地球科学进展 ›› 2019, Vol. 34 ›› Issue (5): 540 -551. doi: 10.11867/j.issn.1001-8166.2019.05.0540

全球变化研究 上一篇    下一篇

东亚地区 MIS 5时期孢粉记录的植被与气候研究进展
雒聪文( ),马玉贞( ),王凯,李丹丹   
  1. 地表过程与资源生态国家重点实验室,北京师范大学地理科学学部,北京100875
  • 收稿日期:2019-02-20 修回日期:2019-04-10 出版日期:2019-05-10
  • 通讯作者: 马玉贞 E-mail:lcw@mail.bnu.edu.cn;mayzh@bnu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“毛乌素沙漠晚第四纪的高分辨率孢粉记录与环境变化研究”(编号:41571186);国家自然科学基金重点项目“毛乌素沙漠古河流湖泊的消退和风沙地貌演化过程研究”(编号:41330748)

Vegetation and Climate Inferred from Pollen Record in East Asian Region During MIS 5: A Review

Congwen Luo( ),Yuzhen Ma( ),Kai Wang,Dandan Li   

  1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
  • Received:2019-02-20 Revised:2019-04-10 Online:2019-05-10 Published:2019-07-04
  • Contact: Yuzhen Ma E-mail:lcw@mail.bnu.edu.cn;mayzh@bnu.edu.cn
  • About author:Luo Congwen (1994-), female, Lanzhou City, Gansu Province, Master student. Research areas include quaternary environmental change. E-mail: lcw@mail.bnu.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Late Quaternary environmental change inferred from a high-resolution pollen record in the Mu Us Desert, China” (No.41571186) and “Research on extinction of rivers and lakes and aeolian landform evolution in Mu Us Desert since the Late Quaternary”(No.41330748)

末次间冰期(深海氧同位素5阶段,MIS 5,71~128 ka BP)离现代间冰期最近,对其认识有助于预测未来环境,而化石孢粉是恢复古植被与古气候的重要指标。通过对选择出的东亚地区孢粉记录的具有年代数据和孢粉图谱的古植被和气候研究的综合分析,初步认为: MIS 5的植被格局可与现代间冰期即全新世的植被格局对比。 各区孢粉记录了MIS 5气候波动,部分地区可划分出5a,5b,5c,5d和5e,存在轨道尺度变化,千年尺度事件较少发现。 东亚季风是影响现代东亚季风区环境的主要因素,但日本可能还受到西风环流和洋流的影响;西风、印度季风和地形是影响青藏高原环境的主要因素。 东亚地区,特别是干旱半干旱区,分辨率较高的孢粉记录的环境变化仍需更深入的研究。

The last interglacial, Marine Isotope Stage 5 (MIS 5, about 71~128 ka BP), is the closest to modern interglacial period, in which there are identifiable patterns that could give us clues into what will happen in the future. Pollen analysis, the study of fossil pollen and spores, is one of the key methods for the reconstruction of past vegetation and environment. Pollen data from 23 sites in eastern Asian region were reviewed to document regional patterns of vegetation and climate change during MIS 5 and to understand the large-scale controls on these changes. The regional patterns of vegetation during MIS 5 can be compared with the present-day vegetation. The climate, inferred from pollen record, was not stable during MIS 5. The substages (5a, 5b, 5c, 5d and 5e) of MIS 5 can be identi?ed by pollen assemblages in some areas, which describe the imprint of orbital-scale climate oscillations. East Asian monsoons have significantly contributed to the environment of modern eastern Asian monsoon region during MIS 5. However, the climate in Japan is also affected by the ocean currents and westerly circulation. The climate of the Tibetan Plateau is controlled by interactions of competing factors, including Indian monsoons, westerlies, and topography. In eastern Asian region, particularly in arid and semi-arid regions, the high-resolution pollen records need to be further studied for the better understanding of the climate change.

中图分类号: 

图1 东亚地区MIS 5时期选择的孢粉记录研究点位置图(具体信息和参考文献见表1
Fig.1 Map showing the locations of examined fossil pollen sites in East Asian region during MIS 5 (see Table 1 for site information and references)
表1 选取出的东亚地区孢粉记录的 MIS 5环境研究点
Table 1 List of fossil pollen sites from the East Asian region used in this review
编号 研究点 经纬度 时间 /ka BP 测年材料 测年方法 参考文献
1 KY01 35.11°N, 135.59°E 130~71 火山灰 火山灰年代学 [ 19 ]
2 BT Core 35.25°N, 136.05°E 130~65 火山灰 火山灰年代学+深海氧同位素曲线对比 [ 20 ]
3 KL Site 35.52°N, 135.88°E 120~70 火山灰 火山灰年代学 [ 21 ]
4 V28-304 28.53°N, 134.13°E 128~71 底栖有孔虫 氧同位素年代学 [ 22 , 23 ]
5 MD01-2421 36.02°N, 141.78°E 130~74 火山灰+底栖有孔虫 火山灰年代学+深海氧同位素曲线对比 [ 24 ]
6 RC14-99 36.97°N, 147.93°E 128~71 放射虫 氧同位素年代学 [ 22 , 23 ]
7 C9001C 41.18°N, 142.20°E 130~70 底栖有孔虫 氧同位素年代学 [ 25 ]
8 ODP1144 20.05°N, 117.42°E 125~79 钙质超微化石+浮游有孔虫 氧同位素年代学 [ 26 ]
9 MD982194 28.12°N, 127.37°E 128~74 浮游有孔虫 氧同位素年代学 [ 27 ]
10 DLC70-3 36.64°N, 123.55°E 134~80 石英颗粒 光释光(OSL)测年 [ 28 ]
11 DJH-2 31.49°N,109.99°E 129~72 不明确 氨基酸外消旋法 [ 29 ]
12 北窑剖面 34.71°N, 112.48°E 122~96 不明确 OSL测年+深海氧同位素曲线 [ 30 ]
13 洛川剖面 35.70°N, 109.42°E 129~79 不明确 磁化率+深海氧同位素曲线对比 [ 31 ]
14 HZ-S 36.61°N, 114.51°E 130~75 不明确 热释光(TL)测年 [ 32 ]
15 唐山钻孔 39.61°N, 118.20°E 136~59 不明确 TL测年 [ 33 ]
16 北京西山剖面 39.97°N, 115.67°E 129.3~78.5 石英颗粒 TL测年 [ 3 ]
17 侯家窑剖面 40.10°N, 113.98°E 160~85 不明确 OSL测年 [ 4 ]
18 HQ 26.27°N, 100.18°E 130~73 不明确 湖泊沉积固结年代模式推算 [ 34 ]
19 RM 33.95°N, 102.35°E 134~71 不明确 与古里雅,GISP2冰芯曲线对比 [ 2 ]
20 佩枯错盆地 28.78°N, 85.58°E 127~72 不明确 电子自旋共振(ESR) [ 35 ]
21 ZK06 38.33°N, 91.50°E 127~76 不明确 对比ZK02的铀系测年 [ 36 ]
22 酒房台剖面 37.77°N, 108.56°E 152~72 不明确 OSL测年+ ESR [ 37 ]
23 ZK1 39.10°N, 103.65°E 128~? 不明确 OSL测年 [ 38 ]
图2 东亚季风区MIS 5时期孢粉记录图
Fig.2 Summary pollen diagram from the East Asian monsoon region
图3 青藏高原区和干旱半干旱区MIS 5时期孢粉记录图
Fig.3 Summary pollen diagram from the Tibetan Plateau and arid and the arid semi-arid region
图4 东亚MIS 5时期孢粉记录的气候与其他资料对比图
Fig.7 Comparison of the climate history of MIS 5 in East Asian region with other records
1 Linsley B K . Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150, 000 years[J]. Nature, 1996, 380(6 571): 234-237.
2 Shen Caiming , Tang Lingyu , Wang Sumin , et al . Pollen records and time scale for the RM core of the Zoige Basin, northeastern Qinghai-Tibetan Plateau[J]. Chinese Science Bulletin, 2005, 50(6): 553-562.
3 Ge Yonggang , Wei Mingjian . Comparison of climate and environment change of the last interglacial period and Holocene in Beijing area, China[J]. International Journal of Geosciences, 2014, 5(8): 852-862.
4 Mu Huishuang , Xu Qinghai , Zhang Shengrui , et al . Pollen-based quantitative reconstruction of the paleoclimate during the formation process of Houjiayao Relic Site in Nihewan Basin of China[J]. Quaternary International, 2015, 374(3): 76-84.
5 Wang Zhaoduo , Huang Chunchang , Zhou Yali , et al . Characteristics of Holocene Loess-Palaeosol particle size composition and paleoclimatic significance in East Guanzhong,Shaanxi Province[J]. Advances in Earth Science, 2018, 33(3): 293-304.
王兆夺, 黄春长, 周亚利, 等 . 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
6 You Defang , Wang Rujian , Xiao Wenshen . Correlations between biogenic components and dust input and their change mechanism on Hess Rise, Central North Pacific, during the Late Quaternary[J]. Advances in Earth Science, 2018, 33(11): 1 203-1 214.
由德方, 王汝建, 肖文申 . 北太平洋中部赫斯海隆(Hess Rise)晚第四纪以来生源组分与粉尘输入的关系及其变化机制[J]. 地球科学进展, 2018, 33(11): 1 203-1 214.
7 Imbrie J , Hays J D , Martinson D G , et al . The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record[J]. Milankovitch and Climate, 1984, 126(1):269-305.
8 Hays J D , Imbrie J , Shackleton N J . Variations in the Earth's orbit: Pacemaker of the ice ages[J]. Science, 1976, 194(4 270): 1 121-1 132.
9 Kukla G J . Pleistocene land-sea correlations. I. Europe[J]. Earth Science Reviews, 1977, 13(4): 307-374.
10 Martinson D G , Pisias N G , Hays J D , et al . Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300, 000-year chronostratigraphy[J]. Quaternary Research, 1987, 27(1): 1-29.
11 Dansgaard W , Johnsen S J , Clausen H B , et al . Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6 434): 218-220.
12 Andersen K K , Azuma N , Barnola J M , et al . High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7 005): 147-151.
13 Lu Huayu , Vandenberghe J , Miao Xiaodong , et al . Evidence for an abrupt climatic reversal during the Last Interglacial on the northeast Qinghai-Tibetan Plateau[J]. Quaternary International, 2006, 154: 136-140.
14 Pei Qiaomin , Ma Yuzhen , Hu Caili , et al . Climatic character of Marine Isotope Stage (MIS) 5e in the representative regions of the world: A review[J]. Advances in Earth Science, 2016, 31(11): 1 182-1 196.
裴巧敏, 马玉贞, 胡彩莉, 等 .全球典型地区MIS 5e阶段气候特征研究进展[J]. 地球科学进展, 2016, 31(11): 1 182-1 196.
15 Johnsen S J , Clausen H B , Dansgaard W ,et al . The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability[J]. Journal of Geophysical Research Atmospheres, 1997, 1 022(C12):26 397-26 410.
16 An Zhisheng , Porter S C . Millennial-scale climatic oscillations during the last interglaciation in central China[J]. Geology, 1997, 25(7): 603-606.
17 Chen Fahu , Qiang Mingrui , Feng Zhaodong , et al . Stable East Asian monsoon climate during the Last Interglacial (Eemian) indicated by paleosol S1 in the western part of the Chinese Loess Plateau[J]. Global and Planetary Change, 2003, 36(3): 171-179.
18 Wang Yongjin , Cheng Hai , Edwards R L , et al . Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years[J]. Nature, 2008, 451(7 182): 1 090-1 093.
19 Hayashi R , Takahara H , Tanida K , et al . Vegetation response to East Asian monsoon fluctuations from the penultimate to last glacial period based on a terrestrial pollen record from the inland Kamiyoshi Basin, western Japan[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 284(3): 246-256.
20 Hayashi R , Takahara H , Inouchi Y , et al . Vegetation and endemic tree response to orbital-scale climate changes in the Japanese archipelago during the last glacial-interglacial cycle based on pollen records from Lake Biwa, western Japan[J]. Review of Palaeobotany and Palynology, 2017, 241: 85-97.
21 Takahara H , Kitagawa H . Vegetation and climate history since the last interglacial in Kurota Lowland, western Japan[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2000, 155(1): 123-134.
22 Heusser L E . Northeast Asian pollen records for the last 150, 000 years from deep-sea cores V28-304 and RC14-99 taken off the Pacific coast of Japan[J]. Review of Palaeobotany and Palynology, 1990, 65(1): 1-8.
23 Heusser L , Morley J . Monsoon fluctuations over the past 350 kyr: High-resolution evidence from Northeast Asia/Northwest Pacific climate proxies (marine pollen and radiolarians)[J]. Quaternary Science Reviews, 1997, 16(6): 565-581.
24 Igarashi Y , Oba T . Fluctuations in the East Asian monsoon over the last 144 ka in the northwest Pacific based on a high-resolution pollen analysis of IMAGES core MD01-2421[J]. Quaternary Science Reviews, 2006, 25:1 447-1 459.
25 Sugaya M , Okuda M , Okada M . Quantitative paleoclimate reconstruction based on a 130 ka pollen record from the C9001C core off NE Japan[J]. Quaternary International, 2016, 397: 404-416.
26 Sun Xiangjun , Luo Yunli . Pollen record of the last 280 ka from deep sea sediments of the Northern South China Sea[J]. Science in China (Series D), 2001, 44(10): 879-888.
27 Zheng Zhuo , Huang Kangyou , Deng Yun , et al . A~200 ka pollen record from Okinawa Trough: Paleoenvironment reconstruction of glacial-interglacial cycles[J]. Science in China (Series D), 2013, 56(10): 1 731-1 747.
28 Li Jie , Mei Xi , Li Rihui , et al . Environmental changes inferred from pollen records in the South Yellow Sea since late pleistocene[J]. Marine Geology & Quaternary Geology, 2014(4): 93-105.
李杰, 梅西, 李日辉, 等 . 南黄海晚更新世以来孢粉记录的古环境变化[J]. 海洋地质与第四纪地质, 2014(4): 93-105.
29 Zheng Qiufeng , Zhang Maoheng , Li Jijun , et al . The climate and environment change of Shennongjia area recorded in the core of Dajiuhu Basin since the late Middle Pleistocene[J]. Geographical Research, 2014, 33(6): 1 167-1 177.
郑秋凤, 张茂恒, 李吉均, 等 . 大九湖钻孔记录的神农架地区中更新世晚期以来的气候环境变化[J]. 地理研究, 2014, 33(6): 1 167-1 177.
30 Tang Zihua , Du Shusheng , Liu Fuliang . Late Pleistocene changes in vegetation and the associated human activity at Beiyao Site, Central China[J]. Review of Palaeobotany and Palynology, 2017, 244:107-112.
31 Cai Maotang , Wei Mingjian , Xu Dainan , et al . Vegetation and climate changes during three interglacial periods represented in the Luochuan loess-paleosol section, on the Chinese Loess Plateau[J]. Quaternary International, 2013, 296:131-140.
32 Xiao Jingyi , Chen Jianqiang , Xu Zheping ,et al . Characteristics of vegetation fluctuation as well as consequent impact on climate sicnce late Pleistocene in Handan area, Hebei[J]. Acta Sedimentologica Sinica, 2010, 28(6): 1 206-1 212.
肖景义, 陈建强, 许哲平, 等 . 邯郸地区晚更新世以来植被波动特征及其对气候变化的响应[J]. 沉积学报, 2010, 28(6): 1 206-1 212.
33 Li Yusong , Chen Jianqiang , Zhao Shuo , et al . Spore-pollen assemblages in Tangshan area since late pleistocene with a correlation to those in adjacent areas[J]. Acta Geoscientica Sinica, 2011, 32(2): 178-188.
李玉嵩, 陈建强, 赵硕, 等 . 唐山地区晚更新世以来的孢粉组合特征及其与邻区的对比[J]. 地球学报, 2011, 32(2): 178-188.
34 Yang Xiangdong , Wang Sumin , Tong Guobang , et al . The late Pleistocene pollen record in the lake sediments from ancient Heqing Lake and its significance for palaeoclimate[J]. Quaternary Sciences, 1998, 18(4): 335-343.
羊向东, 王苏民, 童国榜, 等 . 云南鹤庆古湖晚更新世的孢粉记录及其古气候学意义[J]. 第四纪研究, 1998, 18(4): 335-343.
35 Bian Yanming , Yu Jia , Shao Zhaogang , et al . Palynological assemblages in the Paiku Co Basin of Tibet since Late Pleistocene and their paleoclimatic significance[J]. Acta Geoscientica Sinica, 2013, (1): 87-94.
边彦明, 余佳, 邵兆刚, 等 . 西藏佩枯错盆地晚更新世以来的孢粉组合特征及其古气候意义[J]. 地球学报, 2013, (1): 87-94.
36 Yang Qinghua , Hou Xianhua , Yang Zhenjing , et al . Vegetation characteristics and environmental changes since the last interglacial period in Western Qaidam Basin[J]. Journal of Mountain Science, 2017, (5): 141-151.
杨庆华, 侯献华, 杨振京, 等 . 柴达木盆地西部末次间冰期以来植被特征及其环境变化[J]. 山地学报, 2017, (5): 141-151.
37 Yang Jinsong . Records on Paleoenvironment in the Downstream of Salawusu River Valley Since 150 ka BP[D]. Beijing: Chinese Academy of Geologecal Sciences, 2013.
杨劲松 . 萨拉乌苏河流域下游150 ka BP以来的古环境记录[D]. 北京:中国地质科学院, 2013.
38 Wang Liyuan , Xin Wei , Cheng Jie . Sporopollen assemblages and climate changes since the late quaternary at Qingtu Lake in northwestern margin of Tengger Desert [J]. Journal of Palaeogeography , 2014, 16(2): 239-248.
王丽媛, 辛蔚, 程捷 . 腾格里沙漠西北缘青土湖晚第四纪孢粉组合特征与环境变迁[J]. 古地理学报, 2014, 16(2): 239-248.
39 Zheng Zhuo , Lei Zuoqi . Paleoflora and paleoecology during the last 400,000 years in the volcanic terrace of the Leizhou Peninsula[J]. Sun Yatsen University Forum, 1992,(1): 147-160.
郑卓, 雷作淇 . 雷州半岛南部近40万年以来的古植被与古生态—田洋湖钻孔孢粉数值分析[J]. 中山大学学报论丛, 1992, (1): 147-160.
40 Wang Zhanghua , Zhao Baocheng , Chen Jing , et al . Chronostratigraphy and two transgressions during the Late Quaternary in Changjiang Delta area[J]. Journal of Palaeogeography, 2008, 10(1): 99-110.
王张华, 赵宝成, 陈静, 等 . 长江三角洲地区晚第四纪年代地层框架及两次海侵问题的初步探讨[J]. 古地理学报, 2008, 10(1): 99-110.
41 Cheng Hai , Edwards R L , Sinha A , et al . The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7 609): 640-646.
42 Chen Fahu , Wu Duo , Chen Jianhui , et al . Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies[J]. Quaternary Science Reviews, 2016, 154: 111-129.
43 Goldsmith Y , Broecker W S , Xu Hai , et al . Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales[J]. Proceedings of the National Academy of Sciences, 2017, 114(8): 1 817-1 821.
44 Liu Jianbao , Chen Shenqian , Chen Jianhui , et al . Chinese cave δ18O records do not represent northern East Asian summer monsoon rainfall[J]. Proceedings of the National Academy of Science, 2017, 114(15): 2 987-2 988.
45 Thompson L G , Yao Tandong , Davis M E , et al . Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan Ice Core[J]. Science, 1997, 276(5 320):1 821-1 825.
46 Berger A L . Long-term variations of caloric insolation resulting from the earth’s orbital elements[J]. Quaternary Research, 1978, 9(2):139-167.
47 Yao Tandong , Shilong Piao , Shen Miaogen , et al . Chained impacts on modern environment of interaction between westerlies and Indian Monsoon on Tibeta Plateau[J]. Bulletin of Chinese Academy of Sciences,2017, 32(9): 976-984.
姚檀栋, 朴世龙, 沈妙根, 等 . 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J]. 中国科学院院刊, 2017, 32(9):976-984.
[1] 裴巧敏, 马玉贞, 胡彩莉, 李丹丹, 郭超, 刘杰瑞. 全球典型地区MIS 5e阶段气候特征研究进展[J]. 地球科学进展, 2016, 31(11): 1182-1196.
[2] 马耀明, 胡泽勇, 田立德, 张凡, 段安民, 阳坤, 张镱锂, 杨永平. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215.
[3] 胡娅敏,丁一汇. 东亚地区区域气候模拟的研究进展[J]. 地球科学进展, 2006, 21(9): 956-964.
[4] 黄毅;毛节泰;王美华. 用GMS-5对东亚地区对流层高层水汽的研究[J]. 地球科学进展, 2004, 19(5): 754-760.
阅读次数
全文


摘要