地球科学进展 ›› 2017, Vol. 32 ›› Issue (11): 1119 -1125. doi: 10.11867/j.issn.1001-8166.2017.11.1119

所属专题: 深海科学研究专刊

冰期出露的巽他陆架:古气候与古生态意义    下一篇

巽他陆架——淹没的亚马逊河盆地?
汪品先( )   
  1. 同济大学海洋地质国家重点实验室, 上海 200092
  • 收稿日期:2017-09-06 修回日期:2017-10-20 出版日期:2017-11-10

The Sunda Shelf—A Submerged Amazon Basin?

Pinxian Wang( )   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2017-09-06 Revised:2017-10-20 Online:2017-11-10 Published:2018-01-10
  • About author:

    First author:Wang Pinxian(1936-),male,Suzhou City,Jiangsu Province, Professor, Academician of Chinese Academy of Sciences. Research areas include marine geology and palaeoenvironment.E-mail:pxwang@tongji.edu.cn

古气候研究中一个关键性的争论问题,是陆地植被及其碳库在冰期旋回里的作用。今天亚马逊河盆地发育着全球最大的热带雨林,也是陆地上重大的碳库,而在冰期时东南亚的巽他陆架出露成陆,形成又一个巨大的热带雨林,引起全球碳循环的重大变化。为此,需要在巽他陆架进行大洋钻探,揭示近几百万年来该热带地区的海面升降、河系发育、植被与碳库演变,以及生物地理的历史。

A crucial and debatable issue in paleoclimatology is the change of terrestrial vegetation and the role of its carbon storage in glacial cycles. In the modern world, the Amazon Basin hosts the largest tropical rainforest and plays a major role of carbon sink, but during the glacial times another large tropical rainforest must have formed in the then emerged Sunda Shelf, SE Asia, and significantly changed the global carbon cycling. Accordingly, ocean drilling expeditions to the Sunda Shelf are being proposed in order to investigate the sea level changes, evolution of river network, vegetation and carbon storage, as well as biogeography of the tropical region over the last millions of years.

中图分类号: 

图1 亚马逊河盆地地形示意图
Fig.1 The Amazon River Basin
图2 世界赤道地区的热带河流
Fig.2 Tropical rivers at the equator
图3 “巽他陆架”(a) 地形图 [ 7 ];(b)末次冰期时的河系推测图 [ 8 ]
Fig.3 “The Sunda Shelf ” (a) topography [ 7 ]; (b)Hypothetical river network during the last glacial [ 8 ]
图4 全球单位面积生物碳含量分布图(单位:MgC/hm 2) [ 11 ]
Fig.4 Global total biomass carbon density (unit:MgC/hm 2) [ 11 ]
图5 近一百万年来东南亚热带低地森林面积最大变化的推断 [ 35 ]
Fig.5 Maximum fluctuations in tropical lowland forest extent in Southeast Asia during the last 1 Ma [ 35 ]
图6 巽他陆架东北的地震剖面
(a),(b)地震剖面位置图;(c)地震剖面A-B-C-D-E,纵坐标右侧为时间(s),左侧为深度(km);(d)剖面的超复/退复层序再造 [ 36 ]
Fig.6 Seismic profile on the NE Sunda Shelf
(a),(b)Location of the profile;(c)Seicmic profile A-B-C-D-E, right-travel time in second, left-depth in km;(d)Reconstructed depositional onlap/offlap [ 36 ]
[1] Gatti L V, Gloor M, Miller J B, et al.Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements[J]. Nature, 2014, 506: 76-80.
[2] Doughty C E, Metcalfe D B, Girardin C A J,et al. Drought impact on forest carbon dynamics and fluxes in Amazonia[J]. Nature, 2015, 519: 78-82.
[3] Latrubesse E M, Stevaux T J C, Sinha R. Tropical rivers[J]. Geomorphology, 2005, 70: 187-206.
[4] Ramage C S.Role of a tropical “maritime continent” in the atmospheric circulation[J]. Monthly Weather Review, 1968, 96(6): 365-370.
[5] Molengraaff G A F, Weber M. On the relation between the Pleistocene glacial period and the origin of the Sunda Sea (Java and South China Sea), and its influence on the distribution of coral reefs and on the land- and freshwater fauna[J]. Amsterdam, Koninklijk Akademie van Wetenschappen, Proceedings of the Section of Sciences,1920, 23(1): 395-439.
[6] Milliman J D, Farnsworth K L, Albertin C S.Flux and fate of fluvial sediments leaving large islands in the East Indies[J]. Journal of Sea Research, 1999, 41: 97-107.
[7] Hanebuth T J J, Stattegger K, Schimanski A, et al. Late Pleistocene forced regressive deposits on the Sunda Shelf (SE Asia)[J]. Marine Geology,2003, 199: 139-157.
[8] Alqahtani F A, Johnson H D, Jackson C A-L,et al. Nature, origin and evolution of a Late Pleistocene incised valley-fill, Sunda Shelf, Southeast Asia[J]. Sedimentology, 2015, 62: 1 198-1 232.
[9] Petit J R, Jouzel J, Raynaud D, et al.Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J] . Nature,1999, 399: 429-436.
[10] Sigman D M, Boyle E A.Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407: 859-869.
[11] Pan Y, Birdsey R A, Phillips O L, et al.The structure, distribution, and biomass of the world’s forests[J]. Annual Review of Ecology, Evolution, and Systemmatic,2013, 44:593-622.
[12] Pan Y, Birdsey R A, Fang J, et al.A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333: 988-993.
[13] Saatchi S S, Harris N L, Brown S, et al.Benchmark map of forest carbon stocks in tropical regions across three continents[J]. Proceedings of the National Academy of Sciences, 2011, 108(24): 9 899-9 904.
[14] Heaney L R.A synopsis of climatic and vegetational change in southeast Asia[J]. Climatic Change, 1991, 19: 53-61.
[15] Wurster C M, Bird M I, Bull I D, et al.Forest contraction in north equatorial Southeast Asia during the Last Glacial Period[J]. Proceedings of the National Academy of Sciences, 2010, 107(35): 15 508-15 511.
[16] Raes N, Cannon C H, Hijmans R J, et al.Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima[J]. Proceedings of the National Academy of Sciences, 2014, 111(47): 16 790-16 795.
[17] De Deckker P, Tapper N, van der Kaars W. The status of the Indo-Pacific Warm Pool and adjacent land at the Last Glacial Maximum[J]. Global and Planetary Change, 2002, 35: 25-35.
[18] Sun X, Luo Y, Huang F, et al.Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian monsoon[J]. Marine Geology, 2003, 201(1): 97-118.
[19] Wang X, Sun X, Wang P, et al.Vegetation on the Sunda Shelf, South China Sea, during the Last Glacial Maximum[J]. Palaeogeography, Palaeoclimatology,Palaeoecology, 2009, 278: 88-97.
[20] Bush A B G, Fairbanks R G. Exposing the Sunda shelf: Tropical responses to eustatic sea level change[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D15), doi:10.1029/2002JD003027.
[21] Cannon C H, Morley R J, Bush A B G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance[J]. Proceedings of the National Academy of Sciences, 2009, 106(27): 11 188-11 193.
[22] Haffer J.Speciation in Amazonian forest birds[J]. Science,1969, 165: 131-137.
[23] Haffer J, Prance G T.Climatic forcing of evolution in Amazonia during the Cenozoic: On the refuge theory of biotic differentiation[J]. Amazoniana, 2001, 16:579-608.
[24] Bush M B, de Oliveira P E, Bush M B, et al.The rise and fall of the Refugial Hypothesis of Amazonian speciation:A paleoecological perspective[J].Biota Neotropica,2006,6(1),doi:10.1590/S1676-0603200600010002.
[25] Gathorne-Hardy F J, Davies R G, Eggleton P, et al. Quaternary rainforest refugia in south-east Asia: Using termites (Isoptera) as indicators[J]. Biological Journal of the Linnean Society, 2002, 75(4): 453-466.
[26] Shackleton N J.Carbon-13 in Uvigerina: Tropical rain forest history and the equatorial Pacific carbonate dissolution cycle[C]∥Andersen N R, Malahoff A, eds.The Fate of Fossil Fuel in the Oceans. New York:Plenum Press, 1977: 401-427.
[27] Prentice K C, Fung I Y.The sensitivity of terrestrial carbon storage to climate change[J]. Nature, 1990, 346: 48-51.
[28] Adams J M, Faure H, Faure-Denard L, et al.Increases in terrestrial carbon storage from the Last Glacial Maximum to the present[J]. Nature, 1990, 348: 711-714.
[29] Bird M I, Lloyd J, Farquhar G.Terrestrial carbon storage at the LGM[J]. Nature, 1994, 371: 566.
[30] Prentice I C, Harrison S P, Bartlein P J.Global vegetation and terrestrial carbon cycle changes after the last ice age[J]. New Phytologist, 2011, 189: 988-998.
[31] Crowley T J.Ice-age terrestrial carbon changes revisited[J]. Global Biogeochemical Cycles, 1995, 9: 377-389.
[32] Hanebuth T, Stattegger K, Grootes P M.Rapid flooding of the Sunda shelf—A Late-Glacial sea-level record[J]. Science, 2000, 288: 1 033-1 035.
[33] Page S E, Rieley J O, Banks C J.Global and regional importance of the tropical peatland carbon pool[J]. Global Change Biology, 2011, 17(2): 798-818.
[34] Page S E, Rieley J O, Shotyk W, et al.Interdependence of peat and vegetation in a tropical peat swamp forest[J]. Philosophical Transactions of the Royal Society (Series B), 1999, 354: 1 885-1 897.
[35] Woodruff D F.Biogeography and conservation in Southeast Asia: How 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity[J]. Biodivers Conserv, 2010, 19: 919-941.
[36] Zhong G, Geng J, Wong H K, et al.A semi-quantitative method for the reconstruction of eustatic sea level history from seismic profiles and its application to the southern South China Sea[J]. Earth and Planetary Science Letters, 2005, 223: 443-459.
[37] Wang P, Wang B, Cheng H, et al.The global monsoon across time scales: Mechanisms and outstanding issues[J]. Earth Science Reviews, 2017,174:84-121.
[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[6] 翁成郁. 巽他区域地质气候环境演变与陆地生物多样性形成与变化[J]. 地球科学进展, 2017, 32(11): 1163-1173.
[7] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[8] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[9] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[10] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[11] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[12] 刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展[J]. 地球科学进展, 2014, 29(10): 1149-1157.
[13] 陈中笑,赵琦. 全球碳循环研究中的δ 13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
[14] 贾丙瑞,周广胜. 北方针叶林对气候变化响应的研究进展[J]. 地球科学进展, 2009, 24(6): 668-674.
[15] 彭琴,董云社,齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, 2008, 23(8): 874-883.
阅读次数
全文


摘要