De Baere B, Fran?ois R, Mayer K U. Measuring mineral dissolution kinetics using on-line flow-through time resolved analysis (FT-TRA): An exploratory study with forsterite [J]. Chemical Geology, 2015, 413: 107- 118.
94 Oelkers E H, Jones M T, Pearce C R, et al. Riverine particulate material dissolution in seawater and its implications for the global cycles of the elements [J]. Comptes Rendus Geoscience, 2012, 344( 11/12): 646- 651.
95 Jeandel C, Oelkers E H. The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles [J]. Chemical Geology, 2015, 395: 50- 66.
96 Jones M T, Pearce C R, Oelkers E H. An experimental study of the interaction of basaltic riverine particulate material and seawater [J]. Geochimica et Cosmochimica Acta, 2012, 77: 108- 120.
97 Jones M T, Pearce C R, Jeandel C, et al. Riverine particulate material dissolution as a significant flux of strontium to the oceans [J]. Earth and Planetary Science Letters, 2012, 355: 51- 59.
98 Jones M T, Gislason S R, Burton K W, et al. Quantifying the impact of riverine particulate dissolution in seawater on ocean chemistry [J]. Earth and Planetary Science Letters, 2014, 395: 91- 100.
99 Lacan F, Jeandel C. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface [J]. Earth and Planetary Science Letters, 2005, 232( 3/4): 245- 257.
100 Jeandel C. Overview of the mechanisms that could explain the 'Boundary Exchange' at the land-ocean contact [J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374: 20150287.
101 Xu Y, Marcantonio F. Strontium isotope variations in the lower Mississippi River and its estuarine mixing zone [J]. Marine Chemistry, 2007, 105( 1/2): 118- 128.
102 Jacobson A D, Andrews M G, Lehn G O, et al. Silicate versus carbonate weathering in Iceland: New insights from Ca isotopes [J]. Earth and Planetary Science Letters, 2015, 416: 132- 142.
103 Rothacker L, Dosseto A, Francke A, et al. Impact of climate change and human activity on soil landscapes over the past 12,300 years [J]. Scientific Reports, 2018, 8: 247.
[1] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[2] 吴能友, 张必东, 邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展, 2015, 30(4): 433-444.
[3] 任景玲;张经;刘素美. 以Al/Ti比值为地球化学示踪剂反演海洋古生产力的研究进展[J]. 地球科学进展, 2005, 20(12): 1314-1320.
[4] 倪师军,滕彦国,张成江,吴香尧. 成矿流体活动的地球化学示踪研究综述[J]. 地球科学进展, 1999, 14(4): 346-352.
阅读次数
全文


摘要