地球科学进展 ›› 2020, Vol. 35 ›› Issue (6): 632 -642. doi: 10.11867/j.issn.1001-8166.2020.047

研究简报 上一篇    下一篇

浅谈深水块体搬运复合体的结构、成因分类以及识别方法
秦磊 1, 2( ),毛金昕 1, 2,倪凤玲 1, 2, 3,徐少华 1, 2( ),李小刚 1, 2,蔡长娥 1, 2,尚文亮 1, 2,刘家恺 1, 2   
  1. 1.重庆科技学院复杂油气田勘探开发重庆市重点实验室,重庆 401331
    2.重庆科技学院石油与天然气 工程学院,重庆 401331
    3.中国石油化工股份有限公司江汉油田分公司,湖北 潜江 430050
  • 收稿日期:2020-03-11 修回日期:2020-05-08 出版日期:2020-06-10
  • 通讯作者: 徐少华 E-mail:ql_stone@163.com;xsh_xu@163.com
  • 基金资助:
    国家自然科学基金项目“陆架边缘三角洲体系供源速率的侧向差异对地层叠加样式的控制——以珠江口盆地SQ13.8为例”(41902114);重庆科技学院研究生科技创新训练计划项目“强制海退体系域的地震响应临界条件及其控制因素”(YKJCX1920113)

A Brief Introduction to Deep-Water Mass-Transport Complexes: Structures, Genetic Classifications and Identification Methods

Lei Qin 1, 2( ),Jinxin Mao 1, 2,Fengling Ni 1, 2, 3,Shaohua Xu 1, 2( ),Xiaogang Li 1, 2,Change Cai 1, 2,Wenliang Shang 1, 2,Jiakai Liu 1, 2   

  1. 1.Chongqing Key Laboratory of Complex Oil and Gas Exploration and Development, Chongqing University of Science and Technology, Chongqing 401331, China
    2.School of Petroleum Engineering, Chongqing University of Science Technology, Chongqing 401331, China
    3.China Petroleum & Chemical Corporation Jianghan Oilfield Branch, Qianjiang Hubei 430050, China
  • Received:2020-03-11 Revised:2020-05-08 Online:2020-06-10 Published:2020-07-06
  • Contact: Shaohua Xu E-mail:ql_stone@163.com;xsh_xu@163.com
  • About author:Qin Lei (1995-), male, Chongqing City, Master student. Research areas include oil and gas exploration geological engineering. E-mail: ql_stone@163.com
  • Supported by:
    the National Natural Science Foundation of China “Control of stratigraphic patterns by lateral difference of sediment rate in the shelf margin delta system-a case study from SQ13.8 in the Pearl River Mouth Basin”(41902114);The Chongqing University of Science and Technology College Students Science and Technology Innovation Training Program “Critical conditions and control factors of seismic response in the domain of falling stage systems tract”(YKJCX1920113)

全球普遍发育的块体搬运复合体是深水地层的重要组成单元,广泛分布在大陆边缘和陆相湖盆中。系统认识块体搬运复合体有助于拓展深水油气勘探领域和评价海底工程地质风险。典型的块体搬运复合体由头部拉张区、体部滑移区和趾部挤压区3个部分组成,三者在顺坡搬运过程中,存在由头部到趾部依次演变的关系。基于沉积物搬运过程和不同阶段流体性质,将块体搬运复合体分为滑动岩、滑塌岩和碎屑岩3类,分别对应搬运过程的弹性形变、弹性和塑性形变以及塑性形变阶段。块体搬运复合体在三维地震平面图通常可根据其沉积物的流动方向(顺坡方向)依次识别出头部陡崖、体部滑塌褶皱和趾部挤压脊等构造单元,剖面上以弱—中振幅反射和丘状—长条状外形为特征,具有不规则顶底界面。测井上块体搬运复合体具有顶底界面突变的曲线响应。露头上块体搬运复合体通常具有一种或多种沉积构造,比如块状构造、滑塌褶皱和泥质撕裂屑等。块体搬运复合体与浊积岩的主要区别在于块体搬运复合体整体以“冻结式”搬运沉积,具有“长条形—似扇形”的斜坡组合形态,垂向上沉积厚度大,无明显粒序分异特征,地层倾角常大于浊积岩沉积地层。

Mass-Transport Complexes (MTCs) are important components of deep-water systems, and widely distributed in continental margins and lake basins. Understanding MTCs is helpful for expanding the targets of deep-water hydrocarbon exploration and for evaluating geological risks of subsea engineering. Typical MTCs consist of three parts: the head tension area, body slip area, and toe compression area. During the transportation of MTCs, these three domains come into being successively. MTCs can be classified into three types: slide rock, slump rock, and debris rock, based on the sediment transport process and fluid properties, and they respectively correspond to elastic deformation, elastic and plastic deformation and plastic deformation stages. In 3D seismic plan, according to the direction of sediment flow (the slope direction), some depositional elements of MTCs, such as head cliffs, body folds, and toe squeeze ridges, can be clearly identified in proper order, and in seismic profiles MTCs are characterized by weak-medium amplitude reflections, mound-like shapes, and irregular top/bottom interfaces. In conventional log data, MTCs are commonly responded as abrupt shifts at their top/bottom interfaces. In outcrop data, MTCs have several kinds of sedimentary structures, such as massive textures, sliding folds, and mud lumps. Compared with turbidites, MTCs have many distinct characteristics. For example, MTCs are deposited from sediments transported through a "frozen" manner and have an "elongate-fan-like" slope morphology, a relative large thickness. Furthermore, MTCs can be characterized by no obvious features of grading differentiation and relatively large stratigraphic dips.

中图分类号: 

图1 MTCs沉积模式图及其对应岩性特征
(a)MTCs沉积模式图 [ 17 ];(b)~(d)MTCs岩心照片,显示MTCs不同沉积部位的岩性特征 [ 12 , 13 ]
Fig.1 The sedimentary model and litholoyical characteristics of MTCs
(a)A sedimentary model of MTCs [ 17 ]; (b)~(d)The core photographs of MTCs, displaying lithological characteristics of different sedimentary parts [ 12 , 13 ]
表1 MTCs不同沉积阶段的特征
Table 1 The features of different deposition stages of MTCs
表2 MTCs的分类
Table 2 The classifications of MTCs
图2 基于搬运过程和流体性质的MTCs分类(据参考文献[ 28 , 29 ]修改)
Fig.2 The classifications of MTCs based on transport process and fluid properties(modified after references2829])
图3 MTCs的地震资料识别特征
(a)巴西东南部圣埃斯皮里图盆地MTCs三维地震平面图,MTCs以头部陡崖、体部滑塌褶皱和趾部挤压脊为特征 [ 33 ];(b)某典型峡谷水深及波列分布图,非对称的浊流波状底形向上游迁移 [ 34 ];(c)摩洛哥海域下古新统地震剖面,内部见保存完好的一个单独滑动块体 [ 35 ];(d)特立尼达海域上更新统MTCs地震剖面图,图中出现一些挤压逆冲,指示了MTCs内部的局部挤压,垂直比例放大约10倍 [ 36 ]
Fig.3 The recognition characteristics of seismic data of MTCs
(a)The three-dimensional seismic plan of MTCs in Espirito Santo Basin on the SE Brazilian margin, characterized by head cliffs, body folds, and toe squeeze ridges [ 33 ]; (b)Bathymetric image and cyclic steps along typical canyon, characterized by unsymmetrical turbidity wave bottom shape migrates upstream [ 34 ]; (c)The seismic profile of the Lower Paleozoic in the Moroccan waters, with a single well-preserved sliding block inside [ 35 ]; (d)Seismic profile across an uppermost Pleistocene MTCs, offshore Trinidad, several thrust slides are present, indicating local contraction within the MTCs, vertical exaggeration is about 10∶1 [ 36 ]
图4 MTCs的测井资料识别特征
(a)亚马孙扇的ODP155航次933A站位块体搬运沉积的自然伽马、电阻率、速度、密度和孔隙度曲线 [ 37 ];(b)亚马孙扇ODP155航次933A站位的地层倾角方位图 [ 38 ]
Fig.4 The identification characteristics of logging data
(a)The natural gamma, resistivity, velocity, density, and porosity curves of the Amazon Fan's ODP155 voyage 933A block transport deposit [ 37 ]; (b)The azimuth map of the Amazon fan ODP155 voyage 933A [ 38 ]
图5 MTCs露头资料识别特征
(a)西爱尔兰上石炭统Ross海底,滑动体上覆平坦的水道充填 [ 39 ];(b)西班牙南部Tabernas盆地上中新统,滑塌岩地层发生一系列褶皱变形且被倾角很缓的水道充填 [ 40 ];(c)西班牙东北部始新世大陆斜坡地层中的碎屑岩 [ 42 ]
Fig.5 The outcrop identification features of MTCs
(a)The sliding body is filled with a flat channel in the upper Carboniferous Ross seafloor of Western Ireland [ 39 ]; (b)A series of folds and deformations occurred in the slump rock formation and were filled with water channels with very low dips in the Upper Miocene of the Tabernas Basin [ 40 ]; (c)Phototgraph of floating clasts in a thin debrite, Eoceneslope strata of Sant Llorenc del Munt, northeastern Spain [ 42 ]
表3 MTCs与浊积岩识别标志 (据参考文献[ 6 ]修改 )
Table 3 The identification marks of MTCs and turbidite (modified after reference[ 6 ])
图6 MTCs与周围地层的储盖关系模式图
(a)富含泥质MTCs的深水地层圈闭模式图 [ 54 ];(b)富含砂质MTCs的深水构造圈闭模式图 [ 57 ]
Fig.6 The modeles of reservoir cap relationship between MTCs and surrounding stratas
(a)A deep-water stratigraphic trap model map of muddy MTCs [ 54 ]; (b)A deep-water structure trap model diagram of sandy MTCs [ 57 ]
1 Chenchen Zhang, Wei Wei, Shun Zhang, et al. Architecture of lacustrine mass-transport complexes in the Mesozoic Songliao Basin, China[J]. Marine and Petroleum Geology, 2016, 78: 826-835.
2 Maslin M, Owen M, Day S, et al. Linking continental-slope failures and climate change: Testing the clathrate gun hypothesis[J]. Geology, 2004, 32(1): 53-56.
3 Moscardelli L, Wood L, Mann P. Mass-transport complexes and associated processes in the offshore area of Trinidad and Venezuela[J]. AAPG Bulletin, 2006, 90(7): 1 059-1 088.
4 Li Dong, Wang Yingmin, Wang Yongfeng, et al. Identification of mass transport complexes and their implications for hydrocarbon exploration: An example from the Central Canyon area in southeastern Hainan Basin[J]. Sedimentary Geology and Tethyan Geology, 2011, 31(3): 58-63.
李冬, 王英民, 王永凤,等. 块状搬运复合体的识别及其油气勘探意义——以琼东南盆地中央峡谷区为例[J]. 沉积与特提斯地质, 2011, 31(3): 58-63.
5 Chen Bintao, Pan Shuxin, Liang Sujuan, et al. Main controlling factors of high quality deep-water Mass Transport Deposits(MTDs) reservoir in Lacustrine Basin: An insight of Qingshankou Formation, Yingtai area, Songliao Basin, North-east China[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1 002-1 010.
陈彬滔, 潘树新, 梁苏娟, 等. 陆相湖盆深水块体搬运体优质储层的主控因素以松辽盆地英台地区青山口组为例[J]. 吉林大学学报: 地球科学版, 2015, 45(4): 1 002-1 010.
6 Pan Shuxin, Zheng Rongcai, Wei Pingsheng, et al. Deposition characteristics, recognition mark and form mechanism of mass transport deposits in terrestrial lake basin[J]. Lithologic Reservoirs, 2013, 25(2): 9-18.
潘树新, 郑荣才, 卫平生, 等. 陆相湖盆块体搬运体的沉积特征、识别标志与形成机制[J]. 岩性油气藏, 2013, 25(2): 9-18.
7 Wang Dawei, Wu Shiguo, Dong Dongdong, et al. Seismic characteristics of quaternary mass transport deposits in QiongDongnan Basin[J]. Marine Geology and Quaternary Geology, 2009, 29(3): 69-74.
王大伟, 吴时国, 董冬冬, 等. 琼东南盆地第四纪块体搬运体系的地震特征[J]. 海洋地质与第四纪地质, 2009, 29(3): 69-74.
8 Butler R W H, McCaffrey W D. Structural evolution and sediment entrainment in mass-transport complexes: Outcrop studies from Italy[J]. Journal of the Geological Society, 2010, 167(3): 617-631.
9 Beaubouef R T, Abreu V, Van Wagoner J C, et al. Basin 4 of the Brazos-Trinity slope system, western Gulf of Mexico: The terminal portion of a late Pleistocene lowstand systems tract[C]//Shelf Margin Deltas and Linked Down Slope Petroleum Systems: Global Significance and Future Exploration Potential: Proceedings of the 23rd Annual Research Conference, Gulf Coast Section SEPM Foundation, 2003: 45-66.
10 Newton S, Mosher D, Shipp C, et al. Importance of mass transport complexes in the Quaternary development of the Nile Fan, Egypt[C]//OTC Conference Proceedings 16742. Houston: Texas Offshore Technology Conference, 2004.
11 Shipp C, Nott J, Newlin J. Variations in jetting performance in deepwater environments: Geotechnical characteristics and effects of mass transport complexes[C]//OTC Conference Proceedings 16751. Houston: Texas Offshore Technology Conference, 2004.
12 Qin Yanqun, Wang Lunkun, Ji Zhifeng, et al. Progress of research on deep-water mass-transport deposits[J]. Oil & Gas Geology, 2018, 39(1): 140-152.
秦雁群, 万仑坤, 计智锋, 等. 深水块体搬运沉积体系研究进展[J]. 石油与天然气地质, 2018, 39(1): 140-152.
13 Shanmugam G. New Perspectives on Deep-water Sandstones: Origin, Recognition, Initiation and Reservoir Quality[M]. Amsterdam: Elsevier, 2012.
14 Purvis K, Kao J, Flanagan K, et al. Complex reservoir geometries in a deep water clastic sequence, Gryphon Field, UKCS: injection structures, geological modeling and reservoir simulation[J]. Marine and Petroleum Geology, 2002, 19(2): 161-179.
15 Li Teigang, Cao Qiyuan, Li Anchun, et al. Source to sink: Sedimentation in the continental margins[J]. Advances in Earth Science, 2003, 18(5): 713-721.
李铁刚, 曹奇原, 李安春, 等. 从源到汇: 大陆边缘的沉积作用[J]. 地球科学进展, 2003, 18(5): 713-721.
16 Wu Shiguo, Qin Zhiliang, Wang Dawei, et al. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea[J]. Earth and Planetary Physics, 2011, 54(12): 3 184-3 195.
吴时国, 秦志亮, 王大伟, 等. 南海北部陆坡块体搬运沉积体系的地震响应与成因机制[J]. 地球物理学报, 2011, 54(12): 3 184-3 195.
17 Prior D B, Bornhold B D, Johns M W. Depositional characteristics of a submarine debris flow[J]. The Journal of Geology, 1984, 92(6): 707-727.
18 Li Lei, Li Bin, Wang Yingmin, et al. Seismic geomorphology and sedimentary architectures of mass transport deposits: Cases from Pearl River Mouth Basin and Niger Delta Basin[J]. Journal of Central South University (Science and Technology), 2013, 44(6): 2 410-2 416.
李磊, 李彬, 王英民, 等. 块体搬运沉积体系地震地貌及沉积构型:以珠江口盆地和尼日尔三角洲盆地为例[J]. 中南大学学报:自然科学版, 2013, 44(6): 2 410-2 416.
19 Bull S, Cartwright J, Huuse M. A review of kinematic indicators from mass-transport complexes using 3D seismic data[J]. Marine and Petroleum Geology, 2009, 26(7): 1 132-1 151.
20 Qin Zhiliang. Sedimentary Process, Distribution and Mechanism of Mass Transport Deposits, the Slope Area of Northern South China Sea[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2012.
秦志亮. 南海北部陆坡块体搬运沉积体系的沉积过程、分布及成因研究[D].青岛:中国科学院海洋研究所, 2012.
21 Chen Bingyi, Lin Chengyan, Ma Cunfei, et al. Characteristics and sedimentary model of deep-water gravity flow deposition in the steep slope zone of terrestrial faulted lacustrine basin:A case study of the Es4s submember in the Shengtuo area of Dongying depression[J]. Acta Geologica Sinica, 2019, 93(11): 2 921-2 934.
陈柄屹, 林承焰, 马存飞, 等. 陆相断陷湖盆陡坡带深水重力流沉积类型、特征及模式——以东营凹陷胜坨地区沙四段上亚段为例[J]. 地质学报, 2019, 93(11): 2 921-2 934.
22 Lin Peng, Wu Shenghe, Zhang Jiajia, et al. Distribution of submarine fans in the thrust fault zone of continental slope, Niger Delta Basin[J]. Oil & Gas Geology, 2018, 39(5): 1 073-1 086.
蔺鹏, 吴胜和, 张佳佳, 等. 尼日尔三角洲盆地陆坡逆冲构造区海底扇分布规律[J]. 石油与天然气地质, 2018, 39(5): 1 073-1 086.
23 Sun Hui, Liu Shaozhi, Fuliang Lü, et al. Sedimentary characteristics and influential factors of Oligocene deep water sand-rich lobe complex in the Rovuma Basin, East Africa[J]. Acta Geologica Sinica, 2019, 93(5): 1 154-1 165.
孙辉, 刘少治, 吕福亮, 等. 东非鲁武马盆地渐新统富砂深水朵体复合体特征及影响因素[J]. 地质学报, 2019, 93(5): 1 154-1 165.
24 Middleton G, Hampton M A. Subaqueous sediment transport and deposition by sediment gravity flows[M]//Stanley D J. Marine Sediment Transport and Environmental Management. New York: Wiley,1976:197-218.
25 Pan Shuxin. Deep-water Gravity Deposits in Songliao Terrestrial Basin[D]. Chengdu: Chengdu University of Technology, 2012.
潘树新. 大型坳陷湖盆深水重力流研究——以松辽盆地青山口组为例[D]. 成都: 成都理工大学, 2012.
26 Moscardelli L, Wood L. New classification system for mass transport complexes in offshore Trinidad[J]. Basin Research, 2008, 20(1): 73-98.
27 Nemec W. Aspects of sediment movement on steep delta slopes[G]//Colella A, Prior D B. Coarse-Grained Deltas: International Association of Sedimentologists Special Publication 10, 1991: 29-73.
28 Shanmugam G. 50 years of the turbidite paradigm (1950s-1990s): Deep-water processes and facies models-a critical perspective[J]. Marine and Petroleum Geology, 2000, 17(2): 285-342.
29 Posamentier H W, Martinsen O J, Shipp R C. The character and genesis of submarine mass-transport deposits: Insights from outcrop and 3D seismic data[M]//Mass-transport Deposits in Deepwater Settings. Tulsa: SEPM, Special Publication, 2011, 96: 7-38.
30 Silva A J, Booth J S. Creep behavior of submarine sediments[J]. Geo-Marine Letters, 1984, 4(4): 215-219.
31 Wu Jiapeng, Wang Yingmin, Qiu Yan, et al. Characteristic and formation mechanism of the frontally confined landslide in Shenhu Slope, Northern South China Sea[J]. Acta Sedimentologica Sinica, 2012, 30(4): 639-645.
吴嘉鹏, 王英民, 邱燕, 等. 南海北部神狐陆坡限制型滑塌体特征及成因机理[J]. 沉积学报, 2012, 30(4): 639-645.
32 Posamentier H W. Deep-water turbidites and submarine fans[M]//Ayton W G, ed. Canadian Society of Petroleum Geologists. 2006,84: 397-520.
33 Gamboa D, Alves T M. Bi-modal deformation styles in confined mass-transport deposits: Examples from a salt minibasin in SE Brazil[J]. Marine Geology, 2016, 379: 176-193.
34 Wang Dawei, Bai Hongxin, Wu Shiguo. The research progress of turbidity currents and related deep-water bedforms[J]. Advances in Earth Science, 2018, 33(1): 52-65.
王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1): 52-65.
35 Lee C, Nott J A, Keller F B, et al. Seismic expression of the Cenozoic mass transport complexes, deepwater Tarfaya-Agadir Basin, offshore Morocco[C]//Offshore Technology Conference, 2004.
36 Brami T R, Pirmez C, Archie C, et al. Late Pleistocene deep-water stratigraphy and depositional processes, offshore Trinidad and Tobago[M]//Deep-Water Reservoirs of the World, 2000. DOI:10.5724/gcs.00.15.0104.
doi: 10.5724/gcs.00.15.0104    
37 Shipp R C, Nott J A, Newlin J A. Physical characteristics and impact of mass transport complexes on deepwater jetted conductors and suction anchor piles[C]//Offshore Technology Conference, 2004.
38 Piper D J W, Pirmez C, Manley P L, et al. Mass-transport deposits of the Amazon Fan[C]// Proceedings of the Ocean Drilling Program, Scientific Results, 1997: 109-146.
39 Strachan L J. Slump‐initiated and controlled syndepositional sandstone remobilization: An example from the Namurian of County Clare, Ireland[J]. Sedimentology, 2002, 49(1): 25-41.
40 Kleverlaan K. Gordo megabed: A possible seismite in a Tortonian submarine fan, Tabernas basin, Province Almeria, southeast Spain[J]. Sedimentary Geology, 1987, 51(4): 165-180.
41 Dong Wenbo, Liu Enjun, Yang Hong, et al. Applicatioin of seismic attribute technologies to the fluxoturbidite reservoir exploration of Karamay Oilfield[J]. Journal of Engineering Geophysics, 2011, 8(1): 87-90.
董文波, 刘恩君, 杨洪, 等. 地震属性技术在克拉玛依油田滑塌浊积岩圈闭勘探中的应用[J]. 工程地球物理学报, 2011, 8(1): 87-90.
42 Posamentier H W, Martinsen O J, Shipp R C. The character and genesis of submarine mass-transport deposits: Insights from outcrop and 3D seismic data[M]//Mass-Transport Deposits in Deepwater Settings. Tulsa: SEPM, Special Publication, 2011, 96: 7-38.
43 Middleton G V, Hampton M A. Part I. Sediment Gravity Flows: Mechanics of Flow and Deposition[Z]. 1973.
44 Posamentier Henry W, Kolla Venkatarathnam, Liu Huaqing. An overview of deep-water turbidite deposition[J]. Acta Sedimentologica Sinica, 2019, 37(5): 879-903.
Posamentier Henry W, Kolla Venkatarathnam, 刘化清.深水浊流沉积综述[J]. 沉积学报, 2019, 37(5): 879-903.
45 Gao Hongcan, Zheng Rongcai, Wei Qinlian, et al. Reviews on fluid properties and sedimentary characteristics of debris flows and turbidity currents[J]. Advances in Earth Science, 2012, 27(8): 815-827.
高红灿, 郑荣才, 魏钦廉, 等. 碎屑流与浊流的流体性质及沉积特征研究进展[J]. 地球科学进展, 2012, 27(8): 815-827.
46 Fu Hanpu, Liu Qun, Hu Xiumian. Review on subaqueous sediment gravity flow and submarine fan[J]. Advances in Earth Science, 2020, 35(2): 124-136.
傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
47 Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits: A review[J]. Marine and Petroleum Geology, 2003, 20(8): 861-882.
48 Hu Xiaolin, Liu Xinying, Liu Qiong, et al. Advances in research on deep water deposition and their frontier problems[J]. China Offshore Oil and Gas, 2015, 27(1): 10-18.
胡孝林, 刘新颖, 刘琼, 等. 深水沉积研究进展及前缘问题[J]. 中国海上油气, 2015, 27(1): 10-18.
49 Bouma A H. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation[M]. Amesterdam: Elsevier, 1962: 168.
50 Shanmugam G. High-density turbidity currents: Are they sandy debris flows?[J]. Journal of Sedimentary Research, 1996, 66(1): 2-10.
51 Walker R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps[J]. AAPG Bulletin, 1978, 62(6): 932-966.
52 Lowe D R. Sediment gravity flows: II, Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297.
53 Li Lei, Wang Yingmin, Xu Qiang, et al. 21 Ma deepwater gravity flow depositional system in Baiyun sag, northern South China Sea[J]. Acta Petrolei Sinica, 2012, 33(5): 798-806.
李磊, 王英民, 徐强, 等. 南海北部白云凹陷21 Ma深水重力流沉积体系[J]. 石油学报, 2012, 33(5): 798-806.
54 Li Lei, Wang Yingmin, Zhang Lianmei, et al. Identification and evolution of mass transport complexes and its significance for oil and gas exploration[J]. Acta Sedimentologica Sinica, 2010, 28(1): 76-82.
李磊, 王英民, 张莲美, 等. 块体搬运复合体的识别、演化及其油气勘探意义[J]. 沉积学报, 2010, 28(1): 76-82.
55 Pettingill H S, Weimer P. World wide deep water exploration and production: Past, present, and future[J]. The Leading Edge, 2002, 21: 371-376.
56 Hesthammer J, Fossen H. Evolution and geometries of gravitational collapse structures with examples from the Statfjord Field, northern North Sea[J]. Marine and Petroleum Geology, 1999, 16(3): 259-281.
57 Hesthammer J, Fossen H. Evolution and geometries of gravitational collapse structures with examples from the Statfjord field, northern North Sea[J]. Marine and Petroleum Geology, 1999, 16(3): 259-281.
58 Vahrenkamp V C, David F, Duijndam P, et al. architecture Growth, faulting, and karstification of a middle Miocene carbonate platform, Province Luconia, Sarawak offshore, Malaysia[M]//Seismic Imaging of Carbonate Reservoirs and Systems: AAPG Memoir 81, 2004.
[1] 王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.
[2] 刘江艳, 张昌民, 尹太举, 朱锐, 侯国伟. 涌潮沉积研究现状及进展[J]. 地球科学进展, 2018, 33(1): 66-74.
[3] 李文勇,周坚鑫,周锡华,郭志宏,安战锋,徐剑春,李冰,罗锋. 航空重力局部异常地质成因分类及找矿意义[J]. 地球科学进展, 2010, 25(10): 1061-1069.
阅读次数
全文


摘要