地球科学进展 ›› 2019, Vol. 34 ›› Issue (2): 164 -174. doi: 10.11867/j.issn.1001-8166.2019.02.0164

上一篇    下一篇

月基 InSAR观测地球大尺度形变能力的初步研究
马成龙 1, 2,陈晓东 1, 2, *( ),江利明 1, 2,孙和平 1, 2,徐建桥 1,董景龙 1, 2,李德伟 1, 2   
  1. 1. 中国科学院测量与地球物理研究所 大地测量与地球动力学国家重点实验室,湖北 武汉 430077
    2. 中国科学院大学,北京 100049
  • 收稿日期:2018-09-11 修回日期:2018-12-02 出版日期:2019-02-10
  • 通讯作者: 陈晓东 E-mail:chenxd@whigg.ac.cn
  • 基金资助:
    国家自然科学基金重大项目“固体地球运动现象的月基观测机理与模型研究”(编号:41590854);国家自然科学基金面上项目“我国大陆连续重力台站背景噪声的综合研究”(编号:41574072)资助.

Preliminary Study of the Ability of Large-scale Deformation Observed by Lunar Based InSARTaking Vertical Displacement of Solid Earth Tide as an Example

Chenglong Ma 1, 2,Xiaodong Chen 1, 2, *( ),Liming Jiang 1, 2,Heping Sun 1, 2,Jianqiao Xu 1,Jinglong Dong 1, 2,Dewei Li 1, 2   

  1. 1. State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-09-11 Revised:2018-12-02 Online:2019-02-10 Published:2019-03-26
  • Contact: Xiaodong Chen E-mail:chenxd@whigg.ac.cn
  • About author:Ma Chenglong(1994-), male, Weihai City, Shandong Province, Master student. Research areas include modeling and application of solid Earth tide. E-mail:machenglong16@mails.ucas.edu.cn|Chen Xiaodong(1975-), male, Yinan County, Shandong Province, Associate professor. Research areas include research and application of solid Earth tide. E-mail: chenxd@whigg.ac.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Lunar-based observation of macro-scale dynamics of the solid Earth: Mechanisms and modes” (No. 41590854) and “Comprehensive study of the background noise for contiuous gravity observing stations in the China mainland”(No. 41574072);Project supported by the National Natural Science Foundation of China “Lunar-based observation of macro-scale dynamics of the solid Earth: Mechanisms and modes” (No. 41590854) and “Comprehensive study of the background noise for contiuous gravity observing stations in the China mainland” (No. 41574072).

从合成孔径雷达干涉测量的原理出发,针对月基InSAR观测地球宏观物理现象的大尺度、连续性、长期性、动态观测等特点,首次以固体地球垂向潮汐形变为例对月基InSAR观测地球大尺度形变现象进行了仿真模拟,分析了该技术的远程大范围观测能力。根据固体地球垂向潮汐形变的大尺度分布特征和月基雷达的超大幅宽的观测特点,采用简化月基雷达观测几何模型,选定经纬跨度均为50°的中低纬区域为模拟测区,并计算了月基雷达重访周期与雷达波束扫过选定模拟测区内各点时的垂向潮汐形变,将形变计算结果进行时间差分,得到差分相对垂向潮汐形变,即是月基InSAR可观测到的垂向潮汐形变。模拟数值结果表明,月基雷达的重访周期约为24.8 h,在30天内各点的差分垂向潮汐形变可达30 cm。鉴于目前月基InSAR的理论形变观测精度达到厘米级,因此理论上用月基InSAR技术能够观测到模拟测区固体地球大范围垂向潮汐整体形变,也能利用观测数据研究地球潮汐大范围时间和空间变化特征;另一方面模拟结果也可为月基SAR观测其他地球宏观物理现象的参数设计与模拟提供参考。

Based on the principle of InSAR (Interferometirc Synthetic Aperture Radar) characterized by large-scale, continuity, permanency and dynamic, we took vertical displacement of solid Earth tide as an example to simulate the large-scale deformation observed by lunar based InSAR for the first time in the study and the observation ability was analyzed. Solid Earth tide has a feature of a large-space distribution range and the lunar based InSAR exhibits a feature of an ultra-wide swath imaging. According to these features, a simplified observation geometry model was established and a mid-low latitudes area with 50 degrees span in both longitude and latitude was selected as the simulation area. Then the revisit time intervals of the lunar based SAR for the selected area and the tidal vertical displacements at the points scanned by the radar were calculated. The time differentials were further computed to get the relative vertical deformation of the solid Earth tide. The simulation results show that the revisit period of the lunar based radar is about 24.8 hours and the maximum vertical displacement in 30 days is up to 30 cm. Since the designed accuracy of the lunar based InSAR reaches several centimeters, the observing of the vertical displacement of the solid Earth tide by using the lunar based InSAR is feasible in theory as the maximum magnitude of the vertical displacement is 1 order of magnitude larger than the designed accuracy. Theoretically ,solid Earth tide is observable by using lunar based InSAR in a sizable area.We can also use the observation data to study the temporal and spatial variation characteristics when observation time lasts two revisit periods or more. On the other hand,the result of the study also provides references for the parameter designing of other observations using the lunar based InSAR, especially for observing large-scale geodynamic phenomena.

中图分类号: 

图1 地球与月球位置关系示意图
Fig.1 Positions of the Earth and the Moon
图2 固定点(30°N114°E201711~3日垂向潮汐形变模拟值
Fig.2 The simulation values of the vertical solid Earth tide displacement at the point (30°N114°E) from January 1 to 3, 2017
图3 固定时间20171116:01全球固体潮汐垂向形变
Fig.3 The global vertical displacement of solid Earth tide at 16:01 on January 1,2017
图4 InSAR形变观测基本原理示意图
Fig.4 The principle of InSAR deformation observation
图5 月球星下点10年内重访114°E经线的时间间隔计算
Fig.5 The revisit period of the sublunar point on 114°E in ten years
图6 2次模拟观测时114°E经线上各点垂向潮汐形变
Fig.6 The vertical tidal displacement of 114°E in two simulated observations
图7 20171月月球星下点重访114°E经线时刻
Fig.7 The revisit time of the sublunar point on 114°E at January 2017
图8 11日(a)、112日(b)、122日(c)及130日(d)垂向潮汐形变
Fig.8 Vertical tidal displacement on January 1 (a),January 12 (b),January 22 (c) and January 30 (d)
图9 13日(a)、12日(b)、22日(c)及30日(d)潮汐相对垂向形变
Fig.9 The relative deformation on January 3 (a), January 12 (b), January 22 (c) and January 30 (d)
1 GuoHuadong. Earth system observation from space: From scientific satellite to Moon-based platform [J]. Journal of Remote Sensing, 2016, 20(5):716-723.
郭华东. 地球系统空间观测:从科学卫星到月基平台[J]. 遥感学报, 2016, 20(5):716-723.
2 WangCongqiang, YangTaibao, XuAiwen, et al. Remote sensing monitoring of glacier changes in the western region of Tanggula Mountains in recent 25 years[J]. Advances in Earth Science,2017,32(1) : 101-109.
王聪强, 杨太保, 许艾文, 等. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1):101-109.
3 XuHouze. Solid Earth Tide[M]. Wuhan: Hubei Science and Technology Press, 2010.
许厚泽. 固体地球潮汐[M]. 武汉:湖北科学技术出版社, 2010.
4 DehantV, DefraigneP, WahrJ M. Tides for a convective Earth[J]. Journal of Geophysical Research Solid Earth, 1999, 104(B1):1 035-1 058.
5 MathewsP M. Love numbers and gravimetric factor for diurnaltides[J]. Geodetic Society of Japan, 2001, 47(1): 231-236.
6 SunHeping, XuJianqiao, DucarmeB. An experimental solid earth tide model considering the fluid outer core NDFW based on global superconducting gravimeter observation[J]. Chinese Science Bulletin, 2003, 48(6):610-614.
孙和平, 徐建桥, DucarmeB. 基于全球超导重力仪观测资料考虑液核近周日共振效应的固体潮实验模型[J].科学通报, 2003, 48(6):610-614.
7 McCarthyD D. IERS Technical Note No. 32:IERS Conventions (2003)[M]. Germany: International Earth Rotation and Reference Systems Service (IERS), 2004.
8 SunHeping, DucarmeB, XuHouze, et al. Study of well-posedness of sea tide and solid earth tide models based on global superconducting gravimeter observation[J]. Science in China(Series D), 2005, 35(7):649-657.
孙和平, DucarmeB, 许厚泽,等. 基于全球超导重力仪观测研究海潮和固体潮模型的适定性[J]. 中国科学:D辑, 2005, 35(7):649-657.
9 HaasR. Tidal effects and space geodetic techniques[J]. Journal of the Geodetic Society of Japan, 2001, 47(1):161-168.
10 GuoHuadong. Theory and Application of Earth Observation Via Radar[M]. Beijing:Science Press, 2000.
郭华东. 雷达对地观测理论与应用[M]. 北京:科学出版社, 2000.
11 TianXin, LiaoMingsheng. The analysis of conditions for InSAR in the field of deformation monitoring[J]. Chinese Journal of Geophysics, 2013, 56(3):812-823.
田馨, 廖明生. InSAR技术在监测形变中的干涉条件分析[J]. 地球物理学报, 2013, 56(3):812-823.
12 MassonnetD, RossiM, CarmonaC, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6 433):138-142.
13 RignotE, MouginotJ, ScheuchlB. Ice flow of the Antarctic ice sheet.[J]. Science, 2011, 333(6 048):1 427-1 430.
14 GuoHuadong, DingYixing, LiuGuang, et al. Study of the conception of moon based imaging radar for monitoring global changes[J]. Science in China (Series D), 2013,43(11): 1 760-1 769.
郭华东,丁翼星,刘广,等.面向全球变化探测的月基成像雷达概念研究[J]. 中国科学:D辑, 2013,43(11): 1 760-1 769.
15 FornaroG, FranceschettiG, LombardiniF, et al. Potentials and Limitations of Moon-Borne SAR Imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7):3 009-3 019.
16 MocciaA, RengaA. Synthetic aperture radar for earth observation from a lunar base: Performance and potential applications[J]. IEEE Transactions on Aerospace & Electronic Systems, 2010, 46(3):1 034-1 051.
17 ZebkerH A. Accuracy of topographic maps derived from ERS-1 interferometric radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4):823-836.
18 WangYongzhe. Coseismic Deformation Derivation and Source Parameters Inversion Based on InSAR[D]. Changsha:Central South University, 2012.
王永哲. 基于InSAR的地表同震形变获取及震源参数反演研究[D]. 长沙:中南大学, 2012.
19 MichelR, AvouacJ P, TabouryJ. Measuring ground displacements from SAR amplitude images: Application to the Landers Earthquake[J]. Geophysical Research Letters, 1999, 26(7):875-878.
20 TobitaM, MurakamiM, NakagawaH, et al. 3-D surface deformation of the 2000 Usu Eruption measured by matching of SAR images[J]. Geophysical Research Letters, 2001, 28(22):4 291-4 294.
21 FialkoY, SandwellD, AgnewD, et al. Deformation on nearby faults induced by the 1999 Hector Mine earthquake[J]. Science, 2002, 297(5 588):1 858-1 862.
22 BechorN B D, ZebkerH A. Measuring two‐dimensional movements using a single InSAR pair[J]. Geophysical Research Letters, 2006, 33(16):275-303.
23 WrightT J, ParsonsB E, LuZ. Toward mapping surface deformation in three dimensions using InSAR[J]. Geophysical Research Letters, 2004, 31(1):169-178.
24 YuChen, LiZ H, PennaN T, et al. Generic atmospheric correction model for Interferometric Synthetic Aperture Radar observations[J]. Journal of Geophysical Research: Solid Earth, 2018. DOI:10.1029/20117JB015305.
doi: 10.1029/20117JB015305.    
25 LiaoMingsheng, LinHui. Radar Interferometry—Principle and Basis of Signal Processing[M]. Beijing: Surveying and Mapping Press, 2003.
廖明生,林珲.雷达干涉测量——原理与信号处理基础[M]. 北京:测绘出版社, 2003.
[1] 李颖虹,王凡,任小波. 海洋观测能力建设的现状、趋势与对策思考[J]. 地球科学进展, 2010, 25(7): 715-722.
阅读次数
全文


摘要