地球科学进展 ›› 2020, Vol. 35 ›› Issue (6): 594 -606. doi: 10.11867/j.issn.1001-8166.2020.052

构造地貌学 上一篇    下一篇

不断融入新元素的我国构造地貌学研究:以天山为例
吕红华 1( ),李有利 2   
  1. 1.华东师范大学地理科学学院, 地理信息科学教育部重点实验室, 上海 200241
    2.北京大学 城市与环境学院, 地表过程分析与模拟教育部重点实验室, 北京 100871
  • 收稿日期:2020-05-04 修回日期:2020-05-25 出版日期:2020-06-10
  • 基金资助:
    国家自然科学基金面上项目“天山北缘河流下切速率的时空模式与机制研究”(41771013);“天山北缘乌鲁木齐河流域不同时间尺度构造地貌研究”(41371031)

Development of Tectonic Geomorphology Study Promoted by New Methods in China: A Viewpoint from Reviewing the Tian Shan Researches

Lü Honghua 1( ),Youli Li 2   

  1. 1.School of Geographic Sciences, Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200241, China
    2.College of Urban and Environmental Sciences, Key Laboratory of Earth Surface Processes of Ministry of Education, Peking University, Beijing 100871, China
  • Received:2020-05-04 Revised:2020-05-25 Online:2020-06-10 Published:2020-07-06
  • About author:Lü Honghua (1978-), male, Li County, Hu'nan Province, Professor. Research areas include neotectonics and tectonic geomorphology. E-mail: hhlv@geo.ecnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Spatiotemporal pattern of river incision rates and its mechanism in the northern Tian Shan, northwestern China”(41771013);“Tectonic geomorphology at different time scales of the Urumqi River in the north front of the Tian Shan”(41371031)

构造地貌学是地貌学的重要分支学科,其研究内容已涵盖构造—气候—地表过程之间的相互作用及对地貌演化的影响。我国的构造地貌学研究肇始于20世纪初,在20世纪50年代得以逐渐发展,21世纪以来进入快速发展阶段。经过长期积累和多年的发展,我国的构造地貌学研究已形成了相对完备的理论和方法体系,并呈现出不断与其他邻近学科交叉、融合的趋势。通过梳理近20年天山构造地貌研究在新生代山体隆升扩展与剥露历史、山麓晚新生代砾岩相沉积的年代与成因、山麓与山间盆地晚第四纪活动构造变形、山麓晚第四纪河流地貌(结构、年代与成因)、山地流域侵蚀等方面取得的主要成果,探究学科交叉、新方法的引入对我国构造地貌学研究的促进作用。最后指出构造地貌研究未来可能仍需要关注的一些基本内容和问题,如不同时间尺度的对比研究和河流阶地年龄等。

Tectonic Geomorphology is an important branch of Geomorphology. Now the scope of tectonic geomorphology study has covered the interactions between tectonics, climate, surface processes and the influence on geomorphic evolution. The study of tectonic geomorphology in China started at the beginning of the 20th century, developed gradually in the 1950s, and entered a rapid development stage in the new century. Based on the long-term development, the study of tectonic geomorphology in China has formed a relatively complete theoretical and methodological system, and now presents a trend of the continuous intersection and integration with other adjacent disciplines. Now, several books on tectonic geomorphology have been published. The representative book abroad is Tectonic Geomorphology which was edited by Burbank D. W. and Anderson R. S., and was first published in 2001 and reprinted in 2012. In China, the first book on tectonic geomorphology is Active Tectonic Geomorphology which was edited by Yang Jingchun and Li Youli and was first published in 2011.

In recent years, the tectonic geomorphology study has been absorbing and integrating the new ideas and new methods of other disciplines, significantly promoting the development of tectonic geomorphology. At the 2019 China Geographic Congress & the 110th anniversary of the establishment of the Chinese Geographical Society, the authors organized the session "Theory, Method and Application of Tectonic Geomorphology", aiming to present the recent progresses of tectonic geomorphology study in China. Later, invited by the editorial office, the authors organized the special column with the same name in the journal Advances in Earth Science. The contents of this column mainly dealt with the classical theoretical problems of geomorphology (the evolution and the controlling mechanism of river terrace, planation surface, and alluvial fan), new methods (such as K-feldspar thermoluminescence thermochronology, detrital zircon U-Pb chronology), and models and numerical simulation of tectonic geomorphology evolution. Because of the limited number of the articles, it was impossible for this column to comprehensively present the recent progresses in the study of tectonic geomorphology in China. Therefore, this paper first briefly reviewed the history of the development of tectonic geomorphology in China and the basic trend of tectonic geomorphology. The authors started the study of neotectonics and tectonic geomorphology in the Tian Shan range and its foreland basins about 15 years ago (exactly in 2002). The main aim of this paper was to explore the contributions of the interdisciplinary and new methods to the development of tectonic geomorphology study, by reviewing the main achievements in the tectonic geomorphology study conducted in the Tian Shan and its foreland basins during the past 20 years. These achievements include the history of uplift and exhumation during the Cenozoic times, the chronology and genesis of the late Cenozoic terrigenous sedimentary sequences in the foreland basins, the characteristics of the late Quaternary active tectonic deformation in the foreland and intermontane basins, the late Quaternary river geomorphology (geomorphic framework, chronology, and cause of formation), and erosion rates of the catchment basins. At the end of this paper, it was pointed out that, two aspects may need more attention in the future tectonic geomorphology study, i.e. the comparative study at different time scales and the better constraint of the formation age of river terrace.

中图分类号: 

图1 基于地貌与地质研究的天山(83°~87°E)地壳缩短速率[ 83 , 86 , 92 , 93 ]a)与GPS测量[ 95 ]的缩短速率(b
Fig.1 The crustal shortening rates from the geomorphologic and geological evidences in the Tian Shan range (83°~87°E)[ 83 , 86 , 92 , 93 ] (a) and the rate (b) from the GPS measurements[ 95 ]
图2 基于参考阶地(各参考阶地年龄均约为12 ka)的天山北麓典型河流下切深度(a)与速率(b)的空间模式[ 104 ]
Fig.2 Spatial patter of river incision depth (a) and rate (b) in the northern Tian Shan foreland derived from the reference terraces having the formation age of about 12 ka[ 104 ]
1 Yang Jingchun, Li Youli. Active Tectonic Geomorphology[M]. Beijing: Peking University Press, 2011.
杨景春, 李有利. 活动构造地貌学[M]. 北京: 北京大学出版社, 2011.
2 Han Mukang. Tectonic geomorphology[J]. Advances in Earth Science, 1992, 7(5): 61-62.
韩慕康. 构造地貌学[J]. 地球科学进展, 1992, 7(5): 61-62.
3 Keller E A, Pinter N. Active Tectonics: Earthquake, Uplift, and Landscape[M]. New York: Prentice-Hall, 2002.
4 Ye Liangfu. Geological Records of Xishan, Beijing[R]. The Geological Special Report of the Central Geological Survey of the Ministry of Economic Affairs, No. 1, 1920: 51-63.
叶良辅. 北京西山地质志[R]. 经济部中央地质调查研究所地质专报, 甲种第1号, 1920: 51-63.
5 Yang Jingchun. Relationship between morphotectonic evolution and Quaternary tectonic stress state in north and northeastern China[J]. Acta Geographica Sinica, 1983, 38(3): 218-228.
杨景春. 中国北部和东北部构造地貌发育和第四纪构造应力状态的关系[J]. 地理学报, 1983, 38(3): 218-228.
6 Editorial Board of Selected Works of Wang Nailiang, College of Environmental Sciences at Peking University. Selected Works of Wang Nailiang[C]. Beijing: Xueyuan Press, 2006.
北京大学环境学院王乃樑文集编辑组. 王乃樑文集[C]. 北京: 学苑出版社, 2006.
7 Mo Duowen, Zhou Liping, Liu Gengnian, et al. Establishment and development of geomorphology and Quaternary sciences in Peking University[J]. Acta Geographica Sinica, 2017, 72(11): 1 974-1 996.
莫多闻, 周力平, 刘耕年, 等. 北京大学地貌第四纪学科的创建与发展[J]. 地理学报, 2017, 72(11): 1 974-1 996.
8 Burbank D W, Anderson R S. Tectonic Geomorphology (Second Edition) [M]. Jersey City, USA: Wiley-Blackwell Publishing, 2012. DOI:10.1002/9781444345063.
doi: 10.1002/9781444345063    
9 Yang Jingchun. Symposium of tectonic geomorphology of Chinese Geographical Society[J]. Acta Geographica Sinica, 1981, 36(4): 454-456.
杨景春. 记中国地理学会构造地貌学术讨论会[J]. 地理学报, 1981, 36(4): 454-456.
10 Wang Nailiang, Han Mukang. Theory, method, application and trend of tectonic geomorphology[C]//Selected Conference Papers of the First Symposium on Tectonic Geomorphology of Chinese Geographical Society. Beijing: Science Press, 1984. [
王乃樑, 韩慕康. 构造地貌学的理论、方法、运用与动向[C]//中国地理学会第一次构造地貌学术讨论会论文选集. 北京: 科学出版社, 1984.]
11 Liu Jing, Zhang Jinyu, Ge Yukui, et al. Tectonic geomorphology: An interdisciplinary study of the interaction among tectonic climatic and surface processes[J]. Chinese Science Bulletin, 2018, 63(30): 3 070-3 088.
刘静, 张金玉, 葛玉魁, 等. 构造地貌学: 构造—气候—地表过程相互作用的交叉研究[J]. 科学通报, 2018, 63(30): 3 070-3 088.
12 Thompson J A, Burbank D W, Li T, et al. Late Miocene northward propagation of the northeast Pamir thrust system, northwest China[J]. Tectonics, 2015. DOI:10.1002/2014TC003690.
doi: 10.1002/2014TC003690    
13 Thompson J A, Li T, Chen J, et al. Quaternary tectonic evolution of the Pamir-Tian Shan convergence zone, Northwest China[J]. Tectonics, 2017, 36(12): 2 748-2 776.
14 Thompson J A, Li T, Bookhagen B, et al. Dating growth strata and basin fill by combining 26Al/10Be burial dating and magnetostratigraphy: Constraining active deformation in the Pamir-Tian Shan convergence zone, NW China[J]. Lithosphere, 2018, 10(6): 806-828.
15 Reiners P W. Thermochronologic approaches to paleotopography[J]. Reviews in Mineralogy & Geochemistry, 2007, 66: 243-267.
16 Gosse J C, Phillips F M. Terrestrial in situ cosmogenic nuclides: Theory and application[J]. Quaternary Science Reviews, 2001, 20: 1 475-1 560.
17 Xiong J G, Li Y L, Zhong Y Z, et al. Latest Pleistocene to Holocene thrusting recorded by a flight of strath terraces in the eastern Qilian Shan, NE Tibetan Plateau[J]. Tectonics, 2017, 36: 2 973-2 986.
18 Nie J S, Ruetenik G, Gallagher K, et al. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation[J]. Nature Geoscience, 2018. DOI:10.1038/s41561-018-0244-z.
doi: 10.1038/s41561-018-0244-z    
19 Yang R, Willett S D, Goren L. In situ low-relief landscape formation as a result of river network disruption[J]. Nature, 2015, 520(7 548): 526-529.
20 Ma Z F, Zhang H P, Wang Y Z, et al. Inversion of Dadu River bedrock channels for the Late Cenozoic uplift history of the eastern Tibetan Plateau[J]. Geophysical Research Letters, 2020, 47. DOI:10.1029/2019GL086882.
doi: 10.1029/2019GL086882    
21 Qiu J H, Rao G, Wang X, et al. Effects of fault slip distribution on the geometry and kinematics of the southern Junggar fold-and-thrust belt, northern Tian Shan[J]. Tectonophysics, 2019. DOI:10.1016/j.tecto.2019.228209.
doi: 10.1016/j.tecto.2019.228209    
22 Liu Y D, Tan X B, Ye Y J, et al. Role of erosion in creating thrust recesses in a critical-taper wedge: An example from Eastern Tibet[J]. Earth and Planetary Science Letters, 2020, 540: 116270. DOI:10.1016/j.epsl.2020.116270.
doi: 10.1016/j.epsl.2020.116270    
23 Deng Qidong, Feng Xianyue, Zhang Peizhen, et al. Active Tectonics of the Tian Shan Mountains[M]. Beijing: Seismology Press, 2000.
邓起东, 冯先岳, 张培震, 等. 天山活动构造[M]. 北京: 地震出版社, 2000.
24 Xinjiang Institute of Geography, Chinese Academy of Sciences. Evolutions of the Tianshan Mountains[M]. Beijing: Science Press, 1986.
中国科学院新疆地理研究所. 天山山体演化[M]. 北京: 科学出版社, 1986.
25 Reiners W P, Zhou Z Y, Ehlers T A, et al. Post-orogenic evolution of the Dabie Shan, eastern China, from (U-Th)/He and fission-track thermochronology[J]. American Journal of Science, 2003, 303: 489-518.
26 Reiners W P, Brandon M T. Using thermochronology to understand orogenic erosion[J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 419-466.
27 Zhou Zuyi, Xu Changhai, Reiners P W, et al. Exhumation history since Late Cretaceous in the Tiantangzhai area, Dabie Mountains: Evidence from U-Th/He and fission track analyses[J]. Chinese Science Bulletin, 2003, 48(6): 598-602.
周祖翼, 许长海, Reiners P W, 等. 大别山天堂寨地区晚白垩世以来剥露历史的U-Th/He和裂变径迹分析证据[J]. 科学通报, 2003, 48(6): 598-602.
28 Honghua Lü, Zhang Tianqi, Chang Yanchun, et al. Timing of paleotopographic and geomorphologic evolution and paleotopographic reconstruction by low-temperature thermochronologic approaches[J]. Marin Geology & Quaternary Geology, 2014, 34(3): 175-183.
吕红华, 张天琪, 常艳春, 等. 地形地貌发育时间与古地形反演[J]. 海洋地质与第四纪地质, 2014, 34(3): 175-183.
29 Shen Chuanbo, Mei Lianfu, Zhang Shiwan, et al. Fission-track dating evidence on space-time difference of Mesozoic-Cenozoic uplift of the Yilianhabierga Mountain and Bogeda Mountain[J]. Journal of Mineralogy and Petrology, 2008, 28(2): 63-70.
沈传波, 梅廉夫, 张士万, 等. 依连哈比尔尕山和博格达山中新生代隆升的时空分异: 裂变径迹热年代学的证据[J]. 矿物岩石学杂志, 2008, 28(2): 63-70.
30 Du Zhili, Wang Qingchen. Mesozoic and Cenozoic uplift history of the Tianshan region: Insight from apatite fission track[J]. Acta Geologica Sinica, 2007, 81(8): 1 081-1 101.
杜治利, 王清晨. 中新生代天山地区隆升历史的裂变径迹证据[J]. 地质学报, 2007, 81(8): 1 081-1 101.
31 Hendrix M S, Dumitru T A, Graham S A. Late Oligocene-early Miocene unroofing in the Chinese Tianshan: An early effect of the India-Asia collision[J]. Geology, 1994, 22(6): 487-490.
32 Guo Zhaojie, Zhang Zhicheng, Wu Chaodong, et al. The Mesozoic and Cenozoic exhumation history of Tianshan and comparative studies to the Junggar and Altai Mountains[J]. Acta Geologica Sinica, 2006, 80(1): 1-15.
郭召杰, 张志诚, 吴朝东, 等. 中、新生代天山隆升过程及其与准噶尔、阿尔泰山比较研究[J]. 地质学报, 2006, 80(1): 1-15.
33 Zhu Wenbin, Shu Liangshu, Wan Jinglin, et al. Fission-track evidence for the exhumation history of Bogda-Harlik Mountains, Xinjiang since the Cretaceous[J]. Acta Geologica Sinica, 2006, 80(1): 16-22.
朱文斌, 舒良树, 万景林, 等. 新疆博格达—哈尔里克山白垩纪以来剥露历史的裂变径迹证据[J]. 地质学报, 2006, 80(1): 16-22.
34 Yang Shufeng, Chen Hanlin, Chen Xiaogan, et al. Cenozoic uplifting and unroofing of southern Tien Shan, China[J]. Journal of Nanjing University (Natural Sciences), 2003, 39(1): 1-8.
杨树锋, 陈汉林, 程晓敢, 等. 南天山新生代隆升和去顶作用过程[J]. 南京大学学报: 自然科学版, 2003, 39(1): 1-8.
35 Lu H H, Chang Y, Wang W, et al. Rapid exhumation of the Tianshan Mountains since the early Miocene: Evidence from combined apatite fission track and (U-Th)/He thermochronology[J]. Science China: Earth Science, 2013, 56(12): 2 116-2 125.
36 Honghua Lü, Wang Wei, Chang Yuan, et al. Cenozoic episodic exhumation of the Tian Shan range, NW China[J]. Quaternary Sciences, 2013, 33(4): 812-822.
吕红华, 王玮, 常远, 等. 新疆天山造山带新生代多期次剥露作用过程[J]. 第四纪研究, 2013, 33(4): 812-822.
37 Chen J, Burbank D W, Scharer K M, et al. Magnetochronology of the Upper Cenozoic strata in the Southern Chinese Tian Shan: Rates of Pleistocene folding and thrusting[J]. Earth and Planetary Science Letters, 2002, 195: 113-130.
38 Chen J, Heermance R, Burbank D W, et al. Quantification of growth and lateral propagation of the Kashi anticline, southwest Chinese Tian Shan[J]. Journal of Geophysical Research, 2007, 112. DOI:10.1029/2006JB004345.
doi: 10.1029/2006JB004345    
39 Charreau J, Chen Y, Gilder S, et al. Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (northwest China): Implications for Late Cenozoic uplift of the Tianshan mountains[J]. Earth and Planetary Science Letters, 2005, 230: 177-192.
40 Heermance R V, Chen J, Burbank D W, et al. Chronology and tectonic controls of Late Tertiary deposition in the southwestern Tian Shan foreland, NW China[J]. Basin Research, 2007, 19: 599-632.
41 Sun J M, Zhu R X, Bowler J. Timing of the Tianshan Mountains uplift constrained by magnetostratigraphic analysis of molasses deposits[J]. Earth and Planetary Science Letters, 2004, 219: 239-253.
42 Sun J M, Zhang Z. Syntectonic growth strata and implications for late Cenozoic tectonic uplift in the northern Tian Shan, China[J]. Tectonophysics, 2009, 463: 60-68.
43 Lu H H, Burbank D W, Li Y, et al. Late Cenozoic structural and stratigraphic evolution of the northern Chinese Tian Shan foreland[J]. Basin Research, 2010, 22: 249-269.
44 Lu H H, Wang Z, Zhang T Q, et al. Latest Miocene to Quaternary deformation in the southern Chaiwopu Basin, northern Chinese Tian Shan foreland[J]. Journal of Geophysical Research, 2015, 120(12): 8 656-8 671.
45 Li Bingjing, Wu Dengyun, Pang Lichen, et al. Stratigraphic attribute and origin of the Xiyu conglomerates in NW China: Progress and prospect[J]. Journal of Earth Environment, 2019, 10(5): 427-440.
李冰晶, 武登云, 逄立臣, 等. 西域砾岩的地层属性与成因: 进展与展望[J]. 地球环境学报, 2019, 10(5): 427-440.
46 Burchfiel B C, Brown E T, Deng Q, et al. Crustal shortening on the margins of the Tien Shan, Xinjiang, China[J]. International Geological Review, 1999, 41(8): 665-700.
47 Chen Jie, Heermance R V, Burbank D W, et al. Magnetchronology and its implication of Xiyu conglomerate in the southwestern Chinese Tianshan foreland[J]. Quaternary Sciences, 2007, 27(4): 576-587.
陈杰, Heermance R V, Burbank D W, 等. 中国西南天山西域砾岩的磁性地层年代与地质意义[J]. 第四纪研究, 2007, 27(4): 576-587.
48 Huang B C, Piper J D A, Peng S T, et al. Magnetostragraphic study of the Kuche Depression, Tarim Basin, and Cenozic uplift of the Tianshan Range, Western China[J]. Earth and Planetary Science Letters, 2006, 251: 346-364.
49 Huang B C, Piper J D A, Qiao Q Q, et al. Magnetostratigraphic and rock magnetic study of the Neogene upper Yaha section, Kuche Depression (Tarim Basin): Implications to formation of the Xiyu conglomerate formation, NW China[J]. Journal of Geophysical Research, 2010, 115: B01101. DOI:10.1029/2008JB006175.
doi: 10.1029/2008JB006175    
50 Métivier F, Gaudemer Y. Mass transfer between eastern Tien Shan and adjacent basins (central Asia): Constraints on regional tectonics[J]. Geophysical Journal International, 1997, 128: 1-17.
51 Windley B F, Allen M B, Zhang C, et al. Paleozoic accretion and Cenozoic deformation of the Chinese Tien Shan Range, central Asia[J]. Geology, 1990, 18(2): 128-131.
52 Avouac J P, Tapponnier P, Bai P, et al. Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan[J]. Journal of Geophysical Research, 1993, 98(B4): 6 755-6 804.
53 Abdrakhmatov K Y, Aldazhanov S A, Hager B H, et al. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates[J]. Nature, 1996, 384: 450-453.
54 Wang Nailiang, Yang Jingchun, Xia Zhengkai, et al. The Cenozoic Sediments and Tectonic Geomorphology in the Shanxi Graben System[M]. Beijing: Science Press, 1996.
王乃樑, 杨景春, 夏正楷, 等. 山西地堑系新生代沉积与构造地貌[M]. 北京: 科学出版社, 1996.
55 Honghua Lü, Zhou Zuyi. Characteristics and genetic mechanism of terrestrial sedimentary sequences in foreland basin[J]. Advances in Earth Science, 2010, 25(7): 706-714.
吕红华, 周祖翼. 前陆盆地陆源沉积序列的特征与成因机制[J]. 地球科学进展, 2010, 25(7): 706-714.
56 Huang Jiqing, Yang Zhongjian, Chen Yuqi, et al. Xinjiang Oilfield Geological Survey Report[R]. The Geological Special Report of the Central Geological Survey of the Ministry of Economic Affairs, Nanjing Press, No. 21, 1947.
黄汲清, 杨钟健, 程浴淇, 等. 新疆油田地质调查报告[R]. 经济部中央地质调查研究所地质专报, 甲种第21号, 1947.
57 Teng Zhihong, Yue Leping, Pu Renhai, et al. The magnetostratigraphic age of the Xiyu Formation[J]. Geological Review, 1996, 42(6): 481-489.
滕志宏, 岳乐平, 蒲仁海, 等. 用磁性地层学方法讨论西域组的时代[J]. 地质论评, 1996, 42(6): 481-489.
58 Deng Xiuqin, Yue Leping, Teng Zhihong, et al. A primary magnetostratigraphy study on Kuche and Xiyu Formations on the edge of Tarim Basin[J]. Acta Sedimentologica Sinica, 1998, 16(2): 82-86.
邓秀芹, 岳乐平, 滕志宏, 等. 塔里木盆地周缘库车组、西域组磁性地层学初步划分[J]. 沉积学报, 1998, 16(2): 82-86.
59 Charreau J, Gilder S, Chen Y, et al. Magnetostratigraphy of the Yaha section, Tarim Basin: 11 Ma acceleration in erosion and uplift of the Tian Shan mountains[J]. Geology, 2006, 34(3): 181-184.
60 Sun J M, Li Y, Zhang Z Q, et al. Magnetostratigraphic data on Neogene growth folding in the foreland basin of the southern Tianshan Mountains[J]. Geology, 2009, 37(11): 1 051-1 054.
61 Zhang T, Fang X M, Song C H, et al. Cenozoic tectonic deformation and uplift of the South Tian Shan: Implications from magnetostratigraphy and balanced cross-section restoration of the Kuqa depression[J]. Tectonophysics, 2014, 628: 172-187.
62 Zhang Z L, Shen Z Y, Sun J M, et al. Magnetostratigraphy of the Kelasu section in the Baicheng depression, southern Tian Shan, northwestern China[J]. Journal of Asian Earth Sciences, 2015, 111: 429-504.
63 Jing X H, Shen Z Y, Wang X, et al. Magnetostratigraphic construct of Awate section in the north Tarim Basin: The impulse uplift of Tianshan range[J]. Chinese Journal of Geophysics, 2011, 54(3): 334-342.
64 Qiao Q Q, Huang B C, Piper J D A, et al. Neogene magnetostratigraphy and rock magnetic study of the Kashi depression, NW China: Implications to Neotectonics in the SW Tianshan Mountains[J]. Journal of Geophysical Research, 2016, 121: 1 280-1 296.
65 Qiao Q Q, Huang B C, Biggin A J, et al. Late Cenozoic evolution in the Pamir-Tian Shan convergence: New chronological constraints from the magnetostratigraphic record of the southwestern Tianshan foreland basin (Ulugqat area) [J]. Tectonophysics, 2017, 717: 51-64.
66 Ji J L, Luo P, White P, et al. Episodic uplift of the Tianshan Mountains since the late Oligocene constrained by magnetostratigraphy of the Jingou River section, in the southern margin of the Junggar Basin, China[J]. Journal of Geophysical Research, 2008, 113: B05102. DOI:10.1029/2007JB005064.
doi: 10.1029/2007JB005064    
67 Charreau J, Avouac J P, Chen Y, et al. Miocene to present kinematics of fault-bend folding across the Huerguosi anticline, northern Tianshan (China), derived from structural, seismic, and magnetostratigraphic data[J]. Geology, 2008, 36(11): 871-874.
68 Lu H H, Zhang W G, Li Y L, et al. Rock magnetic properties and paleoenvironmental implications of an 8-Ma Late Cenozoic terrigenous succession from the northern Tian Shan foreland basin, northwestern China[J]. Global and Planetary Change, 2013, 111: 43-56.
69 Li C X, Dupont-Nivet G, Guo Z J. Magnetostratigraphy of the northern Tian Shan foreland, Taxi He section, China[J]. Basin Research, 2011, 23(1): 101-117.
70 Fu B H, Lin A, Kano K I, et al. Quaternary folding of the eastern Tian Shan, northern China[J]. Tectonophysics, 2003, 369: 79-101.
71 Zhang Peizhen. Late Cenozoic tectonic deformation in the Tianshan Mountain and its foreland basins[J]. Chinese Science Bulletin, 2003, 48(24): 2 499-2 500.
张培震. 天山及其前陆盆地的晚新生代构造变形[J]. 科学通报, 2003, 48(24): 2 499-2 500.
72 Zhu Haizhi, Chen Jie. Study on active fault, active fold and paleoearthquake in the Dushanzi area, Xinjiang[J]. Inland Earthquake, 1990, 4(2): 97-106.
朱海之, 陈杰. 新疆独山子山前活动断层和活褶皱及古地震研究[J]. 内陆地震, 1990, 4(2): 97-106.
73 Da?ron M, Avouac J P, Charreau J. Modeling the shortening history of a fault tip fold using structural and geomorphic records of deformation[J]. Journal of Geophysical Research, 2007, 112: B03S13. DOI:10.1029/2006JB004460.
doi: 10.1029/2006JB004460    
74 Li T, Chen J, Thompson J A, et al. Equivalency of geologic and geodetic rates in contractional orogens: New insights from the Pamir frontal thrust[J]. Geophysical Research Letters, 2012, 39: L15305. DOI:10.1029/2012GL051782.
doi: 10.1029/2012GL051782    
75 Wei Z Y, He H L, Sun W, et al. Investigating thrust-fault growth and segment linkage using displacement distribution analysis in the active Duzhanzi thrust fault zone, Northern Tian Shan of China[J]. Journal of Structural Geology, 2020, 133. DOI:10.1016/j.jsg.2020.103990.
doi: 10.1016/j.jsg.2020.103990    
76 Xu Xiwei, Deng Qidong, Zhang Peizhen, et al. Deformation of river terraces across the Manas-Huoerguos reverse fault and fold zone and its neotectonics implication in Xinjiang[C]//Editing Committee of the Research of Active Fault, eds. Research of Active Fault (II). Beijing: Seismology Press, 1992: 117-127. [
徐锡伟, 邓起东, 张培震, 等. 新疆玛纳斯—霍尔果斯逆断裂—褶皱带河流阶地的变形及其构造含义[C]//活动断裂研究编辑委员会.活动断裂研究(II).北京: 地震出版社, 1992: 117-127.]
77 Honghua Lü, Li Youli. Tectonic deformation of active fault-related fold belts in the north piedmont of the central Tianshan Mountains, NW China[J]. Quaternary Sciences, 2010, 30(5): 1 003-1 011.
吕红华, 李有利. 天山北麓活动背斜带的变形特征[J]. 第四纪研究, 2010, 30(5): 1 003-1 011.
78 Molnar P, Brown E T, Burchfiel B C, et al. Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tianshan, China[J]. Journal of Geology, 1994, 102: 583-602.
79 Yang Xiaoping, Li An, Huang Weiliang. Uplift differential of active fold zones during the late Quaternary, northern piedmonts of the Tianshan Mountains[J]. Science China Earth Sciences, 2012, 42(12): 1 877-1 888.
杨晓平, 李安, 黄伟亮. 天山北麓活动褶皱带晚第四纪时期隆升的差异性[J]. 中国科学: 地球科学, 2012, 42(12): 1 877-1 888.
80 Li T, Chen J, Thompson J A, et al. Quantification of three-dimensional folding using fluvial terraces: A case study from the Mushi anticline, northern margin of the Chinese Pamir[J]. Journal of Geophysical Research, 2013, 118: 4 628-4 647.
81 Gong Z J, Li S H, Li B. The evolution of a terrace sequence along the Manas River in the northern foreland basin of Tian Shan, China, as inferred from optical dating[J]. Geomorphology, 2014, 213: 201-212.
82 Gong Z J, Li S H, Li B. Late Quaternary faulting on the Manas and Hutubi reverse faults in the northern foreland basin of Tian Shan, China[J]. Earth and Planetary Science Letters, 2015, 424: 212-225.
83 Charreau J, Saint-Carlier D, Dominguez S, et al. Denudation outpaced by crustal thickening in the eastern Tianshan[J]. Earth and Planetary Science Letters, 2017, 479: 179-191.
84 Fu X, Li S H, Li B, et al. A fluvial terrace record of late Quaternary folding rate of the Anjihai anticline in the northern piedmont of Tian Shan, China[J]. Geomorphology, 2017, 278: 91-104.
85 Su P, He H L, Wei Z Y, et al. A new shortening rate across the Dushanzi anticline in the northern Tian Shan Mountains, China from lidar data and a seismic reflection profile[J]. Journal of Asian Earth Science, 2018, 163: 131-141.
86 Lu H H, Li B J, Wu D Y, et al. Spatiotemporal patterns of the late Quaternary deformation across the northern Chinese Tian Shan foreland[J]. Earth-Science Reviews, 2019, 194: 19-37.
87 Zhao Hongzhuang, Li Youli, Yang Jingchun, et al. Geomorphology characteristic and tectonic response of the Northern Tianshan represented by hypsometric integral[J]. Journal of Mountain Science, 2009, 27(3): 285-292.
赵洪壮, 李有利, 杨景春, 等. 天山北麓流域面积高度积分特征及其构造意义[J]. 山地学报, 2009, 27(3): 285-292.
88 Zhao Hongzhuang, Li Youli, Yang Jingchun, et al. Influence of area and space dependence for hypsometric integral and its geological implications[J]. Geographical Research, 2010, (2): 271-282.
赵洪壮, 李有利, 杨景春, 等. 面积高度积分的面积依赖与空间分布特征[J]. 地理研究, 2010, (2): 271-282.
89 Zhao Hongzhuang, Li Youli, Yang Jingchun. Implication of Active Structure along the Northern Tianshan by Stream Length-Gradient Index and Hack Profile[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(2): 237-244.
赵洪壮, 李有利, 杨景春. 北天山流域河长坡降指标与Hack剖面的新构造意义[J]. 北京大学学报: 自然科学版, 2010, 46(2): 237-244.
90 Zhang Tianqi, Wang Zhen, Zhang Xiaoming, et al. Hypsometric integral analysis of the Urumqi River drainage basin and its implications for topographic evolution[J]. Quaternary Sciences, 2015, 35(1): 60-70.
张天琪, 王振, 张晓明, 等. 北天山乌鲁木齐河流域面积—高程积分及其地貌意义[J]. 第四纪研究, 2015, 35(1): 60-70.
91 Wu Dengyun, Zhang Tianqi, Cheng Lu, et al. Neotectonic activation of the Urumqi River basin revealed by geomorphic indices[J]. Quaternary Sciences, 2018, 38(1): 193-203.
武登云, 张天琪, 程璐, 等. 地貌形态指标揭示的北天山乌鲁木齐河流域新构造活动特征[J]. 第四纪研究, 2018, 38(1): 193-203.
92 Huang W L, Yang X P, Li A, et al. Late Pleistocene shortening rate on the northern margin of the Yanqi Basin, southeastern Tian Shan, NW China[J]. Journal of Asian Earth Sciences, 2015, 112: 11-24.
93 Wu Chuanyong, Shen Jun, Chen Jianbo, et al. Preliminary study of late Quaternary crustal shortening rate along Kuqa Depression in South Tianshan, Xinjiang[J]. Seismology and Geology, 28(2): 279-288.
吴传勇, 沈军, 陈建波, 等. 新疆南天山库车坳陷晚第四纪以来地壳缩短速率的初步研究[J]. 地震地质, 2006, 28(2): 279-288.
94 Shen Jun, Wang Yipeng, Li Yingzhen, et al. Late Quaternary right-lateral strike-slip faulting along the Bolokenu-Aqikekuduke fault in Chinese Tian Shan[J]. Seismology and Geology, 2003, 25(2): 183-195.
沈军, 汪一鹏, 李莹甄, 等. 中国新疆天山博阿断裂晚第四纪右旋走滑运动特征[J]. 地震地质, 2003, 25(2): 183-195.
95 Yang S M, Li J, Wang Q. The deformation pattern and fault rate in the Tianshan Mountains inferred from GPS observations[J]. Science in China Series D: Earth Sciences, 2008, 51(8): 1 064-1 080.
96 Zhou Tingru. Types of Quaternary deposits in Xinjiang and their relationship with the development of geomorphology and climate[J]. Acta Geographica Sinica, 1963, 29(2): 109-129.
周廷儒. 新疆第四纪陆相沉积的主要类型及其和地貌气候发展的关系[J]. 地理学报, 1963, 29(2): 109-129.
97 Zhang Peizhen, Deng Qidong, Yang Xiaoping, et al. Glaciofluvial fan and neotectonic movement along the north piedmont of Tian Shan Mountains[C]//Editing Committee of the Research of Active Fault, eds. Research of Active Fault (IV). Beijing: Seismology Press, 1995: 63-78. [
张培震, 邓起东, 杨晓平, 等. 天山北麓的冰水冲洪积扇与新构造运动[C]//活动断裂研究编辑委员会, 活动断裂研究 (Ⅳ). 北京: 地震出版社, 1995: 63-78.]
98 Zhou Shangzhe, Jiao Keqin, Zhao Jindong, et al. Geomorphology of the Urumqi River valley and the uplift of the Tianshan Mountains in Quaternary[J]. Science in China Series D: Earth Sciences, 2002, 45(11): 961-968.
周尚哲, 焦克勤, 赵井东, 等. 乌鲁木齐河河谷地貌与天山第四纪抬升研究[J]. 中国科学: D辑, 2002, 32(2): 157-163.
99 Honghua Lü, Li Youli, Nan Feng, et al. Sequences and ages of fluvial terraces along the northern piedmont of the Tianshan Mountains[J]. Acta Geographica Sinica, 2008, 63(1): 65-74.
吕红华, 李有利, 南峰, 等. 天山北麓阶地序列及形成年代[J]. 地理学报, 2008, 63(1): 65-74.
100 Lu H H, Burbank D W, Li Y L. Alluvial sequence in the north piedmont of the Chinese Tian Shan over the past 550 kyr and its relationship to climate change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 285(3/4): 343-353.
101 Lu H H, Zhang T Q, Zhao J X, et al. Late Quaternary alluvial sequence and uplift-driven incision of the Urumqi River in the north front of the Tian Shan, northwestern China[J]. Geomorphology, 2014, 219: 141-151.
102 Lu H H, Wu D Y, Cheng L, et al. Late Quaternary drainage evolution in response to fold growth in the northern Chinese Tian Shan foreland[J]. Geomorphology, 2017, 299: 12-23.
103 Lu H H, Cheng L, Wang Z, et al. Latest Quaternary rapid river incision across an inactive fold in the northern Chinese Tian Shan foreland[J]. Quaternary Science Reviews, 2018, 179: 167-181.
104 Lu H H, Wu D Y, Zhang H P, et al. Spatial patterns of Late Quaternary river incision along the northern Tian Shan foreland[J]. Geomorphology, 2020, 357. DOI:10.1016/j.geomorph.2020.107100.
doi: 10.1016/j.geomorph.2020.107100    
105 Li Youli, Si Supei, Shenghua Lü, et al. Tectonic and climatic controls on the development of the Kuitun River terraces in the northern piedmont of Tianshan Mountains[J]. Quaternary Sciences, 2012, 32(5): 880-890.
李有利, 司苏沛, 吕胜华, 等. 构造运动和气候变化对天山北麓奎屯河阶地发育的影响作用[J]. 第四纪研究, 2012, 35(3): 880-890.
106 Malatesta L C, Avouac J P, Brown N D, et al. Lag and mixing during sediment transfer across the Tian Shan piedmont caused by climate-driven aggradation-incision cycles[J]. Basin Research, 2018, 30(4): 613-635.
107 Poisson B, Avouac J P. Holocene hydrological changes inferred from alluvial stream entrenchment in north Tian Shan (northwestern China) [J]. Journal of Geology, 2004, 112(2): 231-249.
108 Wu C Y, Zheng W J, Zhang Z Q, et al. Terrace sequence along the Yushanguxi River in the southern piedmont of Tian Shan and its relationship to climate and tectonics in northwestern China[J]. Geomorphology, 2018, 313: 48-57.
109 Zhang Tianqi, Honghua Lü, Zhao Junxiang, et al. Fluvial terrace formation and tectonic uplift rate—A case study of late Quaternary fluvial process in the north piedmont of the Tian Shan, northwestern China[J]. Quaternary Sciences, 2014, 34(2): 281-291.
张天琪, 吕红华, 赵俊香, 等. 河流阶地演化与构造抬升速率——以天山北麓晚第四纪河流作用为例[J]. 第四纪研究, 2014, 34(2): 281-291.
110 Wu D Y, Li B J, Lu H H, et al. Spatial variations of river incision rate in the northern Chinese Tian Shan derived from the Late Quaternary fluvial terraces[J]. Global and Planetary Change, 2020, 185. DOI:10.1016/j.gloplacha.2019.103082.
doi: 10.1016/j.gloplacha.2019.103082    
111 Honghua Lü, Li Youli, Nan Feng, et al. Character and age of loess along north piedmont of Tianshan Mountains[J]. Scientia Geographica Sinica, 2008, 28(3): 375-379.
吕红华, 李有利, 南峰, 等. 天山北麓黄土发育特征及形成年代[J]. 地理科学, 2008, 28(3): 375-379.
112 Lu H H, Xu Y D, Niu Y, et al. Late Quaternary loess deposition in the southern Chaiwopu Basin of the northern Chinese Tian Shan foreland and its palaeoclimatic implications[J]. Boreas, 2016, 45: 304-321.
113 Fang Xiaomin, Shi Zhengtao, Yang Shengli, et al. Loess in the Tian Shan and its implications for the development of the Gurbantunggut Desert and drying of northern Xinjiang[J]. Chinese Science Bulletin, 2002, 47(7): 540-545.
方小敏, 史正涛, 杨胜利, 等. 天山黄土和古尔班通古特沙漠发育及北疆干旱化[J]. 科学通报, 2002, 47(7): 540-545.
114 Li Y, Song Y G. Discussion of the paper “Loess genesis and worldwide distribution” by Yanrong Li, Wenhui Shi, Adnan Aydin, et al [J]. Earth-Science Reviews, 2020: 103151. DOI:10.1016/j.earscirev.2020.103151.
doi: 10.1016/j.earscirev.2020.103151    
115 Sun J M. Source Regions and Formation of the Loess Sediments on the High Mountain Regions of Northwestern China[J]. Quaternary Research, 2002, 58: 341-351.
116 Liu Y, Metivier F, Gaillardet J, et al. Erosion rates deduced from seasonal mass balance along the upper Urumqi River in Tianshan[J]. Solid Earth, 2011, 2: 283-301.
117 Charreau J, Blard P H, Puchol N, et al. Paleo-erosion rates in Central Asia since 9 Ma: A transient increase at the onset of Quaternary glaciations?[J]. Earth and Planetary Science Letters, 2009, 304: 85-92.
118 Li Jijun, Zhang Qingsong, Li Bingyuan. Main progress of geomorphology in China in the past fifteen years[J]. Acta Geographica Sinica, 1994, 49(Suppl.): 641-649.
李吉均, 张青松, 李炳元. 近15年中国地貌学的进展[J]. 地理学报, 1994, 49(增刊): 641-649.
119 Castelltort S, Goren L, Willett S D, et al. River drainage patterns in the New Zealand Alps primarily controlled by plate tectonic strain[J]. Nature Geoscience, 2012, 5: 744-748.
120 Graveleau F, Strak V, Dominguez S, et al. Experimental modelling of tectonics-erosion-sedimentation interactions in compressional, extensional, and strike-slip settings[J]. Geomorphology, 2015, 244: 146-168.
121 Guerit L, Goren L, Dominguez S, et al. Landscape ‘stress’ and reorganization from χ‐maps: Insights from experimental drainage networks in oblique collision setting[J]. Earth Surface Processes and Landforms, 2018, 43(15): 3 152-3 163.
122 Zheng H B, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 10(19): 7 556-7 561.
123 Hu Z B, Pan B T, Guo L Y, et al. Rapid fluvial incision and headward erosion by the Yellow River along the Jinshaan gorge during the past 1.2 Ma as a result of tectonic extension[J]. Quaternary Science Reviews, 2016, 133: 1-14.
124 Hetzel R, Niedermann S, Tao M, et al. Climatic versus tectonic control on river incision at the margin of NE Tibet: 10Be exposure dating of river terraces at the mountain front of the Qilian Shan[J]. Journal of Geophysical Research, 2006, 111: F03012. DOI:10.1029/2005JF000352.
doi: 10.1029/2005JF000352    
125 Pan B T, Hu X F, Gao H S, et al. Late quaternary river incision rates and rock uplift pattern of the eastern Qilian Shan Mountain, China[J]. Geomorphology, 2013, 184(430): 84-97.
126 Yang Jingchun, Li Youli. The Principle of Geomorphology (3rd) [M]. Beijing: Peking University Press, 2012.
杨景春, 李有利. 地貌学原理(第三版)[M]. 北京: 北京大学出版社, 2012.
127 Finnegan N J, Schumer R, Finnegan S. A signature of transience in bedrock river incision rates over timescales of 104-107 years[J]. Nature, 2014, 505(7 483): 391-394.
128 DiBiase R A. Earth science: River incision revisited[J]. Nature, 2014, 505(7 483): 294-295.
129 Shi Xingmin, Li Youli, Yang Jingchun. Climatic and tectonic analysis of Manas Lake changes[J]. Scientia Geographica Sinica, 2008, 28(2): 266-271.
史兴民, 李有利, 杨景春. 新疆玛纳斯湖变迁的气候和构造分析[J]. 地理科学, 2008, 28(2): 266-271.
130 Wang X Y, Ma J F, Yi S W, et al. Interaction of fluvial and eolian sedimentation processes, and response to climate change since the last glacial in a semiarid environment along the Yellow River[J]. Quaternary Research, 2019, 91: 570-583.
131 Lu Huayu, An Zhisheng, Wang Xiaoyong, et al. Geomorphological evidences of the episodic uplift over the last 14 Myr in the northeastern margin of the Tibet Plateau[J]. Science in China Series D: Earth Sciences, 2004, 34(9): 855-864.
鹿化煜, 安芷生, 王晓勇, 等. 最近14 Ma青藏高原东北缘阶段性隆升的地貌证据[J]. 中国科学: D辑, 2004, 34(9): 855-864.
132 Pan B T, Burbank D W, Wang Y X, et al. A 900 k.y. record of strath terrace formation during glacial-interglacial transitions in northwest China[J]. Geology, 2003, 31: 957-960.
133 Zhang Ke, Cai Jianbo. Preliminary result of the dating by TCN technique of the highest terrace of the Heishanxia Gorge mouth, northeast margin of Tibetan Plateau and its expression of neotectonics movement in that area[J]. Quaternary Sciences, 2006, 26(1): 85-91.
张珂, 蔡剑波. 黄河黑山峡口最高阶地宇宙核素的初步年龄及所反映的新构造运动[J]. 第四纪研究, 2006, 26(1): 85-91.
134 Zhang K, Liu K Y, Yang J C. Asymmetrical valleys created by the geomorphic response of rivers to strike-slip fault[J]. Quaternary Research, 2004, 62(3): 310-315.
[1] 李安, 冉勇康, 刘华国, 徐良鑫. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 2016, 31(4): 377-390.
[2] 张兆永, 吉力力 , 阿不都外力, 姜逢清. 天山山地表层土壤重金属的污染评价及生态风险分析[J]. 地球科学进展, 2014, 29(5): 608-616.
[3] 窦燕,陈曦. 基于站点的中国天山山区积雪要素变化研究[J]. 地球科学进展, 2011, 26(4): 441-448.
[4] 李永军,杨高学,张天继,栾新东,王晓刚. 西天山伊宁地块主褶皱幕鄯善运动的确立及地质意义[J]. 地球科学进展, 2009, 24(4): 420-427.
[5] 姚海涛,赵志中,王书兵,乔彦松,李朝柱,傅建利,王燕,蒋复初. 攀西地区晚新生代沉积研究回顾与问题讨论[J]. 地球科学进展, 2007, 22(5): 504-514.
[6] 张新钰,季建清,韩宝福,陈建军,余绍立. 地表剥蚀、下地壳流变与造山作用研究进展[J]. 地球科学进展, 2006, 21(5): 521-531.
[7] 中国科学院学部"西部生态环境建设与可持续发展"西北干旱区咨询组. 绿桥系统——天山北坡与准噶尔荒漠新产业带建设和生态保育[J]. 地球科学进展, 2003, 18(6): 831-836.
[8] 谢方克,蔡忠贤. 克拉通盆地基底结构特征及油气差异聚集浅析[J]. 地球科学进展, 2003, 18(4): 561-568.
[9] 赵生才. 活动构造、环境与自然灾害———香山科学会议第 167次学术讨论会观点摘要[J]. 地球科学进展, 2002, 17(4): 620-623.
[10] 王跃. 风沙地貌学研究与展望[J]. 地球科学进展, 1994, 9(6): 37-40.
[11] 程绍平,杨桂枝. 大地貌学研究进展综述[J]. 地球科学进展, 1994, 9(1): 1-7.
[12] 刁承泰. 重庆城市地貌研究的设计与实践[J]. 地球科学进展, 1993, 8(2): 71-75.
[13] 韩慕康. 构造地貌学[J]. 地球科学进展, 1992, 7(5): 61-.
[14] 唐晓春. 论灾害地貌学的性质及研究内容[J]. 地球科学进展, 1991, 6(5): 38-43.
[15] 刁承泰. 城市地貌学的探讨[J]. 地球科学进展, 1990, 5(6): 42-47.
阅读次数
全文


摘要