地球科学进展 ›› 2017, Vol. 32 ›› Issue (12): 1297 -1306. doi: 10.11867/j.issn.1001-8166.2017.12.1297

所属专题: IODP研究 深海科学研究

大洋钻探科学目标展望 上一篇    下一篇

海底CORK观测30年:发展、应用与展望
方家松 1, 2( ), 李江燕 1, 张利 3, *( )   
  1. 1.上海海洋大学深渊科学与技术研究中心,上海 201306
    2.青岛海洋科学与技术国家实验室海洋生物学与生物技术功能实验室, 山东 青岛 266071
    3.中国地质大学(武汉)地球科学学院,地质过程与矿产资源国家重点实验室,湖北 武汉 430074
  • 收稿日期:2017-10-16 修回日期:2017-11-28 出版日期:2017-12-20
  • 通讯作者: 张利 E-mail:jsfang@shou.edu.cn;lizhang@cug.edu.cn
  • 基金资助:
    *国家自然科学基金重大研究计划项目“评价嗜高压细菌在南海深部碳循环中的作用”(编号:91328208);国家自然科学基金面上项目“深海和深部生物圈革兰氏阳性嗜高细菌在脂类化合物生物合成过程中的碳同位素分馏”(编号:41673085)资助.

Thirty Years of the Seafloor CORK Borehole Observatories: Development, Applications and Future Perspective

Jiasong Fang 1, 2( ), Jiangyan Li 1, Li Zhang 3, *( )   

  1. 1.Shanghai Hadal Science and Technology Engineering Research Center, Shanghai Ocean University,Shanghai 201306, China
    2.Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
    3.School of Earth Sciences, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan),Wuhan 430074,China
  • Received:2017-10-16 Revised:2017-11-28 Online:2017-12-20 Published:2018-03-06
  • Contact: Li Zhang E-mail:jsfang@shou.edu.cn;lizhang@cug.edu.cn
  • About author:

    First author:Fang Jiasong(1961-),male, Honghu City, Hubei Province, Professor. Research areas include marine microbiology and biogeochemistry.E-mail:jsfang@shou.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Assess the role of piezophilic bacteria in carbon cycle of the South China Sea”(No.91328208) and “Carbon isotope fractionation in biosynthesis of lipids by gram-positive piezophilic bacteria from the deep sea and the deep biosphere”(No.41673085).

过去50年深海钻探计划(DSDP)、大洋钻探计划(ODP)及综合大洋钻探计划(IODP)等国际间综合深海钻探计划的实施,使我们对地球和海洋的认识取得了显著进步。海底井控观测装置(CORK)的研发和应用是上述深海钻探计划带给我们的最宝贵财富之一。目前地球科学和海洋科学已由过去的间断性观测模式升级为现在的连续性原位观测模式,海底CORK观测系统为地球科学、海洋科学与生命科学领域的科学家对海底洋壳复杂而又相互关联的深部过程进行数秒至数十年时间尺度的研究提供了新手段和新机遇。通过对海底CORK观测系统的发展演变、在ODP和IODP航次中的使用以及在此过程中获得的科学经验和教训进行总结,对CORK系统如何应用于我国洋壳地质学、水文学、微生物学及生物地球化学过程研究提出看法。

In the past 50 years, we have witnessed remarkable progress in our understanding of the Earth and ocean system, as a result of the internationally integrated deep ocean drilling programs, the Deep Sea Drilling Program (DSDP), the Ocean Drilling Program (ODP), and the Integrated Ocean Drilling Program (IODP). One of the legacies of the deep ocean drilling programs is the development and applications of the CORK, Circulation Obviation Retrofit Kit. Earth and ocean sciences have been shifting from a traditional discontinuous, expeditionary mode toward a mode of sustained in situ observations today. The seafloor CORK observatories offer Earth, ocean and life scientists new opportunities to study multiple, interrelated deep marine subsurface processes, over time scales ranging from seconds to decades. Here, we first provided a concise examination of the development history of the CORKs, then described the first installations of ODP CORKs, the evolution of different models of CORK, and finally, summarized the scientific lessons learned in the installation and operation effort of the CORKs. In the end, we offered our perspectives on using CORKs to study geological, hydrogeological, microbiological, and biogeochemical processes in the deep marine subsurface biosphere, particularly pertaining to China’s efforts in establishing and enhancing its deep-sea and deep-biosphere research and monitoring programs.

中图分类号: 

图1 全球海底水文地质系统活动特征示意图(据参考文献[ 4 ]修改)
Fig.1 A scheme showing characteristic marine hydrogeologic systems that may occur throughout the global ocean(modified after reference[4])
图2 Carson B,Becker K和Davis E于1989年在餐巾纸上绘制的最早的海底井控观测装置概念示意图 [ 15 ]
Fig.2 The early conceptual sketch of the instrumented borehole seal, drawn on a dinner napkin by B. Carson, K. Becker, and E. Davis in 1989 [ 15 ]
图3 CORK观测系统工程示意图(据参考文献[ 15 ]修改)
(a)初始CORK;(b)改进型CORK;(c)CORK II;(d)有缆型CORK;(e)L-CORK
Fig.3 Engineering schematic of the CORKs (modified after reference[15])
(a) The original CORK; (b) ACORK; (c) CORK II; (d) Wireline CORK; (e) L-CORK
图4 IODP327航次在胡安·德富卡洋脊东侧进行的跨钻孔示踪实验(据参考文献[ 10 ]修改)
(a)CORK观测站位置及跨钻孔示踪实验的海底地形图:示踪剂溶液注入U1362B钻孔中,利用整合在CORK观测系统中的自动取样器在U1301A,U1301B,U1362A,1026B和U1362B钻孔中对示踪剂的到达进行观测,蓝色虚线箭头指示推断流体在基底流动的趋势方向;内插图中的蓝色方框指示了主图的分布区域;主图等高间隔为10 m,红色轮廓表示基底露头;(b) 有限时间内注入示踪剂导致羽流形成的示意图;(c) 所注入示踪剂的穿透曲线;(d) U1362B钻孔示踪剂注入几何简图
Fig.4 Cross-hole tracer experiment at the eastern flank of the Juan de Fuca Ridge during IODP Expedition 327 (modified after reference[10])
(a) Bathymetric map illustrating the locations of borehole observatories at the site. Tracer solution was injected in Hole U1362B. Tracer arrival was monitored with automated samplers integrated with CORK observatories in Holes U1301A, U1301B, U1362A, and 1026B and also in Hole U1362B. Blue dashed arrows indicates general direction of inferred fluid flow in basement. Blue rectangle in the insert shows the area of themain figure. Contour interval = 10 m, red contours = basement outcrops; (b) Tracer is injected for a finite time, leading to formation of a plume; (c) Breakthrough curves of the injected tracer; (d) Schematic illustration of tracer injection geometry in Hole U1362B
图5 位于洋壳流体流动区域观测站点的CORK布放位置分布图 [ 9 ]
JdF. 胡安·德富卡洋脊东侧(ODP168航次、IODP301和327航次); MV. Middle Valley(ODP139航次);Van和Or. Cascadia边缘(ODP146和IODP328航次);CR. 哥斯达黎加(ODP205航次);Bar. 巴巴多斯海岭(ODP156航次);NP. North Pond(ODP174B和IODP336航次);Nan.日本南海海槽(ODP196航次、IODP319和332航次);SCh.海山岛南部(ODP195航次)
Fig.5 Locations of CORK deployments, these observatories are located in regions where fluid flows through the oceanic crust [ 9 ]
JdF: Eastern flank of Juan de Fuca Ridge (Leg 168 and Expeditions 301 and 327); MV: Middle Valley (Leg 139); Van and Or: Cascadia margin (Leg 146 and Expedition 328); CR: Costa Rica (Leg 205); Bar: Barbados Ridge (Leg 156); NP: North Pond (Leg 174B and Expedition 336); Nan: Nankai Trough (Leg 196 and Expeditions 319 and 332); SCh: South Chamorro Seamount (Leg 195)
[1] Sclater J G, Jaupart C, Galson D.The heat flow through oceanic and continental crust and the heat loss of the Earth[J]. Reviews of Geophysics,1980, 18(1): 269-311.
doi: 10.1029/RG018i001p00269     URL    
[2] Paul J H, Pruis M J.Fluxes of fluid and heat from the oceanic crustal reservoir[J]. Earth and Planetary Science Letters, 2003, 216(4): 565-574.
doi: 10.1016/S0012-821X(03)00545-4     URL    
[3] Fang Jiasong, Zhang Li.Explore the deep biosphere[J]. Science in China (Series D),2011,54(2): 1-9.
[4] Ge Shemin, Bekins Barbara, Bredehoeft John, et al. Hydrogeology program planning group final report[J]. JOIDES Journal,2002, 28(2): 24-29.
URL    
[5] Wang Pinxian.Opening a time tunnel through the Earth system to understand its history[J]. Science in China (Series D),2009, 39(10): 1 313-1 338.
[汪品先. 穿凿地球系统的时间隧道[J]. 中国科学:D辑,2009,39(10):1 313-1 338.]
[6] Stein C A, Stein Seth.Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow[J]. Journal of Geophysical Research: Solid Earth,1994, 99(B2): 3 081-3 095.
doi: 10.1029/93JB02222     URL    
[7] Jannasch H W, Davis E E, Kastner M, et al. CORK-II: Long-term monitoring of fluid chemistry, fluxes, and hydrology in instrumented boreholes at the Costa Rica subduction zone[J]. Proceedings of the Ocean Drilling Program, Initial Reports,2003, 205: 1-36, doi: 10.2973/odp.proc.ir.205.102.2003.
URL    
[8] Jannasch H W, Geoff W C, Plant Josh N, et al. Continuous chemical monitoring with osmotically pumped water samplers: OsmoSampler design and applications[J]. Limnology and Oceanography Methods,2004, 2(2): 102-113.
doi: 10.4319/lom.2004.2.102     URL    
[9] Wheat C G, Jannasch H W, Kastner M, et al. Fluid sampling from oceanic borehole observatories: Design and methods for CORK activities (1990-2010)[C]∥Proceedings of the International Ocean Drilling Program, Expedition Reports 327. Washington DC: Integrated Ocean Drilling Program Management International, Inc., 2011.
[10] Fisher A T, Wheat C G, Becker K, et al. Design, deployment, and status of borehole observatory systems used for single-hole and cross-hole experiments, IODP Expedition 327, eastern flank of Juan de Fuca Ridge[J]. Proceedings of the Ocean Drilling Program,2011, 327, doi:10.2204/iodp.proc.327.107.2011.
doi: 10.2204/iodp.proc.327.107.2011     URL    
[11] National Academy of Sciences. Illuminating the Hidden Planet: The Future of Seafloor Observatory Science[M]. Washington DC: National Academy of Sciences Press, 2000.
[12] Becker K, Davis E, Fisher A, et al. ODP/IODP ‘CORK’ Long-term subseafloor hydrogeological observatories[C]∥Offshore Technology Conference. Houston, Texas, USA, 2006.
[13] Hyndman R D, Herzen R P V, Erickson A J, et al. Heat flow measurements in deep crustal holes on the mid-Atlantic ridge[J]. Journal of Geophysical Research Atmospheres, 1976, 81(23): 4 053-4 060.
doi: 10.1029/JB081i023p04053     URL    
[14] Becker K, Langseth M G, Herzen R P V, et al. Deep crustal geothermal measurements, hole 504B, Costa Rica Rift[J]. Journal of Geophysical Research Solid Earth, 1983, 88(B4): 3 447-3 457.
doi: 10.1029/JB088iB04p03447     URL    
[15] Becker K, Davis E E.A review of CORK designs and operations during the Ocean Drilling Program[J]. Proceedings of the Integrated Ocean Drilling Program, 2005, 301: 1-28.
doi: 10.2204/iodp.proc.301.104.2005     URL    
[16] Geoffrey W C, Jannasch H W, Fisher A T, et al. Subseafloor seawater-basalt-microbe reactions: Continuous sampling of borehole fluids in a ridge flank environment[J]. Geochemistry Geophysics Geosystems, 2010, 11(7): 307-309.
doi: 10.1029/2010GC003057     URL    
[17] Kopf A, Freudenthal T, Ratmeyer V, et al. Simple, affordable and sustainable borehole observatories for complex monitoring objectives[J]. Geoscientific Instrumentation Methods and Data Systems Discussions,2015, 4(2): 99-109.
doi: 10.5194/gi-4-99-2015     URL    
[18] Davis E E, Becker K, Pettigrew T, et al. CORK: A hydrologic seal and downhole observatory for deep-ocean boreholes[J]. Proceedings of the Ocean Drilling Program, Initial Reports,1992, 139: 43-53, doi: 10.2973/odp.proc.ir.139.103.1992.
doi: 10.2973/odp.proc.ir.139.103.1992     URL    
[19] Graber K K, Pollard E, Jonasson B, et al. Overview of Ocean Drilling Program engineering tools and hardware[J]. ODP Technical Note, 2002, 31, doi:10.2973/odp.tn.31.2002.
[20] Kastner M, Becker K, Davis E, et al. New insights into the hydrogeology of the oceanic crust through long-term monitoring[J]. Oceanography,2006, 19(4): 46-57.
doi: 10.5670/oceanog.2006.04     URL    
[21] Shipboard Scientific Party.Explanatory notes[J]. Proceedings of the Ocean Drilling Program, Initial Reports,2002, 196: 1-53, doi:10.2973/odp.proc.ir.196.102.2002.
[22] Becker K, Davis E E, Spiess F N, et al. Temperature and video logs from the upper oceanic crust, Holes 504B and 896A, Costa Rica Rift flank: Implications for the permeability of upper oceanic crust[J]. Earth and Planetary Science Letters,2004, 222(3/4): 881-896.
doi: 10.1016/j.epsl.2004.03.033     URL    
[23] Spiess F N, Boegeman D E, Lowenstein C E.First ocean-research-ship-supported fly-in re-entry to a deep ocean drill hole[J]. Marine Technology Society,1992, 26: 3-10.
URL    
[24] Davis Earl E, Becker Keir, Wang Kelin, et al. A discrete episode of seismic and aseismic deformation of the Nankai trough subduction zone accretionary prism and incoming Philippine Sea plate[J]. Earth and Planetary Science Letters,2006, 242(1): 73-84.
doi: 10.1016/j.epsl.2005.11.054     URL    
[25] Davis E E, Villinger H W.Transient formation fluid pressures and temperatures in the Costa Rica forearc prism and subducting oceanic basement: CORK monitoring at ODP Sites 1253 and 1255[J]. Earth and Planetary Science Letters,2006, 245(1): 232-244.
doi: 10.1016/j.epsl.2006.02.042     URL    
[26] Solomon E A, Kastner M, Wheat C G, et al. Long-term hydrogeochemical records in the oceanic basement and forearc prism at the Costa Rica subduction zone[J]. Earth and Planetary Science Letters,2009, 282(1/4): 240-251.
doi: 10.1016/j.epsl.2009.03.022     URL    
[27] Orcutt B N, Bach Wolfgang, Becker Keir, et al. Colonization of subsurface microbial observatories deployed in young ocean crust[J]. The ISME Journal,2011, 5:692-703, doi:10.1038/ismej.2010.157.
doi: 10.1038/ismej.2010.157     URL     pmid: 3217339
[28] Kopf A, Araki E, Toczko S.NanTroSEIZE Stage 2: Riserless observatory[J]. Proceedings of the Ocean Drilling Program, Initial Reports,2011,332, doi:10.2204/iodp.pr.332.2011.
[29] Fisher A T, Cowen J, Wheat C G, et al. Preparation and injection of fluid tracers during IODP Expedition 327, eastern flank of Juan de Fuca Ridge[J]. Proceedings of the Integrated Ocean Drilling Program,2011, 327, doi:10.2204/iodp.proc.327.108.2011.
doi: 10.2204/iodp.proc.327.108.2011     URL    
[30] Wang Kelin, Davis Earl E.Theory for the propagation of tidally induced pore pressure variations in layered subseafloor formations[J]. Journal of Geophysical Research,1996, 101(B5): 11 483-11 495, doi:10.1029/96JB00641.
doi: 10.1029/96JB00641     URL    
[31] Davis E E, Becker K.Using ODP boreholes for studying sub-seafloor hydrogeology: Results from the first decade of CORK observations[J]. Geoscience Canada, 2001, 28(4): 170-178.
doi: 10.1029/2001GL013359     URL    
[32] Brown K M, Tryon M D, Deshon H R, et al. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone[J]. Earth and Planetary Science Letters,2005, 238(1): 189-203.
doi: 10.1016/j.epsl.2005.06.055     URL    
[33] Orcutt B N, Larowe D E, Biddle J F, et al. Microbial activity in the marine deep biosphere: Progress and prospects[J]. Frontiers in Microbiology,2013, 4(189): 189.
doi: 10.3389/fmicb.2013.00189     URL     pmid: 3708129
[34] Becker N C, Geoffrey W C, Mottl M J, et al. A geological and geophysical investigation of Baby Bare, locus of a ridge flank hydrothermal system in the Cascadia Basin[J]. Journal of Geophysical Research Atmospheres, 2000, 105(B10): 23 557-23 568.
doi: 10.1029/2000JB900204     URL    
[35] Fisher A T, Davis E E, Becker K.Borehole-to-borehole hydrologic response across 2.4 km in the upper oceanic crust: Implications for crustal-scale properties[J]. Journal of Geophysical Research Solid Earth, 2008, 113(B7): 488-498.
doi: 10.1029/2007JB005447     URL    
[36] Elderfield H, Wheat C G, Mottl M J, et al. Fluid and geochemical transport through oceanic crust: A transect across the eastern flank of the Juan de Fuca Ridge[J]. Earth and Planetary Science Letters, 1999, 172(1/2): 151-165.
doi: 10.1016/S0012-821X(99)00191-0     URL    
[37] Walker B D, Mccarthy M D, Fisher A T, et al. Dissolved inorganic carbon isotopic composition of low-temperature axial and ridge-flank hydrothermal fluids of the Juan de Fuca Ridge[J]. Marine Chemistry, 2008, 108(1/2): 123-136.
doi: 10.1016/j.marchem.2007.11.002     URL    
[38] Neira N M, Clark J F, Fisher A T, et al. Cross-hole tracer experiment reveals rapid fluid flow and low effective porosity in the upper oceanic crust[J]. Earth and Planetary Science Letters, 2016, 450: 355-365,doi:10.1016/j.epsl.2016.06.048.
doi: 10.1016/j.epsl.2016.06.048     URL    
[39] Geoffry W C, Fisher Andrew T, McManus James, et al. Cool seafoor hydrothermal springs reveal global geochemical fluxes[J]. Earth and Planetary Science Letters, 2017, 476: 178-188,doi:10.1016/j.epsl.2017.07.049.
[40] Huber J, Johnson H, Butterfield D, et al. Microbial life in ridge flank crustal fluids[J]. Environmental Microbiology, 2006, 8(1): 88-99.
doi: 10.1111/j.1462-2920.2005.00872.x     URL     pmid: 16343325
[41] Hutnak M, Fisher A T, Zühlsdorff L, et al. Hydrothermal recharge and discharge guided by basement outcrops on 0.7~3.6 Ma seafloor east of the Juan de Fuca Ridge: Observations and numerical models[J]. Geochemistry Geophysics Geosystems, 2006, 7(7): 329-349.
[42] Jungbluth S P, Bowers R M, Lin H T, et al. Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt[J]. ISME Journal, 2016, 10(8): 2 033.
doi: 10.1038/ismej.2015.248     URL     pmid: 5029167
[43] Fichtel J, Köster J, Rullkötter J, et al. Spore dipicolinic acid contents used for estimating the number of endospores in sediments[J]. FEMS Microbiology Ecology, 2007, 61(3): 522-532.
doi: 10.1111/j.1574-6941.2007.00354.x     URL     pmid: 17623026
[44] Smith A, Popa R, Fisk M.et al. In situ enrichment of ocean crust microbes on igneous minerals and glasses using an osmotic flow-through device[J]. Geochemistry, Geophysics, Geosystems, 2011, 21(6), doi:10.1029/2010GC003424.
doi: 10.1029/2010GC003424     URL    
[45] Lomstein B A, Langerhuus A T, D’Hondt S, et al. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment[J]. Nature, 2012, 484(7 392): 101-104.
doi: 10.1038/nature10905     URL     pmid: 22425999
[46] Inagaki F, Hinrichs K U, Kubo Y, et al. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor[J]. Science,2015, 349(6 246): 420.
doi: 10.1126/science.aaa6882     URL     pmid: 26206933
[47] Amend J P, LaRowe D E. Ocean sediments—An enormous but underappreciated microbial habitat[J]. Microbe, 2016, 11(12): 427-432.
URL    
[48] Filippidou S, Wunderlin T, Junier T, et al. A combination of extreme environmental conditions favor the prevalence of endospore-forming firmicutes[J]. Frontiers in Microbiology, 2016, 7: 1 707, doi: 10.3389/fmicb.2016.01707.
doi: 10.3389/fmicb.2016.01707     URL     pmid: 5094177
[49] Fang Jiasong, Kato Chiaki, Runko G M, et al. Predominance of viable spore-forming piezophilic bacteria in high-pressure enrichment cultures from ~1.5 to 2.4 km-deep coal-bearing sediments below the ocean floor[J]. Frontiers in Microbiology, 2017, 8: 137.
doi: 10.3389/fmicb.2017.00137     URL     pmid: 28220112
[50] Davis E E, Becker K.Observations of natural-state fluid pressures and temperatures in young oceanic crust and inferences regarding hydrothermal circulation[J]. Earth and Planetary Science Letters, 2002, 204(1/2): 231-248.
doi: 10.1016/S0012-821X(02)00982-2     URL    
[51] Fisher A T, Wheat C G, Becker K, et al. Scientific and technical design and deployment of long-term subseafloor observatories for hydrogeologic and related experiments, IODP Expedition 301, eastern flank of Juan de Fuca Ridge[J]. Proceedings of the Integrated Ocean Drilling Program, 2005, 301:1-39, doi:10.2204/iodp.proc.301.103.2005.
doi: 10.2204/iodp.proc.301.103.2005     URL    
[52] Farr N, Tivey M, Ware J, et al. A high-speed optical modem communication system for CORK seafloor observatories[C]∥AGU Fall Meeting Abstracts. San Francisco, USA: American Geophysical Union, 2014.
[53] Edwards K J, Fisher A T, Geoffrey W C.The deep subsurface biosphere in igneous ocean crust: Frontier habitats for microbiological exploration[J]. Frontiers in Microbiology, 2012, 3:8, doi:10.3389/fmicb.2012.00008.
doi: 10.3389/fmicb.2012.00008     URL     pmid: 3271274
[1] 周怀阳. 洋壳的基本问题与人类的莫霍钻梦想[J]. 地球科学进展, 2017, 32(12): 1245-1252.
[2] 汪品先. 从海洋内部研究海洋[J]. 地球科学进展, 2013, 28(5): 517-520.
[3] 王克林, Kate Moran. 加拿大海王星:科学、运行、管理[J]. 地球科学进展, 2013, 28(5): 521-528.
[4] 王展坤,Steven DiMarco,Stephanie Ingle, Leila Belabbassi. 北阿拉伯海的光纤海洋观测网络:成功、挑战和机遇[J]. 地球科学进展, 2013, 28(5): 529-536.
[5] 李建如,徐景平,刘志飞. 底基三脚架在深海观测中的应用[J]. 地球科学进展, 2013, 28(5): 559-565.
[6] 何剑锋,张芳,林凌. 我国极地海底观测系统的发展与展望[J]. 地球科学进展, 2013, 28(5): 566-571.
[7] 钟广法,游倩. 高分辨率FMS成像测井资料在科学大洋钻探中的应用[J]. 地球科学进展, 2012, 27(3): 347-358.
[8] 彭晓彤,周怀阳,吴邦春,吕枫,吴正伟,杨灿军,李培良,李德俊,金波,冯正平,李德平. 美国MARS海底观测网络中国节点试验[J]. 地球科学进展, 2011, 26(9): 991-996.
[9] 李建如,许惠平. 加拿大“海王星”海底观测网[J]. 地球科学进展, 2011, 26(6): 656-661.
[10] 汪品先,李建如. 迎接海洋科学的新时期——为什么编写《海底观测》一书[J]. 地球科学进展, 2011, 26(12): 1341-1344.
[11] 中国大洋钻探学术委员会. 中国加入国际大洋钻探计划的5年总结(1998—2002)[J]. 地球科学进展, 2003, 18(5): 656-661.
[12] 陈国达. 造盆作用及成矿盆地的历史——动力综合分类建议[J]. 地球科学进展, 1993, 8(3): 30-36.
阅读次数
全文


摘要