地球科学进展 ›› 2020, Vol. 35 ›› Issue (2): 137 -153. doi: 10.11867/j.issn.1001-8166.2020.003

综述与评述 上一篇    下一篇

中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨
赵振洋 1( ),李双建 2( ),王根厚 1   
  1. 1.中国地质大学(北京)地球科学与资源学院,北京 100083
    2.中国石化石油勘探开发研究院,北京 100083
  • 收稿日期:2019-09-29 修回日期:2019-12-20 出版日期:2020-02-10
  • 通讯作者: 李双建 E-mail:zzycugb@163.com;lishuangjian.syky@sinopec.com
  • 基金资助:
    国家自然科学基金重点项目“特提斯域内大陆单向裂解—聚合过程中的油气大规模富集效应”(91755211);国家科技重大专项“海相碳酸盐岩大中型油气田分布规律及勘探评价”(2017ZX05005-001)

Discussion on Sedimentary Environments, Origin and Source of Middle Permian Gufeng Formation Bedded Cherts in theNorthern Margin of the Middle-Lower Yangtze Area

Zhenyang Zhao 1( ),Shuangjian Li 2( ),Genhou Wang 1   

  1. 1.School of Geosciences and Resources,China University of Geosciences,Beijing 100083,China
    2.Petroleum Exploration & Production Research Institute,SINOPEC,Beijing 100083,China
  • Received:2019-09-29 Revised:2019-12-20 Online:2020-02-10 Published:2020-03-24
  • Contact: Shuangjian Li E-mail:zzycugb@163.com;lishuangjian.syky@sinopec.com
  • About author:Zhao Zhenyang (1996-), male, Changge County, Henan Province, Master student. Research areas include structure geology. E-mail: zzycugb@163.com
  • Supported by:
    the National Natural Science Foundation of China "Large-scale accumulation of oil and gas during unidirectional cracking-convergence in the Tethys region"(91755211);The National Science and Technology Major Project "Distribution law and exploration evaluation of large and medium oil and gas fields of Marine carbonate"(2017ZX05005-001)

硅质岩中蕴含着重要的古地理、古构造及古海洋等信息,是进行岩石大地构造学研究的重要手段。针对中下扬子北缘孤峰组层状硅质岩的沉积环境、成因及硅质来源存在的较大争议,基于沉积—构造演化过程,从正反两方面进行论证:正向论证通过对前人关于孤峰组层状硅质岩成因的观点进行归纳总结,并广泛搜集已发表的相关地球化学原始数据,建立硅质岩主量、稀土元素数据库,重新系统地进行沉积环境、成因及硅质来源判别;反向论证通过对华南中二叠世主要地质事件进行时间及成因的梳理,建立构造演化序列,以检验或解释目前存在的系列争议,结果表明: 除个别地区如安徽贵池唐田、铜陵花树坡和巢湖平顶山受火山活动及断裂影响向热液成因过渡,中下扬子北缘孤峰组层状硅质岩主要为非热液成因或生物成因,且沉积于被动大陆边缘深水环境; 华夏古陆隆升及海平面升降控制了研究区孤峰组层状硅质岩中部分陆源物质的输入,但陆源物质对硅质岩的硅质贡献并不明显; 孤峰组硅质岩的研究对峨眉山玄武岩的喷发时间及动力学机制具有重要的启示意义。

Cherts contain important information of paleogeography, paleostructure and paleo-ocean, which is the important means of studying petrotectonics. With regard to the major disputes on the sedimentary environments, origin and source of Gufeng Formation bedded cherts in the northern margin of middle-lower Yangtze area, demonstrations from both forward and reverse aspects from the perspective of the sedimentary-tectonic evolution were given. By summarizing previous views on the genesis of bedded cherts in Gufeng Formation, and extensively collecting published original geochemical data, in the forward demonstrations we created the database of the cherts about rare earth elements to systematically identify the sedimentary environments, origin and source of cherts. By sorting out the time and cause of the main geological events in the middle Permian in south China, in the reverse demonstrations we established the sequence of tectonic evolution to verify or explain the current series of disputes. The results show that: Except some areas, such as Guichi-Tangtian, Tongling-Huashupo and Chaohu-Pingdingshan in Anhui province, which were affected by volcanic activities and faults, the bedded cherts of Gufeng Formation in the northern margin of middle-lower Yangtze area are mainly of non-hydrothermal origin or biological origin, and deposited in the passive continental margin deep water environments. Paleocontinental uplift in cathaysian and sea level eustacy controlled the input of some terrestrial materials in the the Gufeng Formation bedded cherts in the study area, but the contribution of terrestrial materials to cherts is not obvious. The study of cherts in Gufeng Formation is of great significance to the eruption time and dynamic mechanism of Emeishan basalts.

中图分类号: 

图1 研究区古地理、地质背景及地理位置
(a) 晚瓜德鲁普世全球古地理图 [ 40 ];(b) 研究区地理位置图(http://bzdt.ch.mnr.gov.cn/);(c) 华南扬子北缘孤峰组分布、同沉积断裂展布 [ 10 , 42 ]及剖面位置 [ 6 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 ]
Fig. 1 Palaeogeography, geological setting and geographical location of the study area
(a) Late Guadalupian palaeogeography of the world [ 40 ]; (b) Location of the study area in South China(http://bzdt.ch.mnr.gov.cn/); (c) Distribution of Gufeng Formation, syndepositional faults [ 10 , 42 ] and sampling locations [ 6 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 ] in the Northern Margin of Yangtze area, South China
表1 华南孤峰组层状硅质岩成因及沉积环境
Table 1 Genesis and sedimentary environments of Gufeng Formation bedded cherts in South China
表2 硅质岩主量元素、稀土元素含量、指标及数据来源
Table 2 Major, rare Earth elements content, index and data source of cherts

元素含量 及指标

采样地

秭归白马岭1 贵池唐田2 铜陵花树坡3 巢湖庵门口4 巢湖平顶山5 巢湖平顶山5* 巢湖平顶山5** 鄂西猫儿山6 恩施田风坪7 宣城水东8 黄山—泾县9
主量元素/% SiO2 89.85 89.60 68.52 92.99 95.12 91.82 93.24 87.02 85.24 97.19 92.60
TiO2 0.06 0.19 0.22 0.04 0.10 0.06 0.04 0.07 0.09 0.05 0.13
Al2O3 1.18 3.45 5.33 1.24 1.62 2.67 1.08 1.62 1.80 1.13 3.03
TFe2O3 1.93 3.61 1.66 0.62 0.58 2.14 1.40 0.52 2.22 0.61 1.12
MnO 0.02 0.62 0.54 0.00 0.02 0.01 0.02 0.01 0.02 0.00 0.00
MgO 0.14 0.28 0.96 0.06 0.11 0.05 0.09 0.28 0.17 0.06 0.23
CaO 0.46 0.17 17.10 0.21 0.13 0.32 0.29 0.28 0.24 0.12 0.01
Na2O 0.04 0.05 0.44 0.13 0.07 0.78 0.04 0.04 0.03 <0.01 0.03
K2O 0.22 0.58 3.70 0.20 0.08 0.21 0.12 0.31 0.30 0.16 0.47
Al2O3/(Al2O3+Fe2O3) 0.38 0.49 0.76 0.67 0.74 0.56 0.44 0.76 0.45 0.65 0.73
Fe2O3/TiO2 32.12 19.50 7.53 15.32 5.60 37.16 38.14 7.68 25.60 11.69 8.78
MnO/TiO2 0.28 3.35 2.45 0.05 0.16 0.22 0.43 0.15 0.19 0.01 0.03
稀土元素/(×106) La 5.51 9.32 16.00 4.69 5.69 6.49 3.72 5.92 8.61 3.58 13.42
Ce 8.62 13.00 23.20 8.21 11.11 61.24 5.50 6.05 9.41 5.02 25.34
Pr 1.12 1.78 3.66 1.12 1.49 1.47 0.84 1.14 1.83 0.81 3.31
Nd 4.82 8.65 14.60 4.73 6.97 6.08 3.27 4.26 7.25 3.53 11.90
Sm 0.92 2.59 2.67 0.96 1.45 1.08 0.69 0.80 1.50 0.69 2.30
Eu 0.17 0.64 0.50 0.19 0.32 0.24 0.14 0.16 0.29 0.13 0.47
Gd 1.04 3.20 3.02 1.01 1.71 1.14 0.66 0.90 1.50 0.56 2.01
Tb 0.16 0.50 0.44 0.15 0.28 0.19 0.13 0.14 0.25 0.06 0.30
Dy 0.92 3.16 2.88 0.89 1.73 1.13 0.66 0.88 1.51 0.40 1.79
Ho 0.22 0.73 0.60 0.19 0.32 0.26 0.16 0.20 0.33 0.07 0.34
Er 0.64 1.97 1.78 0.54 0.89 0.73 0.43 0.59 0.95 0.19 0.95
Tm 0.10 0.29 0.29 0.08 0.12 0.12 0.09 0.09 0.14 0.03 0.13
Yb 0.57 1.73 0.32 0.49 0.67 0.64 0.41 0.56 0.94 0.20 0.85
Lu 0.08 0.27 1.83 0.08 0.09 0.11 0.09 0.09 0.14 0.03 0.13
LREE 21.16 35.96 60.63 19.90 27.03 76.60 14.16 18.33 28.90 13.76 56.74
HREE 9.81 11.84 30.86 3.42 17.56 4.30 2.61 3.45 5.76 1.54 6.51
LREE/HREE 2.16 3.12 1.96 6.74 2.08 22.37 4.95 5.71 5.27 10.34 8.91
∑REE 24.89 47.80 91.49 23.32 44.59 80.90 16.77 21.78 34.66 15.30 63.25
LaN/CeN 1.31 1.36 1.42 1.23 1.04 0.23 1.89 2.04 1.83 1.67 1.14
LaN/YbN 0.91 0.50 4.70 0.99 0.98 0.98 0.78 1.00 0.91 2.03 1.41
δCe 0.80 0.85 0.70 0.81 0.90 6.87 0.60 0.54 0.56 0.65 0.87
δEu 0.77 0.97 0.78 0.88 0.90 0.96 1.49 0.86 0.87 0.89 0.90
参考文献 [ 43 ] [ 44 ] [ 45 ] [ 6 ] [ 46 ] [ 47 ] [ 48 ] [ 49 ] [ 50 ] [ 51 ] [ 52 ]
表3 硅质岩沉积环境元素判别指标 [ 2 , 5 , 59 , 60 ]
Table 3 Chemical criteria to identify the depositional environments of chert [ 2 , 5 , 59 , 60 ]
图2 硅质岩沉积环境判别图解
(a)Fe 2O 3/TiO 2—Al 2O 3/(Al 2O 3+Fe 2O 3)图解;(b)La N/Ce N—Al 2O 3/(Al 2O 3+Fe 2O 3)图解(洋中脊、远洋盆地和大陆边缘分区界线据参考文献[ 5 ]修改)
Fig. 2 Diagrams to Identify the Sedimentary environments of Cherts
(a)Fe 2O 3/TiO 2—Al 2O 3/(Al 2O 3+Fe 2O 3) and (b) La N/Ce N—Al 2O 3/(Al 2O 3+Fe 2O 3) (ridge, pelagic and continental margin curves modified after reference [ 5 ])
表4 硅质岩成因元素判别指标 [ 2 , 5 , 59 , 60 , 61 ]
Table 4 Chemical criteria to identify the origin of cherts [ 2 , 5 , 59 , 60 , 61 ]
图3 硅质岩成因判别图解
(a) Al-Fe-Mn图解 [ 59 ](热液及非热液成因分区界线引自参考文献[ 43 ]);(b)硅质岩稀土元素页岩标准化配分模式图 [ 13 , 14 , 15 ](页岩标准化值引自北美页岩组合样(NASC)引自参考文献[ 13 , 14 , 15 ])
Fig. 3 Diagrams to Identify the Genesis of Cherts
(a) Al-Fe-Mn diagram of cherts [ 59 ] (hydrothermal curve and non-hydrothermal curve are after reference [ 43 ]); (b)Shale-normalized REE distribution patterns of cherts [ 13 , 14 , 15 ] [normalization values are from North American Shale Composite(NASC),after references[13~15]]
图4 硅质岩硅质来源判别图解
(a) Al 2O 3与∑REE交汇图 [ 8 ];(b) Al 2O 3与TiO 2交汇图 [ 63 ];(c) SiO 2与Al 2O 3交汇图 [ 63 ];(d) SiO 2与TiO 2交汇图 [ 64 ]
Fig.4 Diagrams to identify the origin of cherts
(a) Plots show correlations between Al 2O 3and ∑REE [ 8 ];(b) Plots show correlations between TiO 2and Al 2O 3 [ 63 ]; (c),(d) Plots show correlations between Al 2O 3, TiO 2and SiO 2contents of bedded cherts [ 63 , 64 ]
图5 华南中二叠世主要地质事件格架[ 17 , 64 , 65 , 66 ]
Fig.5 The main geological events framework of middle Permian in south China[ 17 , 64 , 65 , 66 ]
图6 华南中二叠世动力学—沉积作用综合模式图[ 18 , 87 , 88 ]
Fig. 6 Dynamics-Sedimentary synthesis model of middle Permian in South China[ 18 , 87 , 88 ]
图7 孤峰组典型剖面及地理位置
(a)华南晚瓜德鲁普世古地理图 [ 55 ];(b)安徽省巢湖平顶山剖面孤峰组地层柱状图及火山灰产出深度 [ 95 ]
Fig. 7 Representative section and location of Gufeng Formation
(a) Late Guadalupian palaeogeographical reconstructions of South China [ 55 ];(b) Stratigraphic column and the volcanic ash beds depth in the Gufeng Formation at the Pingdingshan Section in Chaohu City, Anhui Province [ 95 ]
1 Murray R W,Buchholtz ten Brink M R,Brumsack H,et al.Rare earth elements in Japan Sea sediments and diagenetic behavior of Ce/Ce*: Results from ODP Leg 127[J].Geochimica et Cosmochimica Acta,1991,55(9):2 453-2 466.
2 Murray R W,Buchholtz ten Brink M R,Gerlach D C,et al.Rare earth, major, and trace elements in chert from the Franciscan complex and monterey group, California: Assessing REE sources to fine-grained marine sediments[J].Geochimica et Cosmochimica Acta,1991,55(7):1 875-1 895.
3 Murray R W,Buchholtz ten Brink M R,Gerlach D C,et al.Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert: Perspectives gained from the DSDP and ODP record[J].Geochimica et Cosmochimica Acta,1992,56(5):1 897-1 913.
4 Murray R W,Jones D L,Buchholtz ten Brink M R.Diagenetic formation of bedded chert: Evidence from chemistry of the chert-shale couplet[J].Geology,1992,20(3):271-274.
5 Murray R W.Chemical criteria to identify the depositional environment of chert: General principles and applications[J].Sedimentary Geology,1994,90(3/4):213-232.
6 Kametaka M,Takebe M,Nagai H,et al.Sedimentary environments of the Middle Permian phosphorite-chert complex from the Northeastern Yangtze Platform, China; the Gufeng Formation: A continental shelf radiolarian chert[J].Sedimentary Geology,2005,174(3/4):197-222.
7 Qiu Zhen,Wang Qingchen.Geochemistry and sedimentary back-ground of the Middle-Upper Permian cherts in the Xiang-Qian-Gui region[J].Acta Petrologica Sinica,2010,26(12):3 612-3 628.
邱振,王清晨.湘黔桂地区中上二叠统硅质岩的地球化学特征及沉积背景[J].岩石学报,2010,26(12):3 612-3 628.
8 Yu Hao,Chen Daizhao,Wei Hengye,et al.Origin of bedded chert and organic matter accumulation in the Dalong Formation of Upper Permian in Western Hubei Province[J].Acta Petrologica Sinica,2012,28(3):1 017-1 027.
遇昊,陈代钊,韦恒业,等.鄂西地区上二叠乐平统大隆组硅质岩成因及有机质富集机理[J].岩石学报,2012,28(3):1 017-1 027.
9 Yao Xu,Zhou Yaoqi,Li Su,et al.Research status and advances in chert and Permian chert event[J].Advances in Earth Science,2013,28(11):1 189-1 200.
姚旭,周瑶琪,李素,等.硅质岩与二叠纪硅质沉积事件研究现状及进展[J].地球科学进展,2013,28(11):1 189-1 200.
10 Cheng Cheng,Li Shuangying,Zhao Daqian,et al.Geochemical characteristics of the Middle-Upper Permian bedded cherts in the Northern Margin of the Yangtze Block and its response to the evolution of paleogeography and paleo-ocean[J].Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(1):155-166.
程成,李双应,赵大千,等.扬子地台北缘中上二叠统层状硅质岩的地球化学特征及其对古地理、古海洋演化的响应[J].矿物岩石地球化学通报,2015,34(1):155-166.
11 Yao Xu.Research on Origin of Permian Cherts from Continental Marginal Sea of Eastern Paleo-Tethys Ocean[D].Qingdao:China University of Petroleum,2016.
姚旭.东古特提斯洋大陆边缘二叠纪硅质岩成因研究[D].青岛:中国石油大学(华东),2016.
12 Haskin L A,Haskin M A,Frey F A,et al.Relative and absolute terrestrial abundances of the rare earths[M]//Origin & Distribution of the Elements.London:Pergamon Press,1968:889-912.
13 Gromet L P,Dymek R F,Haskin L A,et al.The “North American Shale Composite”: Its compilation, major and trace element characteristics[J].Geochimica et Cosmochimica Acta,1984,48(12):2 469-2 482.
14 Kawabe I.Convex tetrad effect variations in REE abundances of "North American shale composite" and "Post-Archean Australian average shale"[J].Geochemical Journal,1996,30(3):149-153.
15 Kawabe I,Toriumi T,Ohta A,et al.Monoisotopic REE abundances in seawater and the origin of seawater tetrad effect[J].Geochemical Journal,1998,32(4):213-229.
16 Kani T,Fukui M,Isozaki Y,et al.The Paleozoic minimum of87Sr/86Sr ratio in the Capitanian (Permian) mid-oceanic carbonates: A critical turning point in the Late Paleozoic[J].Journal of Asian Earth Sciences,2008,32(1):22-33.
17 Isozaki Y.Integrated “plume winter” scenario for the double-phased extinction during the Paleozoic-Mesozoic transition: The G-LB and P-TB events from a Panthalassan perspective[J].Journal of Asian Earth Sciences,2009,36(6):459-480.
18 Zhang Guowei,Dong Yunpeng,Lai Shaocong,et al.Mianlue tectonic zone and Mianlue suture zone on southern margin of Qinling Dabie orogenic belt[J].Science in China (Series D),2003,33(12):1 122-1 135.
张国伟,董云鹏,赖绍聪,等.秦岭—大别造山带南缘勉略构造带与勉略缝合带[J].中国科学:D辑,2003,33(12):1 121-1 135.
19 Zhang Guowei,Cheng Shunyou,Guo Anlin,et al.Mianlue paleo-suture on the southern margin of the Central Orogenic System in Qinling-Dabie—With a discussion of the assembly of the main part of the continent of China[J].Geological Bulletin of China,2004,23(9/10):846-853.
张国伟,程顺有,郭安林,等.秦岭—大别中央造山系南缘勉略古缝合带的再认识——兼论中国大陆主体的拼合[J].地质通报,2004,23(9/10):846-853.
20 He B,Xu Y G,Chung S L,et al.Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts[J].Earth and Planetary Science Letters,2003,213(3):391-405.
21 Xu Y G,He B,Chung S L,et al.Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province[J].Geology,2004,32(10):917-920.
22 Xu Y G,He B,Huang X L,et al.Late Permian Emeishan flood basalts in Southwestern China[J].Earth Science Frontiers,2007,14(2):1-9.
23 Xu Y G,Chung S L,Shao H,et al.Silicic magmas from the Emeishan Large Igneous Province, Southwest China: Petrogenesis and their link with the end-Guadalupian biological crisis[J].Lithos,2010,119(1):47-60.
24 He B,Xu Y G,Guan J P,et al.Paleokarst on the top of the Maokou Formation: Further evidence for domal crustal uplift prior to the Emeishan flood volcanism[J].Lithos,2010,119(1/2):1-9.
25 He B,Xu Y G,Zhong Y T,et al.The Guadalupian-Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: Implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism[J].Lithos,2010,119(1/2):10-19.
26 Sun Y D,Lai X L,Wignall P B,et al.Dating the onset and nature of the Middle Permian Emeishan Large Igneous Province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models[J].Lithos,2010,119(1/2):20-33.
27 Zhu C Q,Hu S B,Qiu N S,et al.Geothermal constraints on Emeishan mantle plume magmatism: Paleotemperature reconstruction of the Sichuan Basin, SW China[J].International Journal of Earth Sciences,2018,107(1):71-88.
28 Wang Y,Peate I U,Luo Z H,et al.Rifting in SW China: Structural and sedimentary investigation of the initial crustal response to emplacement of the Permian Emeishan LIP[J].Geological Magazine,2018,156(4):745-758.
29 Erwin D H.The Permo-Triassic extinction[J].Nature,1994,367(6 460):231-236.
30 Stanley S M,Yang X.A double mass extinction at the end of the Paleozoic Era[J].Science,1994,266(5 189):1 340-1 344.
31 Wignall P B.Large igneous provinces and mass extinctions[J].Earth Science Reviews,2001,53(1/2):1-33.
32 Chen Jun,Xu Yigang.Establishing the link between Permian volcanism and biodiversity changes: Insights from geochemical proxies[J].Gondwana Research,2019,75:68-96.
33 Hu Shizhong.New consideration of Gufong Formation by stratigraphy check up[J].Volcanology & Mineral Resources,2000,21(1):63-68.
胡世忠.对孤峰组的新认识[J].火山地质与矿产,2000,21(1):63-68.
34 Kong Qingyu,Gong Yujin.The formation environment of radiolarian siliciliths in the Lower Permian in Giangsu-Anhui region[J].Oil & Gas Geology,1987,8(1):86-89.
孔庆玉,龚与觐.苏皖地区下二叠统放射虫硅质岩形成环境探讨[J].石油与天然气地质,1987,8(1):86-89.
35 Zhu Hongfa,Qin Deyu,Liu Cuizhang.On the origin, distributive pattern and tectonic control of Gufeng and siliceous rocks in Dalong Formations, South China[J].Experimental Petroleum Geology,1989,11(4):341-348.
朱洪发,秦德余,刘翠章.论华南孤峰组和大隆组硅质岩成因、分布规律及其构造机制[J].石油实验地质,1989,11(4):341-348.
36 Qiu Weiting,Gu Hongxin.Sedimentary environments of the chert (siliceous rocks) from the Lower Permian Gufeng Formation in Northeastern Sichuan[J].Sedimentary Facies and Palaeogeography,1991, (6):1-8.
邱威挺,古鸿信.试论川东北地区下二叠统孤峰组燧石(硅质岩)的沉积环境[J].岩相古地理,1991, (6):1-8.
37 Xia Bangdong,Zhong Lirong,Fang Zhong,et al.The origin of cherts of the early Permian Gufeng Formation in the Lower Yangtze area, Eastern China[J].Acta Geologica Sinica,1995,69(2):125-137.
夏邦栋,钟立荣,方中,等.下扬子区早三叠世孤峰组层状硅质岩成因[J].地质学报,1995,69(2):125-137.
38 Yang Yuqing,Feng Zengzhao.Formation and significance of the bedded siliceous rocks of the Lower Permian in South China[J].Acta Petrologica Sinica,1997,13(1):111-120.
杨玉卿,冯增昭.华南下二叠统层状硅岩的形成及意义[J].岩石学报,1997,13(1):111-120.
39 Takebe M,Kametaka M,Takayanagi Y,et al.Origin and deposition of organic matter in continental chert of the Middle Permian Gufeng Formation in the Northeastern Yangtze Platform[J].Sedimentary Geology,2007,201(1):141-148.
40 Zhang B L,Yao S P,Wignall P B,et al.Widespread coastal upwelling along the Eastern Paleo-Tethys Margin (South China) during the Middle Permian (Guadalupian): Implications for organic matter accumulation[J].Marine and Petroleum Geology,2018,97:113-126.
41 Wu Kan.Geobiological Composition and Geological Characters of Shale Gas from the Middle Permian Gufeng Formation in the North Margin of Yangtze[D].Wuhan:China University of Geosciences,2013.
吴勘.扬子北缘中二叠统孤峰组地球生物学构成及页岩气地质特征[D].武汉:中国地质大学,2013.
42 Wu Kan,Ma Qiangfen,Feng Qinglai.Stratigraphic division and spatial distribution of the Middle Permian Kuhfeng Formation in the Northren Yangtze Block[J].Journal of Stratigraphy,2015,39(1):33-39.
吴勘,马强分,冯庆来.扬子板块北缘孤峰组地层划分及空间分布特征[J].地层学杂志,2015,39(1):33-39.
43 Lei Bianjun,Que Hongpei,Hu Ning,et al.Geochemistry and sedimentary environments of the Palaeozoic siliceous rocks in Western Hubei[J].Sedimentary Geology and Tethyan Geology,2002,22(2):70-79.
雷卞军,阙洪培,胡宁,等.鄂西古生代硅质岩的地球化学特征及沉积环境[J].沉积与特提斯地质,2002,22(2):70-79.
44 Xu Wei,Yue Shucang,Du Jianguo,et al.The geologic characteristics of Tangtian manganese ore deposit of Guichi, Anhui Province[J].Contributions to Geology and Mineral Resources Research,2002,17(4):240-245.
许卫,岳书仓,杜建国,等.安徽省贵池唐田锰矿床地质特征[J].地质找矿论丛,2002,17(4):240-245.
45 Zeng Pusheng,Meng Yifeng,Yang Zhusen,et al.Hydrothermal sedimentary rocks of Sedex-Type Massive Sulfide Depositsin Tongling ore cluster area, Anhui Province[J].Mineral Deposits,2004,22(3):334-343.
曾普胜,蒙义峰,杨竹森,等.安徽铜陵矿集区与块状硫化物矿床有关的热水沉积岩[J].矿床地质,2004,22(3):334-343.
46 Yang Shuiyuan,Yao Jing.Geochemistry and origin of siliceous rocks from the Gufeng Formation of Middle Permian in the Pingdingshan area, Chaohu region, Anhui Province[J].Geological Journal of China Universities,2008,14(1):39-48.
杨水源,姚静.安徽巢湖平顶山中二叠统孤峰组硅质岩的地球化学特征及成因[J].高校地质学报,2008,14(1):39-48.
47 Han Zongzhu,Xiao Nan,Li Anlong,et al.Geochemistry and sedimentary environments analysis of siliceous rocks from the Gufeng Formation of Lower Permian in Chaohu Region, Anhui Province[J].Periodical of Ocean University of China,2014,44(4):78-85.
韩宗珠,肖楠,李安龙,等.安徽巢湖下二叠统孤峰组硅质岩沉积地球化学特征与沉积环境分析[J].中国海洋大学学报:自然科学版,2014,44(4):78-85.
48 Li Hongjing,Lin Zhengliang,Xie Xinong.Geochemical characteristics and origin of Palaeozoic siliceous rocks in Lower Yangtze area[J].Lithologic Reservoirs,2015,27(5):232-239.
李红敬,林正良,解习农.下扬子地区古生界硅岩地球化学特征及成因[J].岩性油气藏,2015,27(5):232-239.
49 Sun Xiufeng,Wang Guoqing.Geochemistry and sedimentary environments analysis of siliceous rocks from the Gufeng Formation of Lower Permian in Chaohu Region, Anhui Province[J].Uranium Geology,2016,32(1):23-30.
孙秀凤,王国庆.鄂西二叠系孤峰组层状硅质岩及硅质结核成因[J].铀矿地质,2016,32(1):23-30.
50 Li Peng,Hu Zhengxiang,Zong Wei,et al.Geochemistry and ore potential of the Gufeng Formation Enshi, Western Hubei Province[J].Journal of Stratigraphy,2017,41(3):344-350.
李朋,胡正祥,宗维,等.鄂西恩施地区孤峰组岩石地球化学特征及含矿性分析[J].地层学杂志,2017,41(3):344-350.
51 Wang Cunzhi,Huang Zhizhong,Song Shiming,et al.Geochemical characteristics of siliceous rocks in the Middle Permian Gufeng Formation at Shuidong area, Xuancheng City and its implication for genesis and sedimentary environment[J].Bulletin of Mineralogy,Petrology and Geochemistry,2018,37(4):687-695.
王存智,黄志忠,宋世明,等.宣城水东地区中二叠统硅质角砾岩地球化学特征及其成因环境研究[J].矿物岩石地球化学通报,2018,37(4):687-695.
52 Xu Jinlong,Wang Yafei,Ge Haiying,et al.Genesis and organic matter enrichment mode of the Permian marine black rock series in South Anhui Province[J].Chinese Journal of Geology,2019,54(3):953-972.
徐锦龙,汪雅菲,葛海影,等.皖南二叠纪海相暗色岩系成因及有机质富集模式[J].地质科学,2019,54(3):953-972.
53 Shi Lei,Feng Qinglai,Shen Jun,et al.Proliferation of shallow-water radiolarians coinciding with enhanced oceanic productivity in reducing conditions during the Middle Permian, South China: Evidence from the Gufeng Formation of Western Hubei Province[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,444:1-14.
54 Yao X,Zhou Y Q,Hinnov L A.Astronomical forcing of a Middle Permian chert sequence in Chaohu, South China[J].Earth and Planetary Science Letters,2015,422:206-221.
55 Zhang B L,Yao S P,Wignall P B,et al.New timing and geochemical constraints on the Capitanian (Middle Permian) extinction and environmental changes in deep-water settings: Evidence from the Lower Yangtze Region of South China[J].Journal of the Geological Society,2019,176(3):588-608.
56 Ito T,Takahashi K,Matsuoka A,et al.The Guadalupian (Permian) Gufeng Formation on the north margin of the South China Block: A review of the lithostratigraphy, radiolarian biostratigraphy, and geochemical characteristics[J].Paleontological Research,2019,23(4):261-280.
57 Feng Qinglai,Zhong Changting.A new research method of sedimentary environments of bedded siliceous rocks, with discussions on sedimentary environments of the Gufeng Formation in the Wuchang area, Hubei[J].Sedimentary Facies and Palaeogeography,1994,14(5):45-55.
冯庆来,钟长汀.层状硅质岩沉积环境研究的一种新方法(酸溶蚀法)──兼论武昌地区孤峰组沉积环境[J].岩相古地理,1994,14(5):45-55.
58 Lin Liangbiao,Chen Hongde,Zhu Lidong,et al.The origin and geochemical characteristics of Maokou Formation silicalites in the Eastern Sichuan Basin [J].Acta Geologica Sinica.,2010,84(4):500-507.
林良彪,陈洪德,朱利东.川东茅口组硅质岩地球化学特征及成因[J].地质学报,2010,84(4):500-507.
59 Adachi M,Yamamoto K,Sugisaki R.Hydrothermal chert and associated siliceous rocks from the Northern Pacific: Their geological significance as indication of ocean ridge activity[J].Sedimentary Geology,1986,47(1/2):125-148.
60 Bostr?m K,Kraemer T,Gartner S.Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments[J].Chemical Geology,1973,11(2):123-148.
61 Yamamoto K.Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes[J].Sedimentary Geology,1987,52(1/2):65-108.
62 Xie Jiancheng,Du Jianguo,Xu Wei,et al.The geological and geochemical characteristics of manganese-bearing sequences of Guichi, Anhui Province, East China[J].Geological Review,2006,52(3):396-408.
谢建成,杜建国,许卫,等.安徽贵池地区含锰岩系地质地球化学特征[J].地质论评,2006,52(3):396-408.
63 Qiu Zhen,Wang Qingchen,Yan Detian.Geochemistry and sedimentary background of the Middle-Upper Permian cherts in the Penglaitan section, Laibin, Guangxi Province[J].Acta Petrologica Sinica,2011,27(10):3 141-3 155.
邱振,王清晨,严德天.广西来宾蓬莱滩剖面中上二叠统硅质岩的地球化学特征及沉积背景[J].岩石学报,2011,27(10):3 141-3 155.
64 Haq B U,Schutter S R.A chronology of Paleozoic sea-level changes[J].Science,2008,322(5 898):64-68.
65 Shen S Z,Zhang H,Zhang Y C,et al.Permian integrative stratigraphy and timescale of China[J].Science in China(Series D),2019,62(1):154-188.
66 Zhao T Y,Algeo T J,Feng Q L,et al.Tracing the provenance of volcanic ash in Permian-Triassic boundary strata, South China: Constraints from inherited and syn-depositional magmatic zircons[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2019,516:190-202.
67 Martindale R C,Foster W J,Velledits F.The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2019,513:100-115.
68 Hong H L,Zhao L L,Fang Q,et al.Volcanic sources and diagenetic alteration of Permian-Triassic boundary K-bentonites in Guizhou Province, South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2019,519:141-153.
69 Wang X D,Cawood P A,Zhao L S,et al.Convergent continental margin volcanic source for ash beds at the Permian-Triassic boundary, South China: Constraints from trace elements and Hf-isotopes[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2019,519:154-165.
70 He Bin,Xu Yigang,Xiao Long,et al.Generation and spatial distribution of the Emeishan Large Igneous Province: New evidence from stratigraphic records[J].Acta Geologica Sinica,2003,77(2):194-202.
何斌,徐义刚,肖龙,等.峨眉山大火成岩省的形成机制及空间展布:来自沉积地层学的新证据[J].地质学报,2003,77(2):194-202.
71 Luo Zhili.The influence of Taphrogenesis from late Paleozoic Era in Southern China on petroleum and other deposits[J].Acta Geologica Sichuan,1981,2(1):1-22.
罗志立.中国西南地区晚古生代以来地裂运动对石油等矿产形成的影响[J].四川地质学报,1981,2(1):1-22.
72 Luo Zhili.Determination of the Emei Taphrogenesis and its significance[J].Acta Geologica Sichuan,1989,9(1):1-17.
罗志立.峨眉地裂运动的厘定及其意义[J].四川地质学报,1989,9(1):1-17.
73 Luo Z L,Jin Y Z,Zhao X K.The Emei Taphrogenesis of the Upper Yangtze Platform in South China[J].Geological Magazine,1990,127(5):393-405.
74 He Bin,Xu Yigang,Wang Yazi,et al.Nature of the Dongwu movement and its temporal and spatial evolution[J].Earth Science,2005,30(1):89-96.
何斌,徐义刚,王雅玫,等.东吴运动性质的厘定及其时空演变规律[J].地球科学,2005,30(1):89-96.
75 Luo Zhili.Emei Taphrogenesis and natural gas prospecting practices in Sichuan Basin[J].Xinjiang Petroleum Geology,2009,30(4):419-424.
罗志立.峨眉地裂运动和四川盆地天然气勘探实践[J].新疆石油地质,2009,30(4):419-424.
76 Xu Yigang,He Bin,Huang Xiaolong,et al.The debate over mantle plumes and how to test the plume hypothesis[J].Earth Science Frontiers,2007,14(2):1-9.
徐义刚,何斌,黄小龙,等.地幔柱大辩论及如何验证地幔柱假说[J].地学前缘,2007,14(2):1-9.
77 He B,Xu Y G,Guan J P,et al.Reply to comment on ‘Paleokarst on the top of the Maokou Formation: Further evidence for domal crustal uplift prior to the Emeishan flood volcanism’ by Bin He, Yi-Gang Xu, Jun-Peng Guan & Yu-Ting Zhong,Lithos 119 1-9, 2010[J].Lithos,2011,125(3/4):1 009-1 011.
78 Li J,Wang X C,Ren Z Y,et al.Chemical heterogeneity of the Emeishan mantle plume: Evidence from highly siderophile element abundances in picrites[J].Journal of Asian Earth Sciences,2014,79(Part A): 191-205.
79 Peate I U,Bryan S E.Re-evaluating plume-induced uplift in the Emeishan Large Igneous Province[J].Nature Geoscience,2008,1(9):625-629.
80 Peate I U,Bryan S E,Wignall P B,et al.Comment on ‘Paleokarst on the top of the Maokou Formation: Further evidence for domal crustal uplift prior to the Emeishan flood volcanism’[J].Lithos,2011,125(3/4):1 006-1 008.
81 Song L H,Zhang Y G,Fang J F,et al.Karst development and the distribution of karst drainage systems in Dejiang, Guizhou Province, China[J].Journal of Hydrology,1983,61(1/3):3-17.
82 Williams P W,Lyons R G.Interpretation of the Paleomagnetism of cave sediments from a Karst tower at Guilin[J].Carsologica Sinica,1986,5(2):119-125.
83 He B,Xu Y G,Campbell I.Pre-eruptive uplift in the Emeishan?[J].Nature Geoscience,2009,2(8):530-531.
84 Zhu B,Guo Z J,Liu R C,et al.No pre-eruptive uplift in the Emeishan Large Igneous Province: New evidences From its ‘inner Zone’, Dali area, Southwest China[J].Journal of Volcanology and Geothermal Research,2014,269:57-67.
85 Shellnutt J G.The Emeishan Large Igneous Province: A synthesis[J].Geoscience Frontiers,2014,5(3):369-394.
86 Jerram D A,Widdowson M,Wignall P B,et al.Submarine palaeoenvironments during Emeishan flood basalt volcanism, SW China: Implications for plume-lithosphere interaction during the Capitanian, Middle Permian (‘end Guadalupian’) extinction event[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,441(Part1):65-73.
87 Li N,Chen Y J,Santosh M,et al.Compositional polarity of Triassic granitoids in the Qinling Orogen, China: Implication for termination of the northernmost Paleo-Tethys[J].Gondwana Research,2015,27(1):244-257.
88 Cheng C,Li S Y,Xie X Y,et al.U-Pb detrital zircon geochronology and Hf isotopic composition of Permian clastic rocks, Zhen’an basin, South Qinling belt: Implications for the Paleozoic tectonic evolution of the Qinling orogenic belt[J].International Geology Review,2019,61(12):1 462-1 478.
89 Sun D Y,Xia W C.Identification of the Guadalupian-Lopingian boundary in the Permian in a bedded chert sequence, South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2006,236(3/4):272-289.
90 Wang X,Sugiyama T.Diversity and extinction patterns of Permian coral faunas of China[J].Lethaia,2000,33(4):285-294.
91 Groves J R,Wang Y.Timing and Size Selectivity of the Guadalupian (Middle Permian) Fusulinoidean Extinction[J].Journal of Paleontology,2013,87(2):183-196.
92 Gao P,He Z L,Li S J,et al.Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Cambrian Niutitang Formation black shales in South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2018,505:381-397.
93 Xia Bangdong,Zhong Lirong,Fang Zhong,et al.Early Permian Gufengian argillized volcanics in the Lower Yangtze region[J].Geological Review,1994,40(1):64-73.
夏邦栋,钟立荣,方中,等.下扬子区早二叠世孤峰期泥化火山岩[J].地质论评,1994,40(1):64-73.
94 Zhu Z Y,Jiang S Y,Liu G X,et al.Precise dating of the Middle Permian: Zircon U-Pb geochronology from volcanic ash beds in the basal Gufeng Formation, Yangtze region, South China[J].Gondwana Research,2013,23(4):1 599-1 606.
95 Wu Q,Ramezani J,Zhang H,et al.Calibrating the Guadalupian Series (middle Permian) of South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2017,466:361-372.
96 He Binghui.Research progress on some issues on the Emeishan Large Igneous Province[J].Advances in Earth Science,2016,31(1):23-42.
何冰辉.关于峨眉山大火成岩省一些问题的研究现状[J].地球科学进展,2016,31(1):23-42.
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[3] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[4] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[5] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[6] 李薇,张海东,戴国华,刘小驰. 2020年度地球化学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1154-1162.
[7] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[8] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[9] 刘洋,王文龙,滕学建,郭硕,滕飞,何鹏,田健,段霄龙. 内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、 Hf同位素特征及其地质意义[J]. 地球科学进展, 2019, 34(4): 366-381.
[10] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[11] 熊巨华,刘磊,赵学钦. 2019年度地球化学学科基金项目评审与成果分析[J]. 地球科学进展, 2019, 34(11): 1179-1184.
[12] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[13] 熊巨华, 宗克清. 2018年度地球科学部地球化学学科工作报告 *[J]. 地球科学进展, 2018, 33(12): 1286-1291.
[14] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[15] 张瑞刚, 高雪, 杨立强. 岩浆混合作用的识别:以义敦岛弧稻城岩体为例[J]. 地球科学进展, 2018, 33(10): 1058-1074.
阅读次数
全文


摘要