地球科学进展 ›› 2019, Vol. 34 ›› Issue (5): 552 -560. doi: 10.11867/j.issn.1001-8166.2019.05.0552

新学科 新技术 新发现 上一篇    

Argus系统在我国海滩研究中的应用进展与展望
时连强 1( ),郭俊丽 1, 2,刘海江 3,叶清华 4   
  1. 1. 自然资源部第二海洋研究所 国家海岛开发与管理研究中心,浙江 杭州 310012
    2. 华东师范大学 河口海岸学国家重点实验室,上海 200241
    3. 浙江大学 建筑工程学院,浙江 杭州 310058
    4. 荷兰三角洲研究院,荷兰 代尔夫特 2614HV
  • 收稿日期:2018-12-20 修回日期:2019-03-12 出版日期:2019-05-10
  • 基金资助:
    海洋公益性行业科研专项“海岛旅游海滩管理技术研究与应用示范”(编号:201405037)

Application Progress and Prospect of Argus System in Beach Research in China

Lianqiang Shi 1( ),Junli Guo 1, 2,Haijiang Liu 3,Qinghua Ye 4   

  1. 1. Second Institute of Oceanography, Ministry of Natural Resources, State Research Centre for Island Exploitation and Management,Hangzhou 310012, China
    2. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
    3. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
    4. Deltares, Delft, 2614HV, the Netherlands
  • Received:2018-12-20 Revised:2019-03-12 Online:2019-05-10 Published:2019-07-04
  • About author:Shi Lianqiang (1977-), male, Qingzhou City, Shandong Province, Professorate Senior Engineer. Research areas include estuarine and coastal geomorphology. E-mail: lqshi@sio.org.cn
  • Supported by:
    Project supported by the Public Science and Technology Research Funds Projects of Ocean “Research and application on management technology of island tourism beach”(No. 201405037)

对海滩系统演变规律的准确把握,依赖于可靠、连续、长期的测量数据。由于Argus视频监测系统具有实时、低成本、操作简单、适应性强、分辨率较高和可提供连续数据等优点,因此,近年来该技术发展迅速,研究应用领域逐渐扩大。在简要说明Argus系统组成的基础上,详细介绍了该系统在我国海滩研究中的应用情况,分析了所提取数据的精度。结果显示垂向误差平均值为0.145 m,平面距离误差平均值为11.73 m,误差大小与到Argus观测站的距离有很大关系,距离越近,误差越小。Argus系统在国外海滩研究中已经获得了比较广泛的应用,而国内尚处于起步阶段,未来有望在海岸工程建设评估、近岸水动力监测与地形反演、海滩旅游管理与河口沙嘴动力地貌变化研究等方面提供更强大和完善的技术支撑。

Reliable, continuous and long-term data is needed in order to understand precisely the evolution of a beach system. Because of the advantages of real-time, low cost, simple operation, strong adaptability, high resolution and continuous data, Argus video monitoring system has developed rapidly in recent years, and its research and application fields have gradually expanded. Composition of the Argus system was briefly introduced, and the application of this system in beach research in China was described, and the accuracy of the extracted data was analysed. It was shown that the average vertical and plane distance error is 0.145 m and 11.73 m respectively, which depends on the distance from Argus observatory. Argus system has been widely used in beach research abroad, but it is still in the early stage in China. In the future, it is expected to provide more powerful and perfect technical support in coastal engineering construction evaluation, coastal hydrodynamic monitoring and bathymetry inversion, beach tourism management and research on morphodynamic evolution of estuary sand spits.

中图分类号: 

图1 Argus系统组成
Fig.1 Composition of Argus system
图2 坐标转换原理示意图[ 4 ]
Fig.2 Schematic diagram of coordinate conversion principle [ 4 ]
图3 IBM模块工作界面
Fig.3 Working interface of IBM module
图4 HSV色彩空间[ 6 ]
Fig.4 HSV color space [ 6 ]
图5 安装在浙江朱家尖岛东沙海滩的Argus系统
Fig.5 Argus system situated at the Dongsha Beach on Zhujiajian Island in Zhejiang Province
图6 东沙海滩中部区域夏季(a)和冬季(b)的地形地貌
Fig. 6 Topographic features of the central area of Dongsha Beach in summer (a) and winter (b)
图7 2016917日滩面地形图
Fig.7 Topographic map of Dongsha beach on September 17, 2016
图8 滩面误差控制点分布图
Fig.8 Distribution charts of error ground control points
图9 各摄像头垂向误差验证
Fig.9 Verification of vertical errors of each camera
图10 平面距离误差验证
Fig.10 Verification of plane distance error
1 Yu Jitao , Chen Zishen . Study progress of sandy coastal erosion [J]. Tropical Geography, 2009, 29 (2): 112-118.
于吉涛,陈子燊 . 砂质海岸侵蚀研究进展[J]. 热带地理,2009,29(2): 112-118.
2 Liu Haijiang , Shi Lianqiang . Nearshore real-time in situ video monitoring technique—The ARGUS system [J]. The Ocean Engineering, 2016,34 (2): 80-87.
刘海江,时连强 . 海岸带实时实地视频观测ARGUS技术[J]. 海洋工程,2016,34(2): 80-87.
3 Zhang Suoping , Zhang Chuntian . An introduction to nearshore video image observation [J]. The Ocean Technology, 2006,25(1): 11-19.
张锁平,张春田 .近海视频测量与应用[J]. 海洋技术,2006,25(1): 11-19.
4 Aarninkhof S G J . Nearshore Bathymetry Derived from Video Imagery [M]. Delft: Delft University Press, 2003.
5 Holland K T , Holman R A . Video estimation of foreshore topography using trinocular stereo[J]. Journal of Coastal Research, 1997, 13(1): 81-87.
6 Lippmann T C , Holman R A . Quantification of sand bar morphology: A video technique based on wave dissipation [J]. Journal of Geophysical Research, 1989, 94(C1): 995-1 011.
7 Li Yuan . Preliminary Application of Argus in the Topography Evolution of Dongsha Beach [D]. Hangzhou: Second Institute of Oceanography, State Oceanic Administration, 2017.
李源 . Argus在东沙海滩地形地貌演变中的初步应用[D].杭州:国家海洋局第二海洋研究所, 2017.
8 Guo Junli . Beach Response to Continuous Storms Using Argus Monitoring Data: A Case Study of Dongsha Beach in Zhoushan [D]. Nanjing: Nanjing University, 2018.
郭俊丽 . 基于Argus监测数据的海滩对连续风暴的响应——以舟山东沙海滩为例[D].南京:南京大学, 2018.
9 Elko N A , Holman R A , Gelfenbaum G . Quantifying the rapid erosion of a nourishment project with video imagery [J]. Journal of Coastal Research, 2005, 214(4): 633-645.
10 Siegle E , Huntley D A , Davidson M A . Coupling video imaging and numerical modelling for the study of inlet morphodynamics [J]. Marine Geology, 2007, 236(3): 143-163.
11 Ruggiero P , List J H . Improving accuracy and statistical reliability of shoreline position and change rate estimates [J]. Journal of Coastal Research, 2009, 25(5):1 069-1 081.
12 Alegria A R D , Masselink G . Storm response and beach rotation on a gravel beach, Slapton Sands, UK[J]. Marine Geology, 2010, 278(1/4): 77-99.
13 Archetti R , Paci A , Carniel S , et al . Optimal index related to the shoreline dynamics during a storm: The case of Jesolo beach [J]. Natural Hazards and Earth System Sciences, 2015, 3(11):7 089-7 134.
14 Grunnet N M , Ruessink B G . Morphodynamic response of nearshore bars to a shoreface nourishment [J]. Coastal Engineering,2005,52(2):119-137.
15 Castelle B , Turner I L , Bertin X , et al . Beach nourishments at Coolangatta Bay over the period 1987-2005: Impacts and lessons [J]. Coastal Engineering, 2009, 56(9): 940-950.
16 Ruessink B G , Van der Grinten R M , Vonh?gen-Peeters L , et al . Nearshore evolution at Noordwijk (NL) in response to nourishments, as inferred from Argus video imagery[C] //Kranenburg W M , Horstman E M , Wijnberg K M ,eds . Crossing Borders in Coastal Research, Jubilee Conference Proceedings, 20th NCK-days. Enschede, 2012.
17 Archetti R , Gaeta M G . Wave run-up observation and 2DV numerical investigation on beaches protected by structures [C]//Coastal Engineering Proceedings. Santander, Spain, 2012.
18 Sancho-García A , Guillén J , Ojeda E . Storm-induced readjustment of an embayed beach after modification by protection works [J]. Geo-Marine Letters, 2013, 33(2/3): 159-172.
19 Stockdon H F , Holman R A . Estimation of wave phase speed and nearshore bathymetry from video imagery [J]. Journal of Geophysical Research, 2000, 105(C9): 22 015-22 033.
20 Chickadel C C . Remote Measurements of Waves and Currents Over Complex Bathymetry [D]. Oregon:Oregon State University, 2007.
21 Poate T , Russell P . Response of high-energy, macrotidal beaches to seasonal changes in wave conditions: Examples from North Cornwall, UK [J]. Journal of Coastal Research, 2009, 25(1):747-751.
22 Bergsma E W J , Conley D C , Davidson M A , et al . Video-based nearshore bathymetry estimation in macro-tidal environments [J]. Marine Geology, 2016, 374: 31-41.
23 Van Enckevort I M J . Daily to Yearly Nearshore Bar Behaviour [D]. Netherlands: Utrecht University, 2001.
24 Armaroli C , Ciavola P . Dynamics of a nearshore bar system in the northern Adriatic: A video-based morphological classification [J]. Geomorphology, 2011, 126(1/2): 201-216.
25 Masselink G , van Heteren S . Response of wave-dominated and mixed-energy barriers to storms [J]. Marine Geology, 2014, 352: 321-347.
26 Austin M , Scott T , Brown J , et al . Temporal observations of rip current circulation on a macro-tidal beach [J]. Continental Shelf Research, 2010, 30(9): 1 149-1 165.
27 Prodger S . Argus Observations of Rip Current Variability Along a Macro-tidal Beach [D]. England: Plymouth University, 2012.
28 Scott T , Masselink G , Austin M J , et al . Controls on macrotidal rip current circulation and hazard [J]. Geomorphology, 2014, 214: 198-215.
29 Scott T , Austin M , Masselink G , et al . Dynamics of rip currents associated with groynes—Field measurements, modelling and implications for beach safety [J]. Coastal Engineering, 2016, 107: 53-69.
30 Osorio A . Technical Development and Methodologies Based on Video Systems for the Management of the Coast [D]. Spain:University of Cantabria, 2005.
31 Jiménez J A , Osorio A , Marino-Tapia I , et al . Beach recreation planning using video-derived coastal state indicators[J]. Coastal Engineering, 2007, 54(6/7): 507-521.
32 Guillén J , García-Olivares A , Ojeda E , et al . Long-term quantification of beach users using video monitoring [J]. Journal of Coastal Research, 2008, 24(6):1 612-1 619.
33 Balouin Y , Rey-Valette H , Picand P . Automatic assessment and analysis of beach attendance using video images at the lido of Sète Beach, France[J]. Ocean & Coastal Management, 2014, 102: 114-122.
34 Medellín G , Medina R , Falqués A , et al . Coastline sand waves on a low-energy beach at “EI Puntal” spit, Spain [J]. Marine Geology, 2008, 250(3/4):143-156.
35 Liu H ,Tajimay, Sato S . Long-term monitoring on the sand spit morphodynamics at the Tenryu River Mouth [C]//Proceedings of 32nd Conference on Coastal Engineering. Shanghai, China, 2010.
[1] 李建国, 王文超, 濮励杰, 刘丽丽, 张忠启, 李强. 滩涂围垦对盐沼湿地碳收支的影响研究进展[J]. 地球科学进展, 2017, 32(6): 599-614.
[2] 许 妍, 曹 可, 李 冕, 许自舟. 海岸带生态风险评价研究进展[J]. 地球科学进展, 2016, 31(2): 137-146.
[3] 张华, 韩广轩, 王德, 薛钦昭, 骆永明. 基于生态工程的海岸带全球变化适应性防护策略[J]. 地球科学进展, 2015, 30(9): 996-1005.
阅读次数
全文


摘要