地球科学进展 ›› 2020, Vol. 35 ›› Issue (6): 607 -617. doi: 10.11867/j.issn.1001-8166.2020.048

构造地貌学 上一篇    下一篇

构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究
李琼( ),王姣姣,潘保田   
  1. 兰州大学资源环境学院 西部环境教育部重点实验室,甘肃 兰州 730000
  • 收稿日期:2020-03-20 修回日期:2020-05-13 出版日期:2020-06-10
  • 基金资助:
    国家自然科学基金青年科学基金项目“河流阶地形成演化数值模拟研究——以祁连山东段沙沟河为例”(41001004);国家自然科学基金重点项目“祁连山中段山体隆升扩展及其对水系演化的影响”(41730637)

Numerical Simulation of the Influence of Tectonics and Precipitation on the Evolution of Alluvial Fans at the Northern Foot of Qilian Mountains

Qiong Li( ),Jiaojiao Wang,Baotian Pan   

  1. College of Earth and Environmental Science, Lanzhou University, Key Laboratory of Western China’s Environmental System, Ministry of Education, Lanzhou 730000, China
  • Received:2020-03-20 Revised:2020-05-13 Online:2020-06-10 Published:2020-07-06
  • About author:Li Qiong (1979-), female, Wuzhi County, He'nan Province, Lecturer. Research areas include fluvial landscape evolution. E-mail: leeqiong@lzu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Numerical simulation of terrace formation and evolution: A case study in Shagou River at Eastern Qilian Mountain”(41001004);“Uplift and expansion of the middle Qilian Mountains and its impact on fluvial system evolution”(41730637)

冲积扇记录了丰富的区域环境变化信息,构造活动和气候变化是影响其发育的主要因素。青藏高原东北缘的祁连山北麓发育了一系列冲积扇,是研究山体隆升、气候变化和冲积扇演化过程间相互关系的理想区域。为了探讨气候和构造变化对冲积扇形成发育过程的影响,基于水力侵蚀模型和扩散方程构建了流域—冲积扇系统的数值模型,对祁连山北麓西沟河与大野口河及其冲积扇进行数值模拟研究。结果显示,降水量和抬升速率的变化均会对扇比降产生影响,抬升速率增加和降水量减小造成扇比降增大,反之扇比降减小。抬升速率对扇比降的影响基本是线性的,降水量的影响则相对较小。同一流域对构造活动和降水变化的响应模式也存在差异。研究结果对于理解区域构造活动和气候变化对地貌过程的影响具有重要意义。

As achieves of regional environmental changes in the past, alluvial fans have received extensive attention from geoscience community. Tectonic activity and climate change are two of the main factors affecting the development of alluvial fans. The Qilian Mountains, which is located on the northeastern edge of the Tibetan Plateau, experienced severe uplift since the Cenozoic. With the huge relief from surrounding areas, a series of alluvial fans developed at the northern foot of the Qilian Mountains. That makes it become an ideal area to study the relationships between tectonic uplift, climate change, and alluvial fan development. In order to explore how climate and tectonic changes have effect on the formation and development of alluvial fans, based on stream power model and diffusion equations, a numerical model of the drainage basin-fan system was built. Xigou River and Dayekou River with their fans in Qilian Mountains were simulated by using the above-mentioned numerical model. The results show that both the change in precipitation and the uplift rate affect the fan slope. Either the increase in the uplift rate or the decrease in precipitation causes the increment of fan slope, and vice versa. Fan slope changes linearly with the uplift rate variation, while the effect of precipitation on fan slope is relatively small. The response of catchment to tectonic activity and precipitation disturbances, as the change of sedimentary flux, is also in different patterns. The research will provide a new perspective for understanding the influence of regional tectonic activities and climate change on the geomorphological process.

中图分类号: 

图1 祁连山主要活动断裂及山前冲积扇分布图
V:断层垂直滑动速率(mm/a),H:断层水平走滑速率(mm/a) [ 25 ];红色星号代表西沟河(XG)和大野口河(DYK)及对应冲积扇
Fig.1 Major active faults and alluvial fans of Qilian Mountains
V: Vertical slip rate(mm/a) of faults, H: Horizontal slip rate(mm/a) of faults [ 25 ]; The red stars indicate the locations of Xigou River(XG) and Dayekou River(DYK) and their alluvial fans
表1 西沟河与大野口河的流域、冲积扇基本形态特征指标、抬升速率及年均降水量
Table 1 The terrain features, uplift rates and mean precipitations of drainage basin and alluvial fans of Xigou River and Dayekou River
图2 模拟抬升速率/降水量对大野口河与西沟河冲积扇纵剖面形态和出山口沉积通量的影响
大野口河:(a)抬升速率对冲积扇纵剖面形态的影响,(b)抬升速率对出山口沉积通量的影响,(c)降水量对冲积扇纵剖面形态的影响,(d)降水量对出山口沉积通量的影响;西沟河:(e)抬升速率对冲积扇纵剖面形态的影响,(f)抬升速率对出山口沉积通量的影响,(g)降水量对冲积扇纵剖面形态的影响,(h)降水量对出山口沉积通量的影响
Fig.2 Modeling the effect of uplift rate/precipitation on the fan longitude profile and sedimentary flux of Dayekou River and Xigou River
Dayekou River:(a)The effect of uplift rate on the fan longitude profile;(b) The effect of uplift rate on the sedimentary flux; (c)The effect of precipitation on the fan longitude profile; (d)The effect of precipitation on the sedimentary flux. Xigou River:(e)The effect of uplift rate on the fan longitude profile; (f)The effect of uplift rate on the sedimentary flux; (g)The effect of precipitation on the fan longitude profile; (h)The effect of precipitation on the sedimentary flux
图3 模拟流域达到均衡后,构造和气候变化对冲积扇比降和流域平均侵蚀速率的影响
(a)、(b):西沟河,(c)、(d):大野口河;U+:抬升速率增大100%,U-:抬升速率减小50%;P+:降水量增大100%,P-:降水量减小50%
Fig.3 After achieving steady state, the effects of tectonic and climate change on fan slope and mean drainage erosion rate of Xigou River, Dayekou River, respectively
(a) and (b): Xigou River, (c) and (d): Dayekou River; U+: 100% increase in uplift rate; U-: 50% decrease in uplift rate; P+: 100% increase in precipitation rate; P-:50% decrease in precipitation rateⅹ
1 Allen P A. From landscapes into geological history[J]. Nature, 2008, 451(7 176):274-276.
2 Mason Cody C,Romans Brian W. Climate-driven unsteady denudation and sediment flux in a high-relief unglaciated catchment-fan using 26Al and 10Be: Panamint Valley, California[J]. Earth and Planetary Science Letters, 2018, 492:130-143.
3 Wang Ping, Lu Yanchou, Ding Guoyu, et al. Response of the development of the Shule Rvier alluvial fan to tectonic activity[J]. Quaternary Science, 2004, 24(1):74-81.
王萍, 卢演俦, 丁国瑜, 等. 甘肃疏勒河冲积扇发育特征及其对构造活动的响应[J]. 第四纪研究, 2004, 24(1):74-81.
4 Cui Weiguo, Mu Guijin, Wen Qian, et al. Evolution of alluvial fans and reaction to the regional tectonic activity at rage front of Manas River valley [J].Research of Soil and Water Conservation, 2007, 14(1):161-163.
崔卫国, 穆桂金, 文倩, 等. 玛纳斯河山麓冲积扇演化及其对区域构造活动的响应[J]. 水土保持研究, 2007, 14(1):161-163.
5 Akiko Hashimoto, Takashi Oguchi, Yuichi Hayakawa, et al. GIS analysis of depositional slope change at alluvial-fan toes in Japan and the American Southwest[J]. Geomorphology, 2008, 100(1/2):120-130.
6 César Viseras, Calvache Mar??a L, Soria Jesús M, et al. Differential features of alluvial fans controlled by tectonic or eustatic accommodation space. Examples from the Betic Cordillera, Spain[J]. Geomorphology, 2003, 50(1):181-202.
7 Zhang Huiping, Yuanyuan Lü. Geomorphometric features of the alluvial fans around the Chaka-Qinghai Lake in the northeastern Tibetan Plateau[J]. Journal of Earth Science, 2014, 25(1):109-116.
8 Milana Juan Pablo,Lucia Ruzycki. Alluvial-fan slope as a function of sediment transport efficiency[J]. Journal of Sedimentary Research, 1999, 69(3):553-562.
9 Kyoji Saito,Takashi Oguchi. Slope of alluvial fans in humid regions of Japan, Taiwan and the Philippines[J]. Geomorphology, 2005, 70(1/2):147-162.
10 Paul Tapponnier, Peter Molnar. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 1977, 82(20):2 905-2 930.
11 Tapponnier P, Meyer B, Avouac J P, et al. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet[J]. Earth and Planetary Science Letters, 1990, 97(3):382-403.
12 Hetzel R, Tao Mingxin, Stokes S, et al. Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau[J]. Tectonics, 2004, 23(6). DOI:10.1029/2004TC001653.
doi: 10.1029/2004TC001653    
13 Yuan Daoyang, Zhang Peizhen, Liu Baichi, et al. Geometrical Imagery and tectonic transformation of late Quaternary active tectonics in Northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica, 2004, 78(2):270-278.
袁道阳, 张培震, 刘百篪, 等. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 2004, 78(2):270-278.
14 Pan Baotian, Chen Dianbao, Hu Xiaofei, et al. Drainage evolution of the Heihe River in western Hexi Corridor, China, derived from sedimentary and magnetostratigraphic results[J]. Quaternary Science Reviews, 2016, 150:250-263.
15 Gao Hongshan, Pan Baotian, Wu Guangjian, et al. Age and genesis of the alluvial fans in the east Qilian Mountains[J]. Journal of Lanzhou University (Natural Sciences), 2005, 41(5):1-4.
高红山, 潘保田, 邬光剑, 等. 祁连山东段冲积扇的发育时代及其成因[J]. 兰州大学学报:自然科学版, 2005,41(5):1-4.
16 Li Xinpo. Geomorphology and Affecting Factors Analysis of Alluvial Fans in North China[D].Beijing:Peking University,2007.
李新坡. 中国北方地区冲积扇地貌发育特征与影响因素分析[D]. 北京:北京大学, 2007.
17 Chant Lawrence J De, Pease Patrick P, Tchakerian Vatche P. Modelling alluvial fan morphology[J]. Earth Surface Processes and Landforms, 1999, 24(7):641-652.
18 Coulthard T J, Macklin M G, Kirkby M J. A cellular model of Holocene upland river basin and alluvial fan evolution[J]. Earth Surface Processes and Landforms, 2002, 27(3):269-288.
19 Densmore Alexander L, Allen Philip A, Guy Simpson. Development and response of a coupled catchment fan system under changing tectonic and climatic forcing[J]. Journal of Geophysical Research, 2007, 112: F01002. DOI:10.1029/2006JF000474.
doi: 10.1029/2006JF000474    
20 Stock Jonathan D, Schmidt Kevin M, Miller David M. Controls on alluvial fan long-profiles[J]. GSA Bulletin, 2008, 120(5/6):619-640.
21 Salcher Bernhard C, Robert Faber, Michael Wagreich. Climate as main factor controlling the sequence development of two Pleistocene alluvial fans in the Vienna Basin (eastern Austria)—A numerical modelling approach[J]. Geomorphology, 2010, 115(3/4):215-227.
22 Armitage John J, Duller Robert A, Whittaker Alex C, et al. Transformation of tectonic and climatic signals from source to sedimentary archive[J]. Nature Geoscience, 2011, 4(4):231-235.
23 Armitage John J, Whittaker Alexander C, Mustapha Zakari, et al. Numerical modelling landscape and sediment flux response to precipitation rate change[J]. Earth Surface Dynamics Discussions, 2017. DOI:10.5194/esurf-2017-34.
doi: 10.5194/esurf-2017-34    
24 Hu Xiaofei, Pan Baotian, Kirby E, et al. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Tibetan Plateau[J]. Chinese Science Bulletin, 2010, 55(27/28):3 205-3 214.
25 Zheng Wenjun. Geometric Pattern and Active Tectonics of the Hexi Corridor and Its Adjacent Regions[D]. Beijing: Institute of Geology,China Earthquake Adiministration, 2009.
郑文俊. 河西走廊及其邻区活动构造图像及构造变形模式[D]. 北京:中国地震局地质研究所, 2009.
26 Liu Xingwang, Yuan Daoyang, Zheng Wenju, et al. Research on Late Quaternary slip rates of the Fodongmiao-Hongyazi fault at the north margin of Qilianshan Mountain[J]. Chinese Journal of Geology, 2012, 47(1):51-61.
刘兴旺, 袁道阳, 郑文俊, 等. 祁连山北缘佛洞庙—红崖子断裂晚第四纪滑动速率研究[J]. 地质科学, 2012, 47(1):51-61.
27 Song Lianchun, Zhang Cunjie. Changing features of precipitation over Northwest China during the 20th century[J]. Journal of Glaciology and Geocryology, 2003, 25(2):143-148.
宋连春,张存杰. 20世纪西北地区降水量变化特征[J]. 冰川冻土, 2003, 25(2):143-148.
28 Zhang Qiang, Zhang Jie, Song Guowu, et al. Research on atmospheric water-vapor distribution over Qilianshan Mountains[J]. Acta Meteorologica Sinica, 65(4):633-643.
张强, 张杰, 孙国武, 等. 祁连山山区空中水汽分布特征研究[J]. 气象学报, 2007, 65(4):633-643.
29 Li Xinpo, Mo Duowen, Zhu Zhongli. Comparison between agricultural land on alluvial fans at Qilian Mountain, Helan Mountain and Luliang Mountain regions[J]. Geographical Research, 2006, 25(6):985-994.
李新坡, 莫多闻,朱忠礼. 祁连山、贺兰山与吕梁山山前冲积扇上的农地对比[J]. 地理研究, 2006, 25(6):985-994.
30 Whipple Kelin X,Tucker Gregory E. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research, 1999, 104(B8):17 661-17 674.]
31 Whittaker A C, Cowie P A, Attal M, et al. Bedrock channel adjustment to tectonic forcing: Implications for predicting river incision rates[J]. Geology, 2007, 35(2):103-106.
32 Montgomery D R,Gran K B. Downstream variations in the width of bedrock channels[J]. Water Resources Research, 2001, 37(6):1 841-1 846.
33 Allen P A, Armitage J J, Carter A, et al. The Qs problem: Sediment volumetric balance of proximal foreland basin systems[J]. Sedimentology, 2013, 60(1):102-130.
34 Humphrey Neil F, Heller Paul L. Natural oscillations in coupled geomorphic systems: An alternative origin for cyclic sedimentation[J]. Geology, 1995, 23(6):499-502.
35 Fedele Juan J,Chris Paola. Similarity solutions for fluvial sediment fining by selective deposition[J]. Journal of Geophysical Research: Earth Surface, 2007, 112: F02038. DOI:10.1029/2005JF000409.
doi: 10.1029/2005JF000409    
36 Chen Dianbao, Chen Jinjun, Hu Xiaofei, et al. Characteristics and analysis on the sediment grain size along the Liyuan River on the north piedmont of the Qilian Shan[J]. Quaternary Sciences, 2018, 38(6):1 336-1 347.
陈殿宝, 陈进军, 胡小飞, 等. 祁连山北麓梨园河沉积物粒径的变化特征与分析[J]. 第四纪研究, 2018, 38(6):1 336-1 347.
37 Duller R A, Whittaker A C, Fedele J J, et al. From grain size to tectonics[J]. Journal of Geophysical Research: Earth Surface, 2010, 115: F03022. DOI:10.1029/2009JF001495.
doi: 10.1029/2009JF001495    
38 Ma Zhenhua. Handbook of Modern Applications and Mathematics—Computation and Numerical Analysis Volume[M]. Beijing: Tsinghua University Press, 2005.
马振华. 现代应用与数学手册——计算与数值分析卷[M].北京:清华大学出版社, 2005.
39 Feng Liwei. A comparison of numerical solutions of several defference schemes for heat conduction equation by Matlab[J]. Journal of Shenyang University of Chemical Technology, 2011, 25(2):179-182.
冯立伟. 热传导方程几种差分格式的Matlab数值解法比较[J]. 沈阳化工大学学报, 2011, 25(2):179-182.
40 Braun J, Willett S D. A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution[J]. Geomorphology, 2013, 180:170-179.
41 Dodds P S, Rothman D H. Geometry of river networks. I. Scaling, fluctuations, and deviations[J]. Physical Review E, 2001, 63(1):1-13.
42 Tucker G E, Whipple K X. Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison[J]. Journal of Geophysical Research—Solid Earth, 2002, 107(B9): 2 179. DOI:10.1029/2001JB000162.
doi: 10.1029/2001JB000162    
43 Rudge J F, Roberts G G, White N J, et al. Uplift histories of Africa and Australia from linear inverse modeling of drainage inventories[J]. Journal of Geophysical Research—Earth Surface, 2015, 120(5):894-914.
44 Chen Jinjun. Characteristics of Sediment Grain Size and the Influence Factors in Alluvial Rivers—A Case Study from the North Piedmont of the Qilian Shan[D]. Lanzhou: Lanzhou University,2017.
陈进军. 冲积河流沉积物粒径的变化特征及其影响因素分析——以祁连山北麓冲积扇为例[D]. 兰州: 兰州大学, 2017.
45 Pan Baotian, Hu Xiaofei, Gao Hongshan, et al. Late Quaternary river incision rates and rock uplift pattern of the eastern Qilian Shan Mountain, China[J]. Geomorphology, 2013, 184:84-97.
46 Xiong Jianguo, Li Youli, Zhong Yuezhi, et al. Latest Pleistocene to Holocene thrusting recorded by a flight of strath terraces in the eastern Qilian Shan, NE Tibetan Plateau[J]. Tectonics, 2017, 36(12):2 973-2 986.
47 Institute of Geology, China Earthquake Administration, Institute of Earthquake, Lanzhou. Active Fault System of Qilianshan-Hexi Corridor[M]. Beijing: Seismological Press,1993.
国家地震局地质研究所,国家地震局兰州地震研究所. 祁连山—河西走廊活动断裂系[M].北京: 地震出版社, 1993.
48 Su Qi, Yuan Daoyang, Xie Hong. Geomorphic features of the Heihe River drainage basin in Western Qilian Shan-Hexi Corridor and its tectonic implications[J]. Seismology and Geology, 2016, 38(3):560-581.
苏琦, 袁道阳,谢虹. 祁连山—河西走廊黑河流域地貌特征及其构造意义[J]. 地震地质, 2016, 38(3):560-581.
49 Pan Baotian, Gao Hongshan, Wu Guangjian, et al. Dating of erosion surface and terraces in the eastern Qilian Shan, northwest China[J]. Earth Surface Processes and Landforms, 2007, 32(1):143-154.
50 Liu Mingyan, Sun Fenghua, Hou Yiling, et al. Runoff change in Taizihe River Basin under future climate change based on HBV model[J]. Advances in Earth Science, 2019, 34(6): 650-659.
刘鸣彦, 孙凤华, 侯依玲, 等. 基于HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6):650-659.
51 Poulimenos G, Karkanas P. Messinian carbonate and alluvial fan sedimentation in Alonnisos Island, Greece: Sedimentary response to basement controls, inversion tectonics and climatic fluctuations[J]. Geological Journal, 1998, 33:159-175.
52 Li Shubo, Zhang Ke, Zhang Guifang, et al. The relationship between alluvial fans and mountain uplift in Helanshan and Luoshan Mountains in Northwestern China based on GIS technique[J]. Mountain Research, 2015, 33(3):268-278.
李庶波, 张珂, 章桂芳, 等. 基于GIS技术研究贺兰山、罗山洪积扇特征与山脉抬升关系[J]. 山地学报, 2015, 33(3):268-278.
53 Whipple K X, Parker G, Paula C, et al. Channel dynamics, sediment transport, and the slope of alluvial fans-experimental study[J]. The Journal of Geology, 1998, 106:677-693.
[1] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[2] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[3] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[4] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[5] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[6] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[7] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[8] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
[9] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[10] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[11] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[12] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[13] 陈京华, 贾文雄 , 赵珍, 张禹舜, 刘亚荣. 1982—2006年祁连山植被覆盖的时空变化特征研究[J]. 地球科学进展, 2015, 30(7): 834-845.
[14] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展 *[J]. 地球科学进展, 2015, 30(5): 539-551.
[15] 胡凯, 方小敏, 赵志军. 宇宙成因核素 10Be揭示的北祁连山侵蚀速率特征[J]. 地球科学进展, 2015, 30(2): 268-275.
阅读次数
全文


摘要