地球科学进展 ›› 2020, Vol. 35 ›› Issue (1): 1 -17. doi: 10.11867/j.issn.1001-8166.2020.002

所属专题: “一带一路”绿色发展研究

综述与评述    下一篇

“一带一路”区域冰冻圈变化及其对水资源的影响
康世昌 1, 2, 3( ),郭万钦 1,吴通华 1,钟歆玥 4( ),陈仁升 5,许民 1,陈金雷 1,杨瑞敏 6   
  1. 1.中国科学院西北生态环境资源研究院冰冻圈科学国家重点实验室,甘肃 兰州 730000
    2.中国科学院青藏高原地球科学卓越创新中心,北京 100101
    3.中国科学院大学,北京 100049
    4.中国科学院西北生态环境资源研究院甘肃省遥感重点实验室,甘肃 兰州 730000
    5.中国科学院西北生态环境资源研究院 内陆河流域生态水文重点实验室黑河上游生态—水文试验研究站,甘肃 兰州 730000
    6.兰州大学资源环境学院,甘肃 兰州 730000
  • 收稿日期:2019-11-12 修回日期:2019-12-15 出版日期:2020-01-20
  • 通讯作者: 钟歆玥 E-mail:shichang.kang@lzb.ac.cn;xyzhong@lzb.ac.cn
  • 基金资助:
    国家自然科学基金创新研究群体项目“冰冻圈与全球变化“(41721091);中国科学院前沿科学重点研究项目“北极冰冻圈变化与可持续发展”(QYZDY-SSW-DQC021)

Cryospheric Changes and Their Impacts on Water Resources in the Belt and Road Regions

Shichang Kang 1, 2, 3( ),Wanqin Guo 1,Tonghua Wu 1,Xinyue Zhong 4( ),Rensheng Chen 5,Min Xu 1,Jinlei Chen 1,Ruimin Yang 6   

  1. 1.State Key Laboratory of Cryospheric Science,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.Center for Excellence in Tibetan Plateau Earth;Sciences,Chinese Academy of Sciences,Beijing 100101,China
    3.University of Chinese Academy of Sciences,Beijing 100049,China
    4.Key Laboratory of Remote Sensing of Gansu Province,Northwest Institute of Eco-;Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    5.Qilian Alpine Ecology;and Hydrology Research Station,Key Laboratory of Ecohydrology of Inland River Basin,Northwest;Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    6.College of Earth and Environmental Science,Lanzhou University,Lanzhou 730000,China
  • Received:2019-11-12 Revised:2019-12-15 Online:2020-01-20 Published:2020-02-27
  • Contact: Xinyue Zhong E-mail:shichang.kang@lzb.ac.cn;xyzhong@lzb.ac.cn
  • About author:Kang Shichang (1969-), male, Longxi County, Gansu Province, Professor. Research areas include cryosphere and climate change. E-mail: shichang.kang@lzb.ac.cn
  • Supported by:
    the Innovative Research Groups of the National Natural Science Foundation of China "Cryosphere and climate change"(41721091);The Frontier Science Key Project of Chinese Academy of Sciences "Cryospheric changes and sustainable development in the Arctic"(QYZDY-SSW-DQC021)

“一带一路”区域横跨亚洲、欧洲和非洲东部、北部,空间范围大。在全球气候变暖背景下,“一带一路”区域的冰冻圈正在发生快速变化,将对区域水资源、生态系统、北极航道等带来深刻影响。综述了近几十年来“一带一路”沿线和周边区域(包括亚洲、欧洲、北极和非洲等)冰冻圈要素(包括冰川、多年冻土、积雪、海冰、河冰和湖冰)的变化及其对水资源的影响,主要认知为: 绝大部分冰川面积萎缩、冰川物质平衡处于亏损状态,但存在区域差异; 多年冻土温度升高,冻土分布下限上升,活动层厚度增大,多年冻土整体处于退化状态; 积雪范围明显缩减、积雪深度总体呈增加趋势,积雪期缩短,即积雪首日延后、消融期提前,但变化存在显著区域差异; 北极夏季海冰范围快速减少、厚度减薄,多年冰减少,反映了海冰的快速萎缩,河/湖冰初冰日延后、消融日提前、冰封期缩短; 中国冰川融水径流显著增加,积雪融水和多年冻土退化也在不同程度上增加了流域径流,反映出冰冻圈变化对径流的重要影响。“一带一路”区域冰冻圈萎缩的现状及其对水资源的影响分析,将为应对气候变化和区域可持续发展提供重要科学支撑。

“Belt and Road” regions include Asia, Europe and eastern and northern Africa, with a wide spatial distribution. The cryosphere is undergoing rapid changes in the Belt and Road regions with global warming, and has an important impact on water resources, ecosystems and Arctic waterways in these regions. This article reviewed recent cryospheric changes and associated impacts on water resources in the Belt and Road regions during the last decades. The main cognitions are as follows: Most glaciers are shrinking and glacier mass balances are most negative, but there are regional differences in the changes of glaciers. Global temperature rise has resulted in permafrost degradation, including a rise in permafrost temperature and decreasing permafrost thickness as well as an increase in active layer thickness. There is a significant decrease in snow cover extent and an increase in snow depth. Snow cover duration has shortened, the onset of snow cover has delayed, and the end of snow cover has advanced. However, there are still obvious regional differences in the changes of snow cover. Arctic sea ice has declined precipitously in both extent and thickness in summer, and multi-year sea ice has decreased,indicating the precipitous retreat of sea ice. The freeze-up date of some lakes has been delayed, the break-up date has advanced, and the ice cover duration of river/lake ice has significantly shortened. Glacial runoff has increased significantly in China. Snowmelt and permafrost degradation have also increased the basin runoff, which indicates the important impact of cryospheric changes on runoff. This study will provide a baseline and important scientific support for addressing climate change and regional sustainable development.

中图分类号: 

图1 “一带一路”涵盖区冰川分布图(图中数字为RGI分区编号)
Fig.1 Glacier distribution in the Belt and Road areas the numbers in the figure are RGI partition numbers
图2 欧亚大陆冰川变化空间分布特征(19752005年)
Fig.2 Spatial distribution of variations in glacier in Eurasia from 1975 to 2005
表1 欧亚大陆冰川年均物质平衡特征
Table 1 Annual mean glacier mass balances in Eurasia
表2 全球多年冻土主要分布区域和面积 [ 51 ]
Table 2 Distribution and areas of permafrost over the world [ 51 ]
表3 多年冻土变化
Table 3 Variations of permafrost over the world
图3 欧亚大陆和北极年平均雪深(a)和最大雪深(b)年际变化[ 82 ]
Fig.3 Interannual variations of mean snow depth (a) and maximum snow depth (b) in Eurasia and Arctic[ 82 ]
图4 19792019年北极年平均海冰范围异常(相对于19812010年平均)
Fig. 4 The Arctic sea ice extent anomaly in 1979-2019 (relatived to the 1981-2010 mean values)
图5 “一带一路”沿线湖冰发育的主要湖泊
Fig. 5 Lakes with ice formation in the Belt and Road areas
图6 欧亚大陆不同流域雪冰融水占总水量比例(数据来自参考文献[ 130 ])
Fig. 6 Ratio of meltwater from snow and ice to total runoff in different watersheds over Eurasia(data from reference[ 130 ])
表4 中国西部山区冰川融水径流量 [ 135 ]
Table 4 Glacier runoff in mountains in western China [ 135 ]
表5 中国典型流域冰川径流量 [ 134 , 136 ]
Table 5 Glacier runoff in typical watersheds in China [ 134 , 136 ]
表6 中国西部冰川融水变化 [ 134 , 136 , 138 ] 单位:×10 8 m 3
Table 6 Variations of glacier melt in western China [ 134 , 136 , 138 ] 单位:×10 8 m 3
1 Qin Dahe. An Introduction to Cryosphere Science [M]. Beijing: Science Press, 2017.
秦大河. 冰冻圈科学概论[M]. 北京: 科学出版社, 2017.
2 Editing Commission of the Third National Report on Climate Change of China. The Third National Report on Climate Change of China [M]. Beijing: Science Press, 2015.
《第三次气候变化国家评估报告》编写委员会. 第三次气候变化国家评估报告[M]. 北京: 科学出版社, 2015.
3 Consortium R. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0[R]. Technical Report, Global Land Ice Measurements from Space, Colorado, USA, 2017.
4 Paul F, K??b A, Maisch M, et al. Rapid disintegration of Alpine glaciers observed with satellite data [J]. Geophysical Research Letters, 2004, 31(21). DOI:10.1029/2004GL020816.
doi: 10.1029/2004GL020816    
5 Lambrecht A, Kuhn M. Glacier changes in the Austrian Alps during the last three decades, derived from the New Austrian Glacier Inventory [J]. International Glaciological Society, 2007, 46(1): 177-184.
6 Paul F, Andreassen L M, Winsvold S H. A new glacier inventory for the Jostedalsbreen region, Norway, from Landsat TM scenes of 2006 and changes since 1966 [J]. Annals of Glaciology, 2011, 52(59): 153-162.
7 Tielidze L G. Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery[J]. The Cryosphere, 2016, 10(2): 713-725.
8 Lynch C M, Barr I D, Mullan D, et al. Rapid glacial retreat on the Kamchatka Peninsula during the early 21st century [J]. Cryosphere, 2016, 10(4): 1 809-1 821.
9 Paul F, Frey H, Le Bris R. A new glacier inventory for the European Alps from Landsat TM scenes of 2003: Challenges and results [J]. Annals of Glaciology, 2011, 52(59): 144-152.
10 Kaab A. Glacier volume changes using ASTER satellite stereo and ICESat GLAS laser altimetry: A test study on Edge?ya, Eastern Svalbard [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46: 2 823-2 830.
11 Shahgedanova M, Nosenko G, Bushueva I, et al. Changes in area and geodetic mass balance of small glaciers, Polar Urals, Russia, 1950-2008 [J]. Journal of Glaciology, 2012, 58(211): 953-964.
12 Liu S, Ding Y, Shangguan D, et al. Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China [J]. Annals of Glaciology, 2006, 43(1): 91-96.
13 Kriegel D, Mayer C, Hagg W, et al. Changes in glacierisation, climate and runoff in the second half of the 20th century in the Naryn Basin, Central Asia [J]. Global and Planetary Change, 2013, 110: 51-61.
14 Bie Qiang, Qiang Wenli, Wang Chao, et al. Monitoring the glacier variation in the upper reaches of the Heihe River based on remote sensing in 1960-2010 [J]. Journal of Glaciology and Geocryology, 2013, 35(3): 574-582.
别强, 强文丽, 王超, 等. 1960—2010 年黑河流域冰川变化的遥感监测 [J]. 冰川冻土, 2013, 35(3): 574-582.
15 Ye Q, Kang S, Chen F, et al. Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies [J]. Journal of Glaciology, 2006, 52(179): 537-545.
16 Liu S, Shangguan D, Ding Y, et al. Glacier changes during the past century in the Gangrigabu mountains, southeast Qinghai-Xizang (Tibetan) Plateau, China [J]. Annals of Glaciology, 2006, 43(1): 187-193.
17 Li B, Zhu A-X, Zhang Y, et al. Glacier change over the past four decades in the middle Chinese Tien Shan [J]. Journal of Glaciology, 2006, 52(178): 425-432.
18 Aizen V, Aizen E, Glazirin G, et al. Simulation of daily runoff in Central Asian alpine watersheds [J]. Journal of Hydrology, 2000, 238(1/2): 15-34.
19 Hagg W, Hoelzle M, Wagner S, et al. Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya Basin until 2050 [J]. Global and Planetary Change, 2013, 110: 62-73.
20 Ye Q, Yao T, Kang S, et al. Glacier variations in the Naimona’nyi region, western Himalaya, in the last three decades [J]. Annals of Glaciology, 2006, 43(1): 385-389.
21 Wu Y, Zhu L. The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970-2000 [J]. Journal of Geographical Sciences, 2008, 18(2): 177-189.
22 Wang Y, Hou S, Liu Y. Glacier changes in the Karlik Shan, eastern Tien Shan, during 1971/72-2001/02 [J]. Annals of Glaciology, 2009, 50(53): 39-45.
23 Niederer P, Bilenko V, Ershova N, et al. Tracing glacier wastage in the Northern Tien Shan (Kyrgyzstan/Central Asia) over the last 40 years [J]. Climatic Change, 2008, 86(1): 227-234.
24 Shahgedanova M, Nosenko G, Khromova T, et al. Glacier shrinkage and climatic change in the Russian Altai from the mid‐20th century: An assessment using remote sensing and PRECIS regional climate model [J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D6). DOI:10.1029/2009JD012976.
doi: 10.1029/2009JD012976    
25 Moelg T, Cullen N J, Hardy D R, et al. East African glacier loss and climate change: Corrections to the UNEP article “Africa without ice and snow” [J]. Environmental Development, 2013, 6(1): 1-6.
26 Klein A G, Kincaid J L. Retreat of glaciers on Puncak Jaya, Irian Jaya, determined from 2000 and 2002 IKONOS satellite images [J]. Journal of Glaciology, 2006, 52: 65-79.
27 Mackintosh A N, Anderson B M, Lorrey A M, et al. Regional cooling caused recent New Zealand glacier advances in a period of global warming [J]. Nature Communications, 2017, 8: 14 202.
28 Kotlyakov V, Osipova G, Tsvetkov D. Monitoring surging glaciers of the Pamirs, central Asia, from space [J]. Annals of Glaciology, 2008, 48(1): 125-134.
29 Yao T, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings [J]. Nature Climate Change, 2012, 2(9): 663.
30 Quincey D J, Glasser N F, Cook S J, et al. Heterogeneity in Karakoram glacier surges [J]. Journal of Geophysical Research: Earth Surface, 2015, 120(7): 1 288-1 300.
31 Yasuda T, Furuya M. Dynamics of surge‐type glaciers in West Kunlun Shan, Northwestern Tibet [J]. Journal of Geophysical Research: Earth Surface, 2015, 120(7): 2 393-2 405.
32 Harrison W D, Post A S. How much do we really know about glacier surging?[J]. Annals of Glaciology, 2003, 36: 1-6.
33 Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011 [J]. The Cryosphere, 2013, 7: 1 885-1 886.
34 Lang C, Fettweis X, Erpicum M. Stable climate and surface mass balance in Svalbard over 1979-2013 despite the Arctic warming [J]. The Cryosphere, 2015, 9: 83-101.
35 Carturan L, Filippi R, Seppi R, et al. Area and volume loss of the glaciers in the Ortles-Cevedale group (Eastern Italian Alps): Controls and imbalance of the remaining glaciers [J]. The Cryosphere, 2013, 7: 1 339-1 359.
36 Paul F, Haeberli W. Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models [J]. Geophysical Research Letters, 2008, 35(2). DOI:10.1029/2008GL034718.
doi: 10.1029/2008GL034718    
37 K??b A, Berthier E, Nuth C, et al. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas [J]. Nature, 2012, 488(7 412): 495.
38 Wang P, Li Z, Li H, et al. Comparison of glaciological and geodetic mass balance at Urumqi Glacier No. 1, Tian Shan, central Asia [J]. Global and Planetary Change, 2014, 114: 14-22.
39 Shangguan D, Bolch T, Ding Y, et al. Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ~1975 and 2007 derived from remote sensing data [J]. The Cryosphere, 2015, 9: 703-717.
40 Wei J F, Liu S Y, Xu J L, et al. Mass loss from glaciers in the Chinese Altai Mountains between 1959 and 2008 revealed based on historical maps, SRTM, and ASTER images [J]. Journal of Mountain Science, 2015, 12(2): 330-343.
41 Wu K, Liu S, Jiang Z, et al. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories [J]. The Cryosphere, 2018, 12: 103.
42 Haug T, Rolstad C, Elveh?y H, et al. Geodetic mass balance of the western Svartisen ice cap, Norway, in the periods 1968-1985 and 1985-2002 [J]. Annals of Glaciology, 2009, 50(50): 119-125.
43 Li G, Lin H. Recent decadal glacier mass balances over the Western Nyainqentanglha Mountains and the increase in their melting contribution to Nam Co Lake measured by differential bistatic SAR interferometry[J]. Global and Planetary Change, 2017, 149: 177-190.
44 Xu J, Liu S, Zhang S, et al. Recent changes in glacial area and volume on Tuanjiefeng Peak Region of Qilian Mountains, China [J]. PLoS ONE, 2013, 8: e70574.
45 Gardelle J, Berthier E, Arnaud Y. Slight mass gain of Karakoram glaciers in the early twenty-first century [J]. Nature Geoscience, 2012, 5: 322.
46 M?ller M, Finkelnburg R, Braun M, et al. Variability of the climatic mass balance of Vestfonna ice cap, northeastern Svalbard,1979-2011[J]. Annals of Glaciology, 2013, 54(63): 254-264.
47 Ma?ecki J. Elevation and volume changes of seven Dickson Land glaciers,Svalbard,1960-1990-2009 [J]. Polar Research, 2013, 32: 18 400.
48 Moholdt G, Wouters B, Gardner A S. Recent mass changes of glaciers in the Russian High Arctic [J]. Geophysical Research Letters, 2012, 39(10). DOI:10.1029/2012GL051466.
doi: 10.1029/2012GL051466    
49 Cheng Guodong, Zhao Lin. The problems associated with permafrost in the development of the Qinghai-Xizhang Plateau [J]. Quaternary Sciences, 2000, 20(16): 521-531.
程国栋, 赵林. 青藏高原开发中的冻土问题 [J]. 第四纪研究, 2000, 20(16): 521-531.
50 Zhao L, Marchenko S, Sharkhuu N, et al. Regional changes of permafrost in Central Asia[C]// Proceedings of the Extended Abstracts, Proceedings Ninth International Conference on Permafrost. Institute of Northern Engineering. Fairbanks: University of Alaska,2008.
51 Gruber S. Derivation and analysis of a high-resolution estimate of global permafrost zonation [J]. The Cryosphere, 2012, 6: 1 547-1 582.
52 IPCC. Climate Change 2013: The Physical Science Basis [M]. Cambridge, UK, and New York, USA: Cambridge University Press, 2013.
53 Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades [J]. International Journal of Climatology, 2000, 20(14): 1 729-1 742.
54 Wang B, Bao Q, Hoskins B, et al. Tibetan Plateau warming and precipitation changes in East Asia [J]. Geophysical Research Letters, 2008, 35(14). DOI:10.1029/2008GL034330.
doi: 10.1029/2008GL034330    
55 Wu Tonghua. Study on the Response of Frozen Soil to Global Climate Change in Tibetan Plateau [D]. Beijing:Graduate School of Chinese Academy of Sciences, 2005.
吴通华. 青藏高原冻土对全球气候变化响应研究 [D].北京: 中国科学院研究生院, 2005.
56 Cheng G, Wu T. Responses of permafrost to climate change and their environmental significance, Qinghai‐Tibet Plateau [J]. Journal of Geophysical Research: Earth Surface, 2007, 112: 93-104.
57 Li Ren, Zhao Lin, Ding Yongjian, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region [J]. Chinese Science Bulletin, 2012, 57(30): 2 864-2 871.
李韧, 赵林, 丁永建, 等. 青藏公路沿线多年冻土区活动层动态变化及区域差异特征 [J]. 科学通报, 2012, 57(30): 2 864-2 871.
58 Xu Xiaoming, Zhang Zhongqiang, Wu Qingbai. Simulation of permafrost changes on the Qinghaig Peak region of Qilian Mountains, China [J]. International Journal of Digital Earth, 2016, 10(5): 1-17.
59 Anisimov O, Reneva S. Permafrost and changing climate: The Russian perspective [J]. AMBIO: A Journal of the Human Environment, 2006, 35(4): 169-176.
60 Pavlov A. Current changes of climate and permafrost in the Arctic and sub‐Arctic of Russia [J]. Permafrost and Periglacial Processes, 1994, 5(2): 101-110.
61 Pavlov A, Moskalenko N. The thermal regime of soils in the north of western Siberia [J]. Permafrost and Periglacial Processes, 2002, 13(1): 43-51.
62 Isaksen K, Sollid J L, Holmlund P, et al. Recent warming of mountain permafrost in Svalbard and Scandinavia[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2). DOI:10.1029/2006JF000522.
doi: 10.1029/2006JF000522    
63 Pogliotti P, Guglielmin M, Cremonese E, et al. Warming permafrost and active layer variability at Cime Bianche, Western European Alps [J]. The Cryosphere, 2015, 9: 647-661.
64 Visconti G, Beniston M, Iannorelli E D, et al. Global Change and Protected Areas [M]. Springer Press, 2001. DOI:12.100710-306-48051-4.
doi: 12.100710-306-48051-4    
65 Farbrot H, Etzelmüller B, Schuler T V, et al. Thermal characteristics and impact of climate change on mountain permafrost in Iceland[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F3). DOI: 10.1029/2006JF000541.
doi: 10.1029/2006JF000541    
66 Gisn?s K, Etzelmüller B, Lussana C, et al. Permafrost map for Norway, Sweden and Finland [J]. Permafrost and Periglacial Processes, 2017, 28: 359-378.
67 Myhra K, Westermann S, Etzelmüller B. Modelled distribution and temporal evolution of permafrost in steep rock walls along a latitudinal transect in Norway by CryoGrid 2D [J]. Permafrost and Periglacial Processes, 2017, 28: 172-182.
68 Wu Q, Zhang T. Changes in active layer thickness over the Qinghai‐Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D9). DOI:10.1029/2009JD012974.
doi: 10.1029/2009JD012974    
69 Brutsaert W, Hiyama T. The determination of permafrost thawing trends from long‐term streamflow measurements with an application in eastern Siberia[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D22). DOI:10.1029/2012JD018344.
doi: 10.1029/2012JD018344    
70 Frauenfeld O W, Zhang T, Barry R G, et al. Interdecadal changes in seasonal freeze and thaw depths in Russia[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D5). DOI:10.1029/2003JD004245.
doi: 10.1029/2003JD004245    
71 Christiansen H, Humlum O. Interannual variations in active layer thickness in Svalbard[C] //Proceedings Ninth International Conference on Permafrost, 2008.
72 Hilbich C, Hauck C, Hoelzle M, et al. Monitoring mountain permafrost evolution using electrical resistivity tomography: A 7‐year study of seasonal, annual, and long‐term variations at Schilthorn, Swiss Alps[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1). DOI:10.1029/2007JF000799.
doi: 10.1029/2007JF000799    
73 Malevsky-Malevich S, Molkentin E, Nadyozhina E, et al. Numerical simulation of permafrost parameters distribution in Russia [J]. Cold Regions Science and Technology, 2001, 32(1): 1-11.
74 Sattler K, Anderson B, Mackintosh A, et al. Estimating permafrost distribution in the maritime Southern Alps, New Zealand, based on climatic conditions at rock glacier sites [J]. Frontiers in Earth Science, 2016, 4: 4.
75 Brown R D, Goodison B E. Interannual variability in reconstructed Canadian snow cover, 1915-1992 [J]. Journal of Climate, 1996, 9(6): 1 299-1 318.
76 King J C, Pomeroy J W, Gray D M, et al. Snow-Atmosphere Energy and Mass Balance [M]. Cambridge, UK: Cambridge University Press, 2008.
77 Armstrong R L, Brodzik M J. Recent Northern Hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors [J]. Geophysical Research Letters, 2001, 28(19): 3 673-3 676.
78 Robinson D A, Dewey K F, Heim Jr R R. Global snow cover monitoring: An update [J]. Bulletin of the American Meteorological Society, 1993, 74(9): 1 689-1 696.
79 Strategy I G O. Cryosphere Theme Report: For the Monitoring of Our Environment from Space and from Earth [R]. Geneva: World Meteorological Organisation, 2007.
80 Barry R, Gan T Y. The Global Cryosphere: Past, Present and Future [M]. Cambridge, UK: Cambridge University Press, 2011.
81 Parkinson C L. Earth's cryosphere: Current state and recent changes [J]. Annual Review of Environment Resources, 2006, 31: 33-60.
82 Zhong X, Zhang T, Kang S, et al. Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012 [J]. The Cryosphere, 2018, 12: 227-245.
83 Brown R D, Robinson D A. Northern Hemisphere spring snow cover variability and change over 1922-2010 including an assessment of uncertainty [J]. The Cryosphere, 2011, 5: 219-229.
84 AMAP. Snow,Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere [R]. Oslo, Norway:Arctic Monitoring and Assessment Programme (AMAP), 2011.
85 Callaghan T V, Johansson M, Brown R D, et al. The changing face of Arctic snow cover: A synthesis of observed and projected changes [J]. Ambio, 2011, 40: 17-31.
86 Bulygina O, Razuvaev V, Korshunova N. Changes in snow cover over Northern Eurasia in the last few decades [J]. Environmental Research Letters, 2009, 4: 045026.
87 Bulygina O, Groisman P Y, Razuvaev V, et al. Changes in snow cover characteristics over Northern Eurasia since 1966 [J]. Environmental Research Letters, 2011, 6: 045204.
88 Wegmann M, Orsolini Y, Dutra E, et al. Eurasian snow depth in long-term climate reanalyses [J]. The Cryosphere, 2017, 11: 923-935.
89 Ma Lijuan, Qin Dahe. Spatial-temporal characteristics of observed key parmeters for snow cover in China during 1957-2009 [J]. Journal of Glaciology and Geocryology, 2012, 34(1): 1-11.
马丽娟, 秦大河. 1957—2009 年中国台站观测的关键积雪参数时空变化特征 [J]. 冰川冻土, 2012, 34(1): 1-11.
90 Hernández-Henríquez M A, Déry S J, Derksen C. Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971-2014 [J]. Environmental Research Letters, 2015, 10: 044010.
91 Huang X, Deng J, Wang W, et al. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau [J]. Remote Sensing of Environment, 2017, 190: 274-288.
92 AMAP. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) [M]. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP), 2017.
93 Huang X, Deng J, Ma X, et al. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China [J]. The Cryosphere, 2016, 10: 2 453-2 463.
94 Shmakin A. Climatic characteristics of snow cover over North Eurasia and their change during the last decades [J]. Ice and Snow, 2010, 1: 43-57.
95 Peng S, Piao S, Ciais P, et al. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades [J]. Environmental Research Letters, 2013, 8(1): 014008.
96 Shen S S, Yao R, Ngo J, et al. Characteristics of the Tibetan Plateau snow cover variations based on daily data during 1997-2011 [J]. Theoretical and Applied Climatology, 2015, 120: 445-453.
97 Bai Shuying, Shi Jianqiao, Shen Weishou, et al. Spatial and temporal variations of snow and influencing factors in Tibet Plateau based on remote sensing [J]. Remote Sensing Technology and Application, 2014, 29(6): 954-962.
白淑英, 史建桥, 沈渭寿, 等. 卫星遥感西藏高原积雪时空变化及影响因子分析 [J]. 遥感技术与应用, 2014, 29(6): 954-962.
98 Xu W, Ma L, Ma M, et al. Spatial-temporal variability of snow cover and depth in the Qinghai-Tibetan Plateau [J]. Journal of Climate, 2017, 30: 1 521-1 533.
99 Shi Jianqiao. Spatial and Temporal Variations of Snow and Influencing Factors in Tibetan Based on Remote Sensing and GIS [D]. Nanjing:Nanjing University of Information Science & Technology, 2014.
史建桥. 基于遥感和 GIS 的青藏高原积雪时空变化及影响因子分析 [D].南京:南京信息工程大学, 2014.
100 Chu Duo, Yang Yong, Jiancan Luobu, et al. The variations of snow cover days over the Tibetan Plateau during 1981-2010 [J]. Journal of Glaciology and Geocryology, 2015, 37(6): 1 461-1 472.
除多, 杨勇,罗布坚参,等. 1981—2010年青藏高原积雪日数时空变化特征分析 [J]. 冰川冻土, 2015, 37(6): 1 461-1 472.
101 Xiong C, Shi J, Cui Y, et al. Snowmelt pattern over high-mountain Asia detected from active and passive microwave remote sensing [J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14: 1 096-1 100.
102 Zhang Y, Kang S, Sprenger M, et al. Black carbon and mineral dust in snow cover on the Tibetan Plateau [J]. The Cryosphere, 2018, 12: 413-431.
103 Kang S, Zhang Q, Qian Y, et al. Linking atmospheric pollution to cryospheric change in the third pole region: Current progresses and future prospects [J]. National Science Review, 2019, 6(4): 796-809.
104 Zhong X, Kang S, Zhang W, et al. Light-absorbing impurities in snow cover across Northern Xinjiang, China [J]. Journal of Glaciology, 2019, 65(254): 940-956.
105 Wang Daiwei, Yang Xiuqun. Temporal and spatial patterns of Arctic sea ice variations [J]. Acta Meteorological Sinica, 2002, 60(2): 129-138.
汪代维, 杨修群. 北极海冰变化的时间和空间型 [J]. 气象学报, 2002, 60(2): 129-138.
106 Stroeve J C, Serreze M C, Holland M M, et al. The Arctic’s rapidly shrinking sea ice cover: A research synthesis [J]. Climatic Change, 2012, 110(3/4): 1 005-1 027.
107 Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification [J]. Nature, 2010, 464(7 293): 1 334-1 337.
108 Gao Y, Sun J, Li F, et al. Arctic sea ice and Eurasian climate: A review [J]. Advances in Atmospheric Sciences, 2015, 32: 92-114.
109 Comiso J C, Meier W N, Gersten R. Variability and trends in the Arctic Sea ice cover: Results from different techniques [J]. Journal of Geophysical Research: Oceans, 2017, 122: 6 883-6 900.
110 Meier W N, Hovelsrud G K, Van Oort B E, et al. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity [J]. Reviews of Geophysics, 2014, 52(3): 185-217.
111 Perovich D K, Richter-Menge J A. Regional variability in sea ice melt in a changing Arctic [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373: 20140165.
112 Perovich D K, Richter-Menge J A. Loss of sea ice in the Arctic [J]. Annual Review of Marine Science, 2009, 1: 417-441.
113 Lindsay R, Schweiger A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations [J]. The Cryosphere, 2015, 9: 269-283.
114 Wang L, Derksen C, Brown R, et al. Recent changes in pan‐Arctic melt onset from satellite passive microwave measurements [J]. Geophysical Research Letters, 2013, 40(3): 522-528.
115 Mortin J, Svensson G, Graversen R G, et al. Melt onset over Arctic sea ice controlled by atmospheric moisture transport [J]. Geophysical Research Letters, 2016, 43: 6 636-6 642.
116 Bliss A, Anderson M. Arctic sea ice melt onset from passive microwave satellite data: 1979-2012 [J]. The Cryosphere Discussions, 2014, 8: 3 037-3 055.
117 Cordeira J M, Laird N F. The influence of ice cover on two lake-effect snow events over Lake Erie [J]. Monthly Weather Review, 2008, 136: 2 747-2 763.
118 Likens G E. Plankton of Inland Waters [M]. New York:Academic Press, 2010.
119 Walter K M, Smith L C, Stuart Chapin Iii F. Methane bubbling from northern lakes: Present and future contributions to the global methane budget [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1 856): 1 657-1 676.
120 De Munck S, Gauthier Y, Bernier M, et al. River predisposition to ice jams: A simplified geospatial model [J]. Natural Hazards and Earth System Sciences, 2017, 17: 1 033-1 045.
121 Magnuson J J, Robertson D M, Benson B J, et al. Historical trends in lake and river ice cover in the Northern Hemisphere [J]. Science, 2000, 289(5 848): 1 743-1 746.
122 Benson B J, Magnuson J J, Jensen O P, et al. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855-2005) [J]. Climatic Change, 2012, 112(2): 299-323.
123 Yao X, Li L, Zhao J, et al. Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011 [J]. Journal of Geographical Sciences, 2016, 26(1): 70-82.
124 Cai Y, Ke C Q, Duan Z. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data [J]. Science of the Total Environment, 2017, 607/608: 120-131.
125 Gou P, Ye Q, Che T, et al. Lake ice phenology of Nam Co, Central Tibetan Plateau, China, derived from multiple MODIS data products [J]. Journal of Great Lakes Research, 2017, 43(6): 989-998.
126 Kropá?ek J, Maussion F, Chen F, et al. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data [J]. The Cryosphere, 2013, 7: 287-301.
127 Kouraev A V, Semovski S V, Shimaraev M N, et al. Observations of Lake Baikal ice from satellite altimetry and radiometry [J]. Remote Sensing of Environment, 2007, 108(3): 240-253.
128 Arp C D, Jones B M, Lu Z, et al. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska[J].Geophysical Research Letters,2012,39(16). DOI:10.1029/2012GL052518.
doi: 10.1029/2012GL052518    
129 Immerzeel W W, Van Beek L P, Bierkens M F. Climate change will affect the Asian water towers [J]. Science, 2010, 328(5 984): 1 382-1 385.
130 Kaser G, Gro?hauser M, Marzeion B. Contribution potential of glaciers to water availability in different climate regimes [J]. Proceedings of the National Academy of Sciences, 2010, 107(47): 20 223-20 227.
131 Ren Jiawen, Ye Baisheng, Ding Yongjian, et al. Initial estimate of the contribuiton of cryospheric changes in China to sea level rise [J]. Chinese Science Bulletin, 2011, 56(14): 1 084-1 087.
任贾文,叶柏生,丁永建,等. 中国冰冻圈变化对海平面上升潜在贡献的初步估计[J]. 科学通报, 2011, 56(14): 1 084-1 087.
132 Qin Dahe, Chen Yiyu, Li Xueyong. Assessment of Climate and Environment Changes in China(II): Measures to Adapt and Mitigate the Effects of Climate and Environment Changes [M]. Beijing: Science Press, 2005.
秦大河, 陈宜瑜, 李学勇. 中国气候与环境演变 (下卷): 气候与环境变化的影响与适应, 减缓对策 [M]. 北京: 科学出版社, 2005.
133 Zhao Lin, Liu Guangyue, Jiao Keqin, et al. Variations of the permafrost in the headwaters of the Urumqi River in the Tianshan Mountains since 1991 [J]. Journal of Glaciology and Geocryology, 2010, 32(2): 223-230.
赵林, 刘广岳, 焦克勤, 等. 1991—2008 年天山乌鲁木齐河源区多年冻土的变化 [J]. 冰川冻土, 2010, 32(2): 223-230.
134 Xie Zichu, Wang Xin, Kang Ersi, et al. Glacial runoff in China: An evaluation and orediction for the future 50 years [J]. Journal of Glaciology and Geocryology, 2006, 28(4): 457-466.
谢自楚, 王欣, 康尔泗, 等. 中国冰川径流的评估及其未来50a变化趋势预测[J]. 冰川冻土, 2006, 28(4): 457-466.
135 Shi Yafeng. Glacier and Envrionment in China [M]. Beijing: Science Press, 2000.
施雅风. 中国冰川与环境 [M]. 北京: 科学出版社, 2000.
136 Gao X, Ye B, Zhang S, et al. Glacier runoff variation and its influence on river runoff during 1961-2006 in the Tarim River Basin, China [J]. Science in China (Series D), 2010, 53: 880-891.
137 Chen Rensheng, Zhang Shiqiang, Yang Yong, et al. The Impacts of Cryospheric Changes on Runoff in Cold Regions of Western China [M]. Beijing: Science Press, 2019.
陈仁升, 张世强, 阳勇, 等. 冰冻圈变化对中国西部寒区径流的影响 [M]. 北京: 科学出版社, 2019.
138 Gao Xin, Zhang Shiqiang, Ye Baisheng, et al. Recent changes of glacier runoff in the Hexi Inland riber basin [J]. Advances in Water Science, 2011, 22(31): 344-350.
高鑫, 张世强, 叶柏生, 等. 河西内陆河流域冰川融水近期变化 [J]. 水科学进展, 2011, 22(31): 344-350.
139 Hock R, Rasul R, Adler C, et al. High mountain areas[R]// P?rtner H O, Roberts D C, Masson-Delmotte V, et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. 2019.
[1] 原世伟, 李新, 杜二虎. 多主体建模在水资源管理中的应用:进展与展望[J]. 地球科学进展, 2021, 36(9): 899-910.
[2] 陈良侃, 陈少辉. “一带一路”沿线国家农作物虚拟水贸易时空格局及驱动因素分析[J]. 地球科学进展, 2021, 36(4): 399-412.
[3] 陈仁升, 沈永平, 毛炜峄, 张世强, 吕海深, 刘永强, 刘章文, 房世峰, 张伟, 陈春艳, 韩春坛, 刘俊峰, 赵求东, 郝晓华, 李如琦, 秦艳, 黄维东, 赵成先, 王书峰. 西北干旱区融雪洪水灾害预报预警技术:进展与展望[J]. 地球科学进展, 2021, 36(3): 233-244.
[4] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[5] 李侠祥, 刘昌新, 王芳, 郝志新. 中国投资对“一带一路”地区经济增长和碳排放强度的影响[J]. 地球科学进展, 2020, 35(6): 618-631.
[6] 邓伟, 赵伟, 刘斌涛, 南希, 孔博. 基于“一带一路”的南亚水安全与对策[J]. 地球科学进展, 2018, 33(7): 687-701.
[7] 王金平, 曲建升, 马金珠. 基于文献计量的国际虚拟水研究发展态势分析[J]. 地球科学进展, 2018, 33(6): 653-663.
[8] 杨建平, 丁永建, 方一平, 秦大河. 冰冻圈及其变化的脆弱性与适应研究体系[J]. 地球科学进展, 2015, 30(5): 517-529.
[9] 邓铭江, 石泉. 内陆干旱区水资源管理调控模式[J]. 地球科学进展, 2014, 29(9): 1046-1054.
[10] 熊永兰, 张志强, 刘志辉, 程国栋. 基于科学知识图谱的水文化变迁研究方法探析[J]. 地球科学进展, 2014, 29(1): 92-103.
[11] 任庆福, 杨志勇, 李传哲, 张天雪. 变化环境下作物蒸散研究进展[J]. 地球科学进展, 2013, 28(11): 1227-1238.
[12] 丁永建,效存德,. 冰冻圈变化及其影响研究的主要科学问题概论[J]. 地球科学进展, 2013, 28(10): 1067-1076.
[13] 贺缠生. 流域科学与水资源管理[J]. 地球科学进展, 2012, 27(7): 705-711.
[14] 夏军,邱冰,潘兴瑶,翁建武,傅国斌,欧阳如林. 气候变化影响下水资源脆弱性评估方法及其应用[J]. 地球科学进展, 2012, 27(4): 443-451.
[15] 夏军, 翟金良, 占车生. 我国水资源研究与发展的若干思考[J]. 地球科学进展, 2011, 26(9): 905-915.
阅读次数
全文


摘要