地球科学进展 ›› 2016, Vol. 31 ›› Issue (6): 581 -594. doi: 10.11867/j.issn.1001-8166.2016.06.0581.

所属专题: 极端天气

上一篇    下一篇

北大西洋涛动—欧洲阻塞及其对极端暴雪影响的研究进展
姚遥 1( ), 罗德海 1, 2   
  1. 1.中国科学院大气物理研究所,东亚区域气候—环境重点实验室, 北京 100029
    2.海洋科学与技术青岛协同创新中心,中国海洋大学物理海洋教育部重点实验室, 山东 青岛 266100
  • 收稿日期:2016-04-14 修回日期:2016-05-28 出版日期:2016-06-20
  • 基金资助:
    *国家自然科学基金青年科学基金项目“欧洲阻塞的形态特征及其对欧亚极端天气的影响”(编号:41505075);国家自然科学基金重点项目“全球气候变化下北半球低频模态的演变特征和机理以及与极端天气事件之间的关系”(编号:41430533)资助

The North Atlantic Oscillation (NAO) and Europe Blocking and Their Impacts on Extreme Snowstorms: A Review

Yao Yao 1( ), Dehai Luo 1, 2   

  1. 1.Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2.Qingdao Collaborative Innovation Center of Marine Science and Technology, Key Laboratory of Physical Oceanography, MOE, Ocean University of China, Qingdao 266100,China
  • Received:2016-04-14 Revised:2016-05-28 Online:2016-06-20 Published:2016-06-10
  • About author:

    First author:Yao Yao(1985-), male, Tai’an City, Shandong Province, Research Assistant. Research areas include climate dynamic and extreme climate.E-mail:yaoyao@tea.ac.cn

  • Supported by:
    Project supported by the Young Scientists Fund of the National Natural Science Foundation of China “Pattern characteristics of Europe blocking and its impact on Eurasia extreme weather” (No.41505075);The Key Program of the National Natural Science Foundation of China “Evolution characteristics and mechanisms of low-frequency modes in the Northern Hemisphere under global climate and its relation with extreme weather events” (No.41430533)

北大西洋涛动(NAO)和阻塞等大气大尺度低频模态对北半球天气气候起着重要的调控作用。首先回顾了NAO年代际变率物理机制的研究进展,并从季节内尺度NAO位相转换的角度讨论了其对NAO年代际变率的影响。介绍了NAO与阻塞时空关系的研究进展,讨论了年代际NAO变率对阻塞时空分布的可能影响。另外,以2次极端暴雪天气事件为例,从观测事实方面讨论了NAO和阻塞对极端暴雪天气的影响机制,同时从理论模型方面部分解释了其可能的物理机制。总结了有关NAO和阻塞理论模式的研究进展,介绍了非线性多尺度相互作用模型的发展过程和应用。最后,基于对以上研究进展的总结,给出了NAO-阻塞—极端暴雪天气的机制示意图,概括部分研究的特点和不同之处,并提出了该领域有待解决的几个问题和未来可能的研究方向,为相关的研究提供参考。

Large-scale, low frequency modes such as the North Atlantic Oscillation(NAO)and blocking, have an important modulation on the northern hemisphere weather and climate. In this paper, the physical mechanism studies on inter-decadal and decadal variability of NAO and blocking were summarized. The relationship between NAO regime transitions and the interannual variability of NAO in winter during was examined by using a statistical approach. The time-space relationship between NAO and European blocking were discussed. Based on two extreme cold and snowstorm events, the impacts on local weather especially the extreme events within the life cycle (two weeks) of the NAO and blocking were further examined. It was found that the frequently occurrence of the Eurasian extreme snowstorm was closely related to the special combination of NAO and blocking regime. In addition, the development of theoretical modes for NAO and blocking was discussed and issues that remain to be solved were proposed.

中图分类号: 

图1 NAO的空间结构和时间变化序列
(a)冬季(NDJFM)平均NAO指数与北半球500 hPa位势高度距平场回归所得空间分布(单位:gpm),是从20°N开始绘制,纬度线间隔为5°;(b)1970—2011年对应的PC标准化(std dev)冬季(NDJFM)年平均NAO指数(据参考文献[38]修改)其中 P1代 表1978 —1994年,P2代 表1995 —2011年,红色直线代 表2 个阶段的线性趋势线,黑色虚线代 表2 次5点平滑曲线
Fig.1 The NAO pattern and its time series
(a)NAO pattern obtained by applying the winter monthly NAO index regression onto the 500 hPa geopotential height (unit: gpm) anomalies,the latitude lines are at 5 degree intervals starting with 20°N at the edges in (a); (b) Time series of normalized winter-mean NAO index obtained from PC for five months from November to March (NDJFM) from 1970 to 2011 (modified after reference[38]),P1 represents 1978-1994 and P2 represents 1995-2011, the red line represents the linear trend for P1 and P2
图2 北大西洋—欧洲地区1978—2011年冬季平均阻塞频率(%)的分布(据参考文献[38]修改)
图中频率单位为阻塞天数占总冬季天数的百分比(%)
Fig.2 Horizontal distributions of the winter-mean blocking frequency (%) over North Atlantic-Europe area during the periods from 1978 to 2011 (modified after reference[38])
The blocking frequency is defined as the number of days with blocking expressed as a percentage of total number of days for the winter (November-March)
图3 P2与P1阶段冬季平均阻塞频率的差异分布(P2减P1)(据参考文献[38]修改)
图中阴影部分为通过置信度95%检验的距平区域;深色为正距平,浅色为负距平
Fig.3 Horizontal distributions of the winter-mean blocking frequency (%)for the P2-P1 difference (modified after reference[38])
The dark (for positive) and light (for negative) shadings denote the regions above the 95% confidence level for a two-sided student’s-test
图4 极端暴雪事件的NAO指数和阻塞环流场
(a)2012年1月13日至2月15日逐日NAO指数序列 [ 34 ],(a)中红线为欧洲地区平均温度距平变化,黑实线、圈线及虚线分别代表海平面气压LW指数,500 hPa的LW指数以及PC指数; 蓝色标记线表示NAO+至ENAO-的位相转换过程; (b)2013年12月12日阻塞环流形式场 [ 58 ],(b)中实线代 表500 hPa位势高度等值线,矢量箭头代 表500 hPa的UV合成风场,蓝色阴影代表温度负距平,绿色代表降水区域。红色虚线代表急流轴位置,红色方框代表中东地区
Fig.4 The NAO indices and blocking flow for two extreme snowstrom eevents
(a) Time series of the normalized daily NAO index during the period from 13 January to 16 February,2012 [ 34 ],The PC index is marked with the dotted line, and the SLP (500 hPa) LW index is the solid line without (with) dots. The time series of the normalized SAT anomaly averaged over European continent is shown in red line. The NAO+ and ENAO- epochs are indicated with blue marker;(b) Horizontal fields distribution on 12 December 2013 [ 58 ],In (b), the height contours are drawn from 5 400 to 5 700 gpm precipitation area is indicated with green dots. The negative temperature anomalies are plotted with the blue shading. The red box shows the Middle East region and the red dashed line indicates the jet stream position
图5 基于NMI模式(CI=0.3)得到的一个NAO+事件的总流场( Ψ T)演变过程(从第0天到第51天)(据参考文献[59]修改)
其中下游欧洲地区激发出一个阻塞环流结构 H代表反气旋, L代表气旋或者槽; x坐标的1.0处左边代表北大西洋地区,右边代表欧洲地区
Fig.5 Total streamfunction ( Ψ T) fields (CI=0.3) of an NAO+ event obtained from the extended NMI model for the strong jet cases (modified after reference[59])
A blocking pattern is motivated in Europe region downstream the Atlantic region. H( L) denotes the ridge or anticyclone (trough or cyclone).The left (right) area of x=1.0 represents North Atlantic (European continent)
图6 NAO与欧洲阻塞对中东地区极端暴雪影响的物理机制示意图
图中左边大西洋地区(90°W~0°)对应NAO偶极子结构,下游欧洲地区(0°~60°E)为西北—东南向倾斜的阻塞偶极子结构。红色粗实线为西风急流的示意,细实线为暖空气(红色)和冷空气(蓝色)的入侵方式,绿色阴影区为暴雪区域示意
Fig.6 Schematic diagram of NAO and Europe blocking and their physical mechanism for the Middle East snowstorm
The dipole in left Atlantic region(90°W~0°)is the NAO pattern, downstream Europe region (0°~60°E) is the blocking dipole pattern with a northwest-southeast tilting. The thick red solid line represents the westerly jet and the thin solid line means the path for warm (in red color) and cold air (in blue color). Green shaded region indicates the snowstorm area
[1] Cattiaux J, Vautard R, Cassou C, et al.Winter 2010 in Europe: A cold extreme in a warming climate[J].Geophysical Research Letters, 2010, 37(20), doi:10.1029/2010GL044613.
[2] Sillmann J, Croci-Maspoli M, Kallache M, et al.Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking[J].Journal of Climate, 2011, 24(22): 5 899-5 913.
[3] Hurrell J W.Decadal trends in the North Atlantic Oscillation region temperatures and precipitation[J].Science, 1995, 269(5 224): 676-679.
[4] Li Ziyi, Li Shuanglin, Li Guoping.Analysis of longstanding summer blocking highs over the Ural Mountains and their relationship with tropical thermal anomalies[J].Chinese Journal of Atmospheric Sciences,2013,37(3):731-744.
[李子仪, 李双林, 李国平. 夏季乌拉尔长阻塞过程及其与热带热力异常关系个例分析[J]. 大气科学, 2013, 37(3):731-744.]
[5] Lu Riyu.Eddies during the blocking maintenance over the Northeastern Asia in summer[J].Chinese Journal of Atmospheric Sciences,2001,25(3):289-302.
[陆日宇. 夏季东北亚阻塞形势维持时的天气尺度波[J].大气科学,2001,25(3):289-302.]
[6] Pfahl S, Wernli H.Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-) daily time scales[J]. Geophysical Research Letters, 2012, 39(12), doi: 10.1029/2012gl052261.
[7] Sillmann J, Croci-Maspoli M.Present and future atmospheric blocking and its impact on European mean and extreme climate[J]. Geophysical. Research Letters, 2009, 36(10),doi:10.1029/2009GL038259.
[8] Wang C, Liu H, Lee S K.The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere[J]. Atmospheric Science Letters, 2010, 11(3): 161-168.
[9] Li C, Sun J L.Role of the subtropical westerly jet waveguide in a southern China heavy rainstorm in December 2013[J]. Advances in Atmospheric Sciences, 2015, 32(5): 601-612.
[10] Zhao Sixiong, Sun Jianhua.Multi-scale systems and Conceptual Model on freezing rain and snow storm over Southern China during January-February 2008[J].Climatic and Environmental Research, 2008,13(4):351-367.
[赵思雄,孙建华. 2008年初南方雨雪冰冻天气的环流场与多尺度特征[J].气候与环境研究, 2008, 13(4): 351-367.]
[11] Yang Hui, Li Chongyin.Influence of Arctic Oscillation on temperature and precipitation in winter[J].Climatic and Environmental Research, 2008, 13(4):395-404.
[杨辉,李崇银. 冬季北极涛动的影响分析[J].气候与环境研究, 2008, 13(4): 395-404.]
[12] Benedict J, Lee S, Feldstein S B.Synoptic view of the North Atlantic Oscillation[J].Journal of the Atmospheric Sciences, 2004, 61(2): 121-144.
[13] Dole R M.The life cycles of persistent anomalies and blocking over the North Pacific[J]. Advances in Geophysics, 1986, 29:31-69.
[14] Hurrell J W.Influence of variations in extratropical wintertime teleconnections on northern hemisphere temperature[J].Geophysical Research Letters, 1996, 23(6): 665-668.
[15] Hurrell J W, Loon H V.Decadal variations in climate associated with the North Atlantic Oscillation[J]. Climate Change, 1997, 36(3): 301-336.
[16] Luo D, Yao Y, Feldstein S B.Regime transition of the North Atlantic Oscillation and the extreme cold event over Europe in January-February 2012[J]. Monthly Weather Review, 2014, 142(12): 4 735-4 757.
[17] Hilmer M, Jung T.Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export[J].Geophysical Research Letters,2000, 27(7): 989-992.
[18] Johnson N, Feldstein S B, Trembley B.The continuum of Northern Northern Hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps[J].Journal of Climate, 2008, 21(23): 6 354-6 371.
[19] Hurrell J W, Kushnir Y, Visbeck M, et al.An Overview of the North Atlantic Oscillation[M]∥Hurrell J W, Kushnir Y, Ottersen G, eds. The North Atlantic Oscillation: Climate Significance and Environmental Impact Geophysical Monograph Series,2003,134:1-35.
[20] Rogers J C.The association between the North-Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere[J].Monthly Weather Review, 1984, 112(10):1 999-2 015.
[21] Barnston A G, Livezey R E.Classification, seasonality and persistence of low-frequency atmospheric circulation patterns[J].Monthly Weather Review, 1987, 115(6): 1 083-1 126.
[22] Li J, Wang X L.A new North Atlantic Oscillation Index and its variability[J].Advances in Atmospheric Sciences, 2003, 20(5): 661-676.
[23] Cohen J, Barlow M.The NAO, the AO, and global warming: How closely related?[J].Journal of Climate,2005, 18(21):4 498-4 513.
[24] Timmermann A, Latif M, Voss R, et al.North Atlantic interdecadal variability: A coupled air-sea mode[J].Journal of Climate, 1998, 11(8): 1 906-1 931.
[25] Scaife A A, Knight J R, Vallis G, et al.A stratospheric influence on the winter NAO and North Atlantic surface climate[J].Geophysical Research Letters, 2005, 32(18), doi:10.1029/2005GL023226.
[26] Müller W A, Frankignoul C, Chouaib N.Observed decadal tropical Pacific-North Atlantic teleconnections[J]. Geophysical Research Letters, 2008, 35(24), doi:10.1029/2008GL035901.
[27] Chai Jingpin, Diao Yi’na.The effect of the variation of the North Atlantic Oscillation on winter blocking Activities in the Northern Hemisphere[J].Chinese Journal of Atmospheric Sciences, 2011,35(2):326-338.
[柴晶品, 刁一娜. 北大西洋涛动指数变化与北半球冬季阻塞活动[J]. 大气科学, 2011, 35(2): 326-338.]
[28] Gong Daoyi, Wang Shaowu.The North Atlantic Oscillation Index and its interdecadal variability[J].Chinese Journal of Atmospheric Sciences,2000,24(2):187-192.
[龚道溢, 王绍武. 北大西洋涛动指数的比较及其年代际变率[J].大气科学, 2000, 24(2): 187-192.]
[29] Gong Daoyi, Zhou Tianjun, Wang Shaowu.Advance in the studies on North Atlantic Oscillation (NAO)[J].Advances in Earth Science, 2001, 16(3): 413-420.
[龚道溢, 周天军, 王绍武. 北大西洋涛动变率研究进展[J]. 地球科学进展, 2001, 16(3): 413-420.]
[30] Luo D, Cha J.The North Atlantic Oscillation and North Atlantic jet variability: Precursors to NAO regimes and transitions[J].Journal of the Atmospheric Sciences, 2012, 69(12): 3 764-3 787.
[31] Luo D, Cha J, Feldstein S B.Weather regime transitions and the interannual variability of the North Atlantic Oscillation. Part I: A likely connection[J].Journal of the Atmospheric Sciences, 2012, 69(8): 2 329-2 346.
[32] Luo D, Cha J, Feldstein S B.Weather regime transitions and the interannual variability of the North Atlantic Oscillation. Part II: Dynamical processes[J]. Journal of the Atmospheric Sciences, 2012, 69(8): 2 347-2 363.
[33] Woollings T J, Hoskins B J, Blackburn M, et al.A new rossby wave-breaking interpretation of the North Atlantic Oscillation[J]. Journal of the Atmospheric Sciences, 2008, 65(2): 609-626.
[34] Luo D, Yao Y, Feldstein S B.Regime transition of the North Atlantic Oscillation and the extreme cold event over Europe in January-February 2012[J].Monthly Weather Review, 2014, 142(12): 4 735-4 757.
[35] Luo D, Lupo A, Wan H.Dynamics of eddy-driven low-frequency dipole modes. Part I: A simple model of North Atlantic Oscillations[J].Journal of the Atmospheric Sciences, 2007, 64(1): 3-28.
[36] Shabbar A, Huang J, Higuchi K.The relationship between the wintertime North Atlantic Oscillation and blocking episodes in the North Atlantic[J].International Journal of Climatology, 2001, 21(3): 355-369.
[37] Croci-Maspoli M, Schwierz C, Davies H C.Atmospheric blocking: Space-time links to the NAO and PNA[J].Climate Dynamics, 2007, 29(7): 713-725.
[38] Luo D, Yao Y, Dai A.Decadal relationship between European Blocking and North Atlantic Oscillation during 1978-2012. Part I: Atlantic Conditions[J].Journal of the Atmospheric Sciences, 2015, 72(3): 1 152-1 173.
[39] Luo D, Yao Y, Dai A.Decadal relationship between European Blocking and North Atlantic Oscillation during 1978-2012. Part II: A theoretical model study[J].Journal of the Atmospheric Sciences, 2015, 72(3): 1 174-1 199.
[40] Davini P, Cagnazzo C, Neale R, et al.Coupling between Greeland blocking and the North Atlantic Oscillation pattern[J]. Geophysical Research Letters, 2012, 39(14), doi: 10.1029/2012GL052315.
[41] Pelly J L, Hoskins B.A new perspective on blocking[J].Journal of the Atmospheric Sciences,2003, 60(5): 743-755.
[42] Woollings T, Hannachi A, Hoskins B, et al.A regime view of the North Atlantic Oscillation and its response to Anthropogenic Forcing[J].Journal of Climate, 2010, 23(6): 1 291-1 307.
[43] Shutts G J.The propagation of eddies in diffluent jet streams: Eddy vorticity forcing of blocking flow fields[J].Quarterly Journal of the Royal Meteorological Society, 1983, 109(462): 737-761.
[44] Yamazaki A, Itoh H.Vortex-vortex interactions for the maintenance of blocking. Part I: The selective absorption mechanism and a case study[J].Journal of the Atmospheric Sciences, 2013, 70(3): 725-742.
[45] Zhang X, Lu C, Guan Z.Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia[J].Environmental Research Letters, 2012, 7(4), doi:10.1088/1748-9326/7/4/044044.
[46] Seager R, Kushnir Y, Nakamura J, et al.Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10[J].Geophysical Research Letters, 2010, 37(14), doi:10.1029/2010GL043830.
[47] Croci-Maspoli M, Davies H C.Key dynamical features of the 2005/06 European winter[J].Monthly Weather Review, 2009, 137(2): 644-678.
[48] Wang C, Liu H, Lee S K.The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere[J]. Atmospheric Science Letters, 2010, 11(3): 161-168.
[49] Yu Y, Ren R, Cai M.Dynamic linkage between cold air outbreaks and intensity variations of the meridional mass circulation[J]. Journal of the Atmospheric Sciences, 2015, 72(8): 3 214-3 232.
[50] Diao Y, Xie S, Luo D.Asymmetry of winter European surface air temperature extremes and the North Atlantic Oscillation[J]. Journal of Climate, 2015, 28(2): 517-530.
[51] Petterssen S.Weather Analysis and Forecasting[M]. New York:McGraw-Hill, 1956:428.
[52] Alpert P, Reisin T.An early winter polar air-mass penetration to the eastern Mediterranean[J].Monthly Weather Review, 1986, 114(7): 1 411-1 418.
[53] Lee T P, Silberberg S R, Bosart L F.A case study of a severe winter storm in the Middle East[J].Quarterly Journal of the Royal Meteorological Society, 1988, 114(479): 61-90.
[54] Trigo I F, Grant R B, Davies T D.Climatology of cyclogenesis mechanisms in the Mediterranean[J].Monthly Weather Review, 2002, 130(3): 549-569.
[55] Kutiel H, Paz S.Sea level pressure departures in the Mediterranean and their relationship with monthly rainfall conditions in Israel[J].Theoretical and Applied Climatology, 1998, 60(1): 93-109.
[56] Ziv B, Dayan U, Kushnir Y, et al.Regionaland global atmospheric patterns governing rainfall in the southern Levant[J]. International Journal of Climatology, 2006, 26(1): 55-73.
[57] Feldstein S B, Dayan U.Circumglobal teleconnections and wave packets associated with Israeli winter precipitation[J].Quarterly Journal of the Royal Meteorological Society, 2008, 134(631): 455-467.
[58] Luo D, Yao Y, Dai A, et al.The positive North Atlantic Oscillation with downstream blocking and middle east snowstorms: The large-scale environment[J].Journal of Climate, 2015, 28(16): 6 398-6 418.
[59] Yao Y, Luo D, Dai A, et al.The Positive North Atlantic Oscillation with downstream blocking and middle east snowstorms: Impacts of the North Atlantic Jet[J]. Journal of Climate, 2016, 29(5): 1 853-1 876.
[60] Luo D, Zhu Z, Ren R, et al.Spatial pattern and zonal shift of the North Atlantic Oscillation. Part I: A dynamical interpretation[J]. Journal of the Atmospheric Sciences, 2010, 67(9): 2 805-2 826.
[61] Yao Y, Luo D.Do European blocking events precede North Atlantic Oscillation events?[J].Advances in Atmospheric Sciences, 2015, 32(8): 1 106-1 118.
[62] Haines K, Marshall J C.Eddy-forced coherent structures as a prototype of atmospheric blocking[J]. Quarterly Journal of the Royal Meteorological Society, 1987, 113(476): 681-704.
[63] Malanotte-Rizzoli P, Malguzzi P.Coherent structures in a baroclinic atmosphere. Part III: Block formation and eddy forcing[J]. Journal of the Atmospheric Sciences, 1987, 44(17): 2 493-2 505.
[64] Malguzzi P.An analytical study on the feedback between large- and small-scale eddies[J]. Journal of the Atmospheric Sciences, 1993, 50(10): 1 429-1 436.
[65] Luo D.Planetary-scale baroclinic envelope Rossby solitons in a two-layer model and their interaction with synoptic-scale waves[J]. Dynamics of Atmospheric and Oceans, 2000, 32(1): 27-74.
[66] Vallis G K, Gerber E, Kushner P J, et al.A mechanism and simple dynamical model of the North Atlantic Oscillation and Annular modes[J]. Journal of the Atmospheric Sciences, 2004, 61(3): 264-280.
[67] McWilliams J. An application of equivalent modons to atmospheric blocking[J]. Dynamics of Atmospheric and Oceans, 1980, 5(1): 219-238.
[68] Luo Zhexian, Ma Jingxian.Local blocking flow pattern in a forced and dissipative nonlinear system[J].Chinese Journal of Atmospheric Sciences,1991,15(4):17-25.
[罗哲贤,马镜娴. 强迫耗散非线性系统的局域阻塞流型[J]. 大气科学, 1991, 15(4): 17-25.]
[69] Mcintyre M E, Palmer T N.Breaking planetary-waves in the stratosphere[J]. Nature, 1983, 305: 593-600.
[70] Berrisford P, Hoskins B J, Tyrlis E.Blocking and Rossby wave breaking on the dynamical tropopause in the Southern Hemisphere[J]. Journal of the Atmospheric Sciences, 2007, 64(8):2 881-2 898.
[71] Riviere G, Orlanski I.Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation[J]. Journal of the Atmospheric Sciences,2007, 64(2):241-266.
[72] Strong C, Magnusdottir G.Tropospheric Rossby wave breaking and the NAO/NAM[J]. Journal of the Atmospheric Sciences,2008,65(9):2 861-2 876.
[73] Luo Dehai, Ji Liren.A new theory of the formation of atmospheric blocking[J].Science in China(Series B), 1989,19(1): 111-121.
[罗德海,纪立人. 大气阻塞形成的一个理论[J]. 中国科学:B辑, 1989,19(1):111-121.]
[74] Luo D.A barotropic envelope Rossby soliton model for block-eddy interaction. Part I: Effect of topography[J]. Journal of the Atmospheric Sciences, 2005, 62(1): 5-21.
[75] Luo D.A barotropic envelope Rossby soliton model for block-eddy interaction. Part II: Role of westward-traveling planetary waves[J]. Journal of the Atmospheric Sciences, 2005, 62(1): 22-40.
[76] Luo D.A barotropic envelope Rossby soliton model for block-eddy interaction. Part III: Wavenumber conservation theorems for isolated blocks and deformed eddies[J]. Journal of the Atmospheric Sciences, 2005, 62(11): 3 839-3 859.
[77] Luo D.A barotropic envelope Rossby soliton model for block-eddy interaction. Part IV: Block activity and its linkage with sheared environment[J]. Journal of the Atmospheric Sciences, 2005, 62(11): 3 860-3 884.
[78] Luo D, Gong T, Lupo A.Dynamics of eddy-driven low-frequency dipole modes. Part II: Free mode characteristics of NAO and diagnostic study[J]. Journal of the Atmospheric Sciences, 2007, 64(1): 29-51.
[79] Luo D, Gong T, Diao Y.Dynamics of eddy-driven low frequency dipole modes. Part III: Meridional displacement of westerly jet anomalies during two phases of NAO[J]. Journal of the Atmospheric Sciences, 2007, 64(9): 3 232-3 248.
[80] Luo D, Zhong L, Ren R, et al.Spatial pattern and zonal shift of the North Atlantic Oscillation. Part II: Numerical experiments[J]. Journal of the Atmospheric Sciences, 2010, 67(9): 2 827-2 853.
[81] Rind D, Perlwitz J, Lonergan P.AO/NAO response to climate change. Part I: Respective influences of stratospheric and tropospheric climate changes[J].Journal of Geophysical Research, 2005, 110, doi:10. 1029/2004JD005103.
[82] Ulbrich U, Christoph M.A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing[J]. Climate Dynamics, 1999, 15(7): 551-559.
[83] Zhao Jinping, Shi Jiuxin, Wang Zhaomin,et al.Arctic amplification produced by sea ice retreat and its global climate effects[J]. Advances in Earth Science, 2015, 30(9): 985-995.
[赵进平, 史久新, 王召民, 等. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.]
[84] Luo D, Xiao Y, Yao Y,et al.Impact of Ural Blocking on winter warm Arctic-Cold Eurasian Anomalies. Part I: Blocking-induced amplification[J]. Journal of Climate, 2016, 29(11): 3 925-3 947.
[85] Luo D, Xiao Y, Diao Y,et al.Impact of ural blocking on winter warm Arctic-Cold Eurasian Anomalies. Part II: The Link to the North Atlantic Oscillation[J]. Journal of Climate, 2016, 29(11): 3 949-3 971.
[86] Gao Tao, Xie Li’an.Study on progress of the trends and physical causes of extreme precipitation in China during the last 50 years[J]. Advances in Earth Science, 2014, 29(5): 577-589.
[高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述[J]. 地球科学进展, 2014, 29(5): 577-589.]
[87] Huang Qiang, Chen Zishen.Regionalstudy on the trends of extreme temperature and precipitation events in the Pearl River Basin[J]. Advances in Earth Science, 2014, 29(8): 956-967.
[黄强, 陈子燊. 全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J]. 地球科学进展, 2014, 29(8): 956-967.]
[88] Yang Qiuming.Prospects andprogresses in the research of the methods for 10-30 days extended-range weather forecast[J]. Advances in Earth Science, 2015, 30(9): 970-984.
[杨秋明. 10~30 d延伸期天气预报方法研究进展与展望[J]. 地球科学进展, 2015, 30(9): 970-984.]
[1] 徐一丹,李建平,汪秋云,林霄沛. 全球变暖停滞的研究进展回顾[J]. 地球科学进展, 2019, 34(2): 175-190.
[2] 杨韵, 李建平, 谢飞, 冯娟, 孙诚. 热带北大西洋模态年际变率的研究进展与展望[J]. 地球科学进展, 2018, 33(8): 808-817.
[3] 孙倩, 吴波, 周天军. 基于可预测模态分析技术的亚澳夏季风统计—动力季节预测模型及其回报技巧评估[J]. 地球科学进展, 2017, 32(4): 420-434.
[4] 江志红,屠其璞. 国外有关海气系统年代际变率的机制研究[J]. 地球科学进展, 2001, 16(4): 569-573.
[5] 龚道溢,周天军,王绍武. 北大西洋涛动变率研究进展[J]. 地球科学进展, 2001, 16(3): 413-420.
[6] 周天军,王绍武,张学洪. 大洋温盐环流与气候变率的关系研究:科学界的一个新课题[J]. 地球科学进展, 2000, 15(6): 654-660.
[7] 江志红, 屠其璞, 施 能. 年代际气候低频变率诊断研究进展[J]. 地球科学进展, 2000, 15(3): 342-347.
[8] 许厚泽,孙和平. 我国重力固体潮实验研究进展[J]. 地球科学进展, 1998, 13(5): 415-422.
[9] 周天军,王绍武,张学洪. 大洋温盐环流的稳定性及变率模拟研究进展[J]. 地球科学进展, 1998, 13(4): 334-343.
[10] 傅斌,郑永飞,魏春生. 地质速率计——矿物氧扩散的应用[J]. 地球科学进展, 1997, 12(5): 428-433.
阅读次数
全文


摘要