地球科学进展 ›› 2005, Vol. 20 ›› Issue (1): 106 -112. doi: 10.11867/j.issn.1001-8166.2005.01.0106

生态学研究 上一篇    下一篇

增强的UV-B对湖泊生态系统的影响研究
张运林 1,2,秦伯强 1,陈伟民 1   
  1. 1.中国科学院南京地理与湖泊研究所,江苏 南京 210008;
    2.中国科学院研究生院,北京 100039
  • 收稿日期:2003-11-10 修回日期:2004-06-03 出版日期:2005-01-25
  • 通讯作者: 张运林 E-mail:ylzhang@niglas.ac.cn
  • 基金资助:

    中国科学院知识创新工程重大项目“长江中下游地区湖泊富营养化的发生机制与控制对策研究”(编号:KZCX1-SW-12);国家自然科学基金项目“浅水湖泊水动力过程对底泥和悬浮物作用的环境效应研究”(编号:40071019);中国科学院研究生社会实践项目“太湖梅粱湾水域溶解性有机碳(DOC)对UV-B衰减的影响”(编号:200334)资助.

Effects of Increased UV-B Radiation on Aquatic Ecosystems in Lakes

ZHANG Yunlin 1, 2, QIN Boqiang 1, CHEN  Weimin 1   

  1. 1.Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    2. Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
  • Received:2003-11-10 Revised:2004-06-03 Online:2005-01-25 Published:2005-01-25

近20多年来,由于平流层臭氧层减薄引起紫外辐射(UV-B)增强而导致严重的生态学后果,已受到各国广泛的重视,并对此进行了深入研究,尤其集中在海洋浮游植物初级生产者及淡水食物网上。综述了国外在UV-B对湖泊生态系统影响的研究现状与动态,增强的UV-B在湖泊中呈指数衰减,不同湖泊衰减系数变化很大;光衰减系数与溶解性有机碳(DOC)、有色可溶性有机物(CDOM)一般呈显著性正相关;增强的UV-B对浮游植物、浮游细菌、浮游动物及鱼类均有不同程度的影响;由于不同生物具有不同适应UV-B伤害的机制,湖泊生态系统的结构和功能也势必会发生变化。最后提出了未来在太湖等富营养化湖泊UV-B的研究设想。

 In the past 20 years, the decrease in stratospheric ozone concentrations has provoked an increase of UV-B radiation in the wavelength range from 280 to 320nm. The ecological effects of increased UV-B on global environment attract more and more scientific studies. This paper demonstrates the advances of effects of UV-B radiation on aquatic organisms and aquatic ecosystems in lakes. The penetration of UV-B radiation into lakes is highly dependent on the concentration of dissolved organic carbon (DOC) and chromophoric dissolved organic matter(CDOM) in the water body. Many empirical regression relationships between the concentration of DOC and the diffuse attenuation coefficient, the euphotic depth (1% of surface irradiance) were found in many studies. Many studies demonstrate a variety of aquatic organism ranging from bacterioplankton and phytoplankton to zooplankton, and even aquatic vertebrates such as fish are vulnerable to damage from increased UV-B radiation. In general, aquatic organisms have three levels responses to minimize the exposure to UV-B: (1) behavioral avoidance, (2) manufacture or sequester UV-B absorbing compounds, (3) DNA repair mechanisms. Some assumptions about the effects of UV-B radiation on Lake Taihu ecosystem are presented. 

中图分类号: 

[1]Molina M J, Rowland F S. Stratospheric sink for chlorofluoro-methanes: Chlorineatom catalyzed distribution of ozone[J]. Nature, 1974, 249: 810-812.
[2]Madronich S. Increases in biologically damaging UV-B radiation due to stratospheric ozone reductions: A brief review[J]. Archiv für Hydrobiologie Ergebnisse der Limnologie, 1994, 43: 17-30.
[3]Taalas P, Damski J, Kyr E, et al. The effects of stratospheric ozone variations on UV-radiation and tropospheric ozone at high latitudes[J]. Journal of Geophysical Research, 1997, 102: 1 533-1 539.
[4]Caldwell M M, Flint S D. Implications of increased solar UV-B for terrestrial vegetation[A]. In: Chanin M L, ed. The Role of the Stratosphere in Global Change[C]. Heidelberg: Springer-Verlag, 1993. 495-516.
[5]Häder D P, Worrest R C, Kuman H D, et al. Effects of increased solar ultraviolet radiation on aquatic ecosystem[J]. AMBIO, 1995, 24: 174-180.
[6]Booth C R, Morrow J H, Coohill T P, et al. Impacts of solar UVR on aquatic microorganism[J]. Photochemistry and Photobiology,1997, 65: 252-269.
[7]Mora S D, Demers S, Vernet M. The effects of UV radiation in the Marine Environment[M]. Cambridge, Britain: Cambridge University Press, 2000.
[8]Häder D P. Effects on aquatic ecosystems[J]. Journal of Photochemistry and Photobiology B: Biology, 1998, 46: 53-68.
[9]Williamson C E. What role does UV-B radiation play in freshwater ecosystems?[J]. Limnology and Oceanography, 1995, 40: 386-392.
[10]Williamson C E. Effects of UV radiation on freshwater ecosystems[J]. International Journal of Environmental Studies, 1996, 51: 245-256.
[11]Yang Dingtian, Chen Weimin, Zhang Yunlin, et al. Effect of underwater light spectrum primary production of the Taihu Lake[J]. Rural Eco-Environment, 2003,19(2): 24-28.[杨顶田,陈伟民,张运林,等.太湖水体光学特征及其对水中初级生产力的影响[J].农村生态环境,2003,19(2): 24-28.]
[12]Kirk J T O. Light and Photosynthesis in Aquatic Ecosystems(2nd)[M]. Cambridge, Britain: Cambridge University Press,1994.
[13]Vincent W F, Rae R, Laurion I, et al. Transparency of Antarctic ice-covered lakes to solar UV radiation[J]. Limnology and Oceanography,1998,43:618-624.
[14]Sommaruga R. The role of solar UV radiation in the ecosystem of alpine lakes[J]. Journal of Photochemistry and Photobiology B: Biology, 2001, 62: 35-42.
[15]Rae R, Williams C H, Hawes I, et al. Penetration of solar ultraviolet radiation into New Zealand lakes: Influence of dissolved organic carbon and catchment vegetation[J]. Limnology, 2001, 2:79-89.[16]Smith R C, Prezelin B B, Baker K S, et al. Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic water[J]. Science,1992, 225: 952-959.
[17]Williamson C E, Stemberger R S, Morris D P, et al. Ultraviolet radiation in North American lakes: Attenuation estimates from DOC measurements and implication for plankton communities[J]. Limnology and Oceanography, 1996, 41: 1 024-1 034.
[18]Michael T A, Richard D R, Fumie K, et al. The attenuation of ultraviolet radiation in high dissolved organic carbon waters of wetlands and lakes on the northern Great Plains[J]. Limnology and Oceanography, 2000, 45: 292-299.
[19]Huovinen P S, Penttil  H, Soimasuo M R. Spectral attenuation of solar ultraviolet radiation in humic lakes in Central Finland[J]. Chemosphere, 2003, 51: 205-214.
[20]Kirk J T O. Optics of UV-B radiation in natural waters[J]. Archiv für Hydrobiologie Ergebnisse der Limnologie, 1994, 43: 1-16.
[21]Bertilsson S, Tranvik L J. Photochemical transformation of dissolved organic matter in lakes[J]. Limnology and Oceanography, 2000, 45: 753-762.
[22]Morris D P, Zagarese H E, Williamson C E, et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon[J]. Limnology and Oceanography, 1995, 40: 1 381-1 391.[23]Laurion I, Ventura M, Catalan J, et al. Attenuation of ultraviolet radiation in mountain lakes: Factors controlling the among- and within-lake variability[J]. Limnology and Oceanography,2000, 45: 1 274-1 288.
[24]Xenopoulos M A, Schindler D W. Physical factors determining ultraviolet radiation flux in to ecosystem[A]. In: Cockell C S, Blaustein A R, eds. Ecosystems, Evolution, and Ultraviolet Radiation[C]. New York: Springer-Verlag,  2001. 37-62.
[25]Scully N M, Lean D R S. The attenuation of UV radiation in temperate lakes[J]. Archiv für Hydrobiologie Ergebnisse der Limnologie, 1994, 43: 135-144.
[26]Laurion I, Vincent W F, Lean D R S. Underwater ultraviolet radiation: Development of spectral models for northern high latitude lakes[J]. Photochemistry and Photobiology, 1997, 65: 107-114.
[27]Morris D P, Hargreaves B R. The role of photochemical degradation of dissolved organic matter in regulating UV transparency of three lakes on the Pocono Plateau[J]. Limnology and Oceanography,1997, 42: 239-249.
[28]Schindler D W, Curtis P J, Park B R, et al. Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lake[J]. Nature, 1996, 379: 705-708.
[29]Scheuerlein R, Treml S, Thar B, et al. Evidence for UV-B induced DNA degradation in Euglena gracilis mediated by avtivation of metal-dependent nucleases[J]. Journal of Photochemistry and Photobiology B: Biology,1995, 31: 113-123.
[30]Buma A G J, Van Hannen E J, Roza L, et al. Monitoring ultraviolet-B-induced DNA damage in individual diatom cels by immunofluorescent thymine dimmer detection[J]. Journal of Phycology, 1995, 51: 314-321.
[31]Ségui J A, Maire V, Gabashvili I S, et al. Oxygen evolution loss and structural transitions in photosystem II induced by low intensity UV-B radiation of 280 nm wavelength[J]. Journal of Photochemistry and Photobiology B: Biology, 2000, 56: 39-47.
[32]Campbell D, Erikson M J, quist G, et al. The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 364-369.
[33]Assiliev I R, Prasil O, Wyman K D, et al. Inhibition of PS Ⅱ photochemistry by PAR and UV radiation in natural phytoplankton communities[J]. Photosynthesis Research, 1994, 42: 51-64.
[34]Hermann H, Häder D P, Kofferlen M, et al. Study on the effects of UV radiation on phytoplankton photosynthetic efficiency by means of a sunlight simulator[J]. Medical and Biological Environment, 1995, 23: 36-40.
[35]Hermann H, Häder D P, Kofferlen M, et al. Effects of UV radiation on photosynthesis of phytoplankton exposed to solar simulator light[J]. Journal of Photochemistry and Photobiology B: Biology, 1996, 34: 21-28.
[36]Gieskes W W C, Buma A G J. UV damage to plant life in a photobiologically dynamic environment: The case of marine phytoplankton[J]. Plant Ecology, 1997, 128: 16-25.
[37]Gerber S, Häder D P. Effects of solar radiation on motility and pigmentation of the three species of phytoplankton[J]. Environmental and Experimental Botany, 1993, 33: 515-521.
[38]Furgal J A, Smith R E H. Ultraviolet radiation and photosynthesis by Georgian Bay phytoplankton of varying nutrient and photoadaptive[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54: 1 659-1 667.
[39]Smith R C, Wan Z, Baker K S. Ozone depletion in the Antarctica: Modeling its effects on solar UV irradiance under clear sky conditions[J]. Journal of Geophysical Research, 1992, 97: 7 383-7 397.
[40]Williamson C E, Zagarese H E, Schulze P C, et al. The impact of short-term exposure to UV-B radiation on zooplankton communities in north temperate lakes[J]. Journal of Plankton Research, 1994, 16: 205-218.
[41]Chalker-Scott L. Survival and sex ratios of the intertidal copepod, Tigriopus calfjornicus, followmg Ultraviolet-B (290-320 nm) radiation exposure[J]. Marine Biology, 1995, 123: 799-804.
[42]Zagarese H E, Cravero W, Gonzalezp, et al. Copepod mortality induced by fluctuating levels of natural ultraviolet radiation simulating vertical water mixing[J]. Limnology and Oceanography, 1998, 43: 169-174.
[43]Kouwenberg J H M, Browman H I, Runge J A, et al. Biological weighting of ultraviolet (280-400 nm) induced mortality in marine zooplankton and fish. II. Calanus Finmarchicus(Copepoda) eggs[J]. Marine Biology, 1999, 134: 285-293.
[44]Garcia-Pichel F. A model for the internal self-shading in planktonic organisms and its implication for the usefulness of ultraviolet sunscreens[J]. Limnology and Oceanography,1994, 39: 1 704-1 717.
[45]Lindell M J, Gran li W, Tranvik L J. Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter[J]. Limnology and Oceanography, 1995, 40: 195-199.
[46]Herndl G J, Niklas G M, Frick J. Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean[J].Nature, 1993, 361: 717-719.
[47]Wilhelm S W, Smith R E H. Bacterial carbon production in Lake Erie is influenced by viruses and solar radiation[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57: 317-326.
[48]Little E E, Fabacher D L. Comparative sensitivity of rainbow trout and two threatened salmonids, Appache Trout and Lahontan Cutthroat trout, to UV-B radiation[J]. Archiv für Hydrobiologie Ergebnisse der Limnologie, 1994, 43: 217-226.
[49]Kouwenberg J H M, Browman H I, Cullen J J, et al. Biological weighting of ultraviolet (280-400nm) induced mortality in marine zooplankton and fishⅠ, Altantic cod (Gadus morhua L) eggs[J]. Marine Biology, 1999, 134: 269-284.
[50]Williamson C E, Metzgar S I, Lovera P A, et al. Solar ultraviolet radiation and the spawning habitat of yellow perchu, Perca flavescens[J]. Ecological Applications,1997, 7:1 017-1 023.
[51]Licht L E, Grant K P. The effects of ultraviolet radiation on the biology of amphibians[J]. American Zoologist, 1997, 37: 137-145.
[52]Ovaska K, Davis T M, Flamarique I N. Hatching success and larval survival of the frogs Hyla regilla and Rana aurora under ambient and artificially enhanced solar ultraviolet radiation[J]. Candian Journal of Zoology-revue Canadienne de Zoologie, 1997, 75: 1 081-1 088.
[53]Corn P S. Effects of ultraviolet radiation on boreal toads in Colorado[J]. Ecological Applications, 1998, 8: 18-26.
[54]Blaustein A R, Hoffman P D, Hokit D G, et al. UV repair and resistance to solar UV-B in amphibian eggs: A link to population declines?[J]. Proceedings of the National Academy of Sciences of the United States of America,1994, 91: 1 791-1 795.
[55]Blaustein A R, Edmond B, Kiesecker J M, et al. Ambient ultraviolet radiation causes mortality in salamander eggs[J]. Ecological Applications, 1995, 5: 740-743.
[56]Vincent W, Roy S. Solar ultraviolet-B radiation and aquatic primary production: Damage, protection, and recovery[J]. Environmental Reviews, 1993, 1: 1-12.
[57]Zagarese H E, Williamson C E. Modeling the impacts of UV-B radiation on ecological interactions in freshwater and marine ecosystems[A]. In: Biggs R H, Joyner M E B, eds. Stratospheric Ozone Depletion/UV-B Radiation in the Biosphere NATO ASI Series I (18)[C]. Berlin: Springer-Verlag,  1994. 315-328.
[58]Karentz D, Mceuen F S, Land M C, et al. Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: Potential protection from ultraviolet exposure[J]. Marine Biology, 1991, 108: 157-166.
[59]Ringelberg J, Keyser A L, Flik B J G. The mortality effect of ultraviolet radiation in a red morph of Acanthodiaptomus denticornis (Crustacea: Copepoda) and it's possible ecological relevance[J]. Hydrobiologia, 1984, 112: 217-222.
[60]Chen Shanwen, Wu Baogan. Algal responses to enhanced UV-B and its mechanism on molecular level[J]. Journal of Jinan University(Natural Science), 2000, 21(5): 88-94.[陈善文,武宝玕.藻类对UV-B增强的响应及其分子基础[J].暨南大学学报(自然科学版),2000, 21(5): 88-94.]

[1] 原世伟, 李新, 杜二虎. 多主体建模在水资源管理中的应用:进展与展望[J]. 地球科学进展, 2021, 36(9): 899-910.
[2] 刘秦玉,张苏平,贾英来. 冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究[J]. 地球科学进展, 2020, 35(5): 441-451.
[3] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[4] 宁晓菊,张丽君,秦耀辰,刘凯. 60年来我国主要粮食作物适宜生长区的时空分布[J]. 地球科学进展, 2019, 34(2): 191-201.
[5] 安俊岭, 陈勇, 屈玉, 陈琦, 庄炳亮, 张平文, 吴其重, 徐勤武, 曹乐, 姜海梅, 陈学舜, 郑捷. 全耦合空气质量预报模式系统[J]. 地球科学进展, 2018, 33(5): 445-454.
[6] 邓浩俊, 陶贞, 高全洲, 姚玲, 冯雍, 李银花. 河流筑坝对生源物质循环的改变研究进展 *[J]. 地球科学进展, 2018, 33(12): 1237-1247.
[7] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[8] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[9] 方修琦, 张頔旸. 气候变化影响区域文明发展演化的主要表现方式[J]. 地球科学进展, 2017, 32(11): 1218-1225.
[10] 毛克宇. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析[J]. 地球科学进展, 2016, 31(10): 1056-1066.
[11] 杨建平, 丁永建, 方一平, 秦大河. 冰冻圈及其变化的脆弱性与适应研究体系[J]. 地球科学进展, 2015, 30(5): 517-529.
[12] 李佳霖, 秦松. 海洋微微型蓝细菌分子生态学研究进展[J]. 地球科学进展, 2015, 30(4): 477-486.
[13] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[14] 张燕武. 自适应海洋观测[J]. 地球科学进展, 2013, 28(5): 537-541.
[15] 金杰,刘素美. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展, 2013, 28(2): 253-261.
阅读次数
全文


摘要