地球科学进展 ›› 2016, Vol. 31 ›› Issue (3): 286 -297. doi: 10.11867/j.issn.1001-8166.2016.03.0286.

所属专题: IODP研究

上一篇    下一篇

晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示
刘华华 1, 3( ), 蒋富清 1, 2,,A; *( ), 周烨 1, 3, 李安春 1   
  1. 1.中国科学院海洋研究所,中国科学院海洋地质与环境重点实验室, 山东 青岛 266071
    2.海洋国家实验室海洋地质过程与环境功能实验室, 山东 青岛 266061
    3.中国科学院大学, 北京 100049
  • 收稿日期:2016-02-10 修回日期:2016-03-01 出版日期:2016-03-20
  • 通讯作者: 蒋富清 E-mail:laosanliu@sina.cn;fqjiang@qdio.ac.cn
  • 基金资助:
    国家自然科学基金项目“中新世以来奄美三角盆地的风尘记录及其对构造尺度东亚古气候的指示”(编号:41576050);国家海洋局“全球变化与海气相互作用”专项项目“西太平洋古气候研究” (编号:GASI-04-01-02)资助

Provenance of Clay Minerals in the Amami Sankaku Basin and Their Paleoclimate Implications Since Late Pleistocene

Huahua Liu 1, 3( ), Fuqing Jiang 1, 2, *( ), Ye Zhou 1, 3, Anchun Li 1   

  1. 1.Institute of Oceanology, Key Laboratory of Marine Geology and Environment, Chinese Academy of Sciences, Qingdao 266071,China
    2.Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061,China
    3.University of Chinese Academy of Sciences, Beijing 100049,China
  • Received:2016-02-10 Revised:2016-03-01 Online:2016-03-20 Published:2016-03-10
  • Contact: Fuqing Jiang E-mail:laosanliu@sina.cn;fqjiang@qdio.ac.cn
  • About author:

    First author:Liu Huahua (1989-), female, Cangzhou City, Hebei Province, Master student. Research area include Marine Sedimentology.E-mail:laosanliu@sina.cn

    Corresponding author:Jiang Fuqing (1972-), male, Hutubi County, Xinjiang Province, Associate Professor. Research area include Marine Sedimentology.E-mail:fqjiang@qdio.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation Program“Eolian dust record in the Amami Sankaku Basin and its indication of tectonic time-scale paleoclimate of East Asia since Miocene”(No.41576050);The State Oceanic Administration “Research on the Plaeoclimate of western Pacific” in the Project “Global Change and Air-Sea Interaction” (No.GASI-04-01-02)

对“国际大洋发现计划”(IODP)351航次U1438A孔晚更新世以来沉积物中黏土矿物的组成、含量及矿物学特征进行了分析。结果表明,U1438A孔中黏土矿物以伊利石为主,平均含量为57%;其次是蒙皂石,平均含量为26%;绿泥石的平均含量为14%;高岭石的含量最少,平均仅为3%。伊利石的结晶度较好(<0.4°Δ2θ),而且化学指数较低(<0.43),表明伊利石主要形成于干冷的气候环境。通过将U1438A孔黏土矿物组合特征与周边可能源区对比,并结合黏土矿物的结晶参数特征,认为蒙皂石主要来源于奄美三角盆地周边岛弧火山物质;伊利石、绿泥石和高岭石主要来自于亚洲大陆风尘。(伊利石+绿泥石)/蒙皂石比值阶段性增加与亚洲大陆晚更新世以来变干冷的趋势是一致的。(伊利石+绿泥石)/蒙皂石和(伊利石+绿泥石)/高岭石比值在冰期的高值,指示了冰期亚洲风尘物质输入的增加,这是对亚洲大陆冰期干旱化和东亚季风增强的响应。

We analyzed the clay mineral assemblages, content and mineralogical characteristics of Hole U1438A sediment recovered from Amami Sankaku Basin during International Ocean Discovery Program (IODP) expedition 351. The results show that the clay minerals are mainly composed of illite (average 57%), smectite (average 26%), chlorite (average 14%) and minor kaolinite(average 3%). The crystallinity of illite in all samples are good (<0.4 Δ° 2θ), and the chemical indexes of illite in all samples are low (<0.4). Both indicate that illite in Hole U1438A formed in cold and dry climate. By comparing clay mineral assemblages of hole U1438A and the potential sediment sources, we suggest that smectite be mainly derived from the volcanic materials around Amami Sankaku Basin. Illite, chlorite and kaolinite are mainly derived from the Asian dust. The ratios of (illite+chlorite)/smectite show a phased increase over the last 350 ka, which is consistent with the cold and drying trend of the Asian continent since late Pleistocene. The high ratios of (illite+chlorite)/smectite and (illite+chlorite)/kaolinite during glacial period indicate that much more Asian dust was input into the Amami Sankaku Basin, which are responded to the aridity of Asian continent and strengthened east Asian Monsoon during glacial period.

中图分类号: 

图1 U1438A孔位置及洋流示意图(据参考文献[1]修改)
Fig.1 Location of Hole U1438A and ocean current (modified after reference[1])
图2 U1438A孔岩心照片和地层年代框架
图中红色三角代表火山灰层的位置
Fig.2 Image and age-depth plot of Hole U1438A
Red triangle indicates the ash layer
图3 U1438A孔黏土矿物X-射线典型衍射图谱(样品深度:360~362 cm)
Fig.3 Typical X-Ray Diffraction(XRD)spectra of clay minerals in the Hole U1438A (sample depth: 360~362 cm)
表1 U1438A孔主要黏土矿物含量及矿物学特征
Table 1 Contents and mineralogical characteristic of the major clay minerals in Hole U1438A
图4 U1438A孔黏土矿物含量及特征参数变化
红色三角代表火山灰层
Fig.4 Variation of clay mineral content and mineralogical characteristics in the sediment of Hole U1438A
Red triangle indicates the ash layer
图5 U1438A孔与可能源区蒙皂石—伊利石—绿泥石三角图解
中国台湾 [ 26 , 31 , 32 ],大东海脊 [ 33 ],西菲律宾海盆 [ 34 ],黄土 [ 8 , 26 , 35 ~ 38 ],菲律宾吕宋岛 [ 39 ],九州—帕劳海脊 [ 11 ],帕里西维拉海盆 [ 28 , 40 ],四国海盆 [ 33 ],马里亚纳海槽 [ 41 ])
Fig.5 Ternary diagram of the major clay mineral illite, chlorite and smectite in Hole U1438A and the potential provenances
Taiwan [ 26 , 31 , 32 ]; Daito ridge [ 33 ]; West Philippine Basin [ 34 ]; Loess [ 8 , 26 , 35 ~ 38 ]; Luzon [ 39 ]; Kyushu-Palau ridge [ 11 ];Parece Vela Basin [ 28 , 40 ]; Shikoku Basin [ 33 ]; Mariana Trough [ 41 ]
图6 U1438A孔各黏土矿物之间的相关性
Fig.6 Correlation diagrams between clay minerals in Hole U1438A
图7 U1438A孔(伊利石+绿泥石)/蒙皂石与全球底栖有孔虫氧同位素曲线LR04 [ 59 ]、黄土中石英平均粒径 [ 60 ]、黄土堆积速率 [ 61 ]和北太平洋风尘通量 [ 62 ]变化对比
Fig.7 Comparison between (illite+chlorite)/smectite ratio of Hole U1438A, the stacked global benthic δ 18O record of LR04 [ 59 ],mean grain-size of quartz [ 60 ] and mass accumulation rate in Chinese loess [ 61 ], and eolian dust flux in the North Pacific [ 62 ]
[1] Scott R,Kroenke L.Evolution of back arc spreading and arc volcanism in the Philippine Sea:Interpretation of Leg 59 DSDP results[J].Geophysical Monograph Series,1980,23:283-291,doi:10.1029/GM023p0283.
[2] Arculus R, Ishizuka O, Bogus K A.Izu-Bonin-Mariana Arc Origins: Continental Crust Formation at Intraoceanic Arc: Foundations, Inceptions, and Early Evolution[R].Janpan:International Ocean Discovery Program, 2014.
[3] Ishizuka O, Taylor R N, Yuasa M, et al.Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea[J]. Geochemistry,Geophysics,Geosystems, 2011, 12(5),doi:10.1029/2010GC003440.
[4] Expedition 351 Scientists.xpedition 351 Scientists. Izu-Bonin-Mariana Arc Origins: Continental Crust Formation at An Intra-oceanic Arc: Foundation, Inception, and Early Evolution[R/OL].International Ocean Discovery Program Preliminary Report,2013. http:∥dx.doi.org/10.14379/iodp.pr.351.2015,1-49.
[5] Zhang Fuyuan, Li Anchun, Lin Zhenhong, et al.Lassifiation and nomenlature of deep sea sediments[J]. Chinese Journal of Oceanology and Limnology, 2006, 37(6): 517-523.
[张富元, 李安春, 林振宏,等.深海沉积物分类与命名[J].海洋与湖沼, 2006, 37(6): 517-523.]
[6] Ehrmann W.Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 1998, 139(3): 213-231.
[7] Liu Z, Colin C, Li X, et al.Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport[J]. Marine Geology, 2010, 277(1): 48-60.
[8] Wan S, Yu Z, Clift P D, et al.History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2012, 326: 152-159.
[9] Chamley H.Clay sedimentation in Shikoku Basin since the Middle Miocene(North Philippine Sea,Leg58)[J]. Initial Report of Deep Sea Drilling Project, 1981, 58: 669-678.
[10] Xu Z, Li T, Wan S, et al.Evolution of East Asian monsoon: Clay mineral evidence in the western Philippine Sea over the past 700kyr[J]. Journal of Asian Earth Sciences, 2012, 60: 188-196.
[11] Seo I, Lee Y I, Yoo C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust[J]. Journal of Geophysical Research: Atmospheres , 2014, 119(19):11, 492-11, 504.
[12] Arculus R J, Ishizuka O, Bogus K, et al.Expedition 351: Izu-Bonin-Mariana Arc Origins: College Station, TX[R/OL]. International Ocean Discovery Program,2014.http:∥dx.doi.org/10.14379/iodp.proc.351.103,2015,1-64.
[13] Jiang F, Frank M, Li T, et al.Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes[J]. Geochemistry,Geophysics,Geosystems, 2013, 14(5): 1 538-1 551.
[14] Stumpf R.Late Quaternary Variability of Hydrography and Weathering Inputs on the SW Iberian Shelf from Clay Minerals and the Radiogenic Isotopes of Neodymium, Strontium and Lead[D].Christian:Christian-Albrechts-Universität, 2011.
[15] Krumm S.SediCalc (free geological software). GeoZentrum Nordbayern[R].Erlangen-Nürnberg: Universität Erlangen-Nürnberg, 2006. http://www.geol.uni-erlangen.de/sedicalc.
[16] Moore D M, Reynolds R C.X-ray Diffraction and the Identification and Analysis of Clay Minerals[M]. Oxford: Oxford University Press, 1989.
[17] Biscaye P E.Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7): 803-832.
[18] Chamley H.Clay Sedimentology[M]. New York: Springer-Verlag, 1989.
[19] Aoki K.Revised age and distribution of ca. 87ka Aso-4 tephra based on new evidence from the northwest Pacific Ocean[J]. Quaternary International,2008, 178(1):100-118.
[20] Takai A, Shibuya H, Yoshihara A, et al.Paleointensity measurements of pyroclastic flow deposits co-born with widespread tephras in Kyushu Island, Japan[J].Physics of the Earth and Planetary Interiors, 2002, 133(1): 159-179.
[21] Machida H.The stratigraphy, chronology and distribution of distal marker-tephras in and around Japan[J]. Global and Planetary Change, 1999, 21(1): 71-94.
[22] Chun J H, Ikehara K, Han S J.Evidence in Ulleung Basin sediment cores for a termination II (Penultimate deglaciation) eruption of the Aso-3 tephra[J].The Quaternary Research (Japan Association for Quaternary Research), 2004, 43(2): 99-112.
[23] Ikehara K, Fujine K.Fluctuations in the late Quaternary East Asian winter monsoon recorded in sediment records of surface water cooling in the northern Japan Sea[J].Journal of Quaternary Science, 2012, 27(9): 866-872.
[24] Diekmann B, Petsehick R, Gingele F X, et al.Clay mineral fluctuations in Late Quaternary sediments of the southeastern South Atlantic:Implications for past changes of deep water advection[M]∥The South Atlantic. Berlin:Springer Berlin Heidelberg, 1996: 621-644.
[25] Gingele F X, Müller P M, Schneider R R.Orbital forcing of freshwater input in the Zaire Fan area—Clay mineral evidence from the last 200 kyr[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 1998, 138(1): 17-26.
[26] Wan S, Li A, Clift P D, et al.Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(3): 561-582.
[27] Xu Zhaokai, Li Tiegang, Yu Xinke, et al.Sediment provenance and evolution of the East Asian winter monsoon since 700 ka recorded by major elements in the West Philippine Sea[J]. Chinese Science Bulletin,2013,58(11):1 048-1 056.
[徐兆凯, 李铁刚, 于心科, 等. 近 700 ka 来西菲律宾海沉积物来源和东亚冬季风演化的常量元素记录[J]. 科学通报, 2013, 58(11):1 048-1 056.]
[28] Jin Ning, Li Anchun, Liu Haizhi, et al.Clay minerals in surface sediment of the northwest Parece Vela Basin: Distribution and provenance[J].Oceanologia et Limnologia Sinica, 2007, 38(6): 504-511.
[靳宁, 李安春, 刘海志, 等. 帕里西维拉海盆西北部表层沉积物中黏土矿物的分布特征及物源分析[J]. 海洋与湖沼, 2007, 38(6): 504-511.]
[29] Mahoney J B.Nd and Sr isotopic signatures of fine-grained clastic sediments: A case study of western Pacific marginal basins[J]. Sedimentary Geology, 2005, 182(1): 183-199.
[30] Xiong Zhifang, Li Tiegang, Zhai Bin, et al.Clay mineral characteristics of Ethmodiscus rex diatom mats from low-latitude western Pacific during the last glacial and implications for their formation[J]. Earth Science—Journal of China University of Geosciences, 2010,35(4): 551-562.
[熊志方,李铁刚,翟滨,等.低纬度西太平洋末次冰期Ethmodiscus rex硅藻席黏土矿物特征及形成机制启示[J]. 地球科学: 中国地质大学学报, 2010,35(4): 551-562.]
[31] Li C S, Shi X F, Kao S J, et al.Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers[J]. Chinese Science Bulletin, 2012, 57(6):673-681.
[32] Liu Z, Tuo S, Colin C, et al.Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation[J]. Marine Geology, 2008, 255(3): 149-155.
[33] Nagel U, Muller G, Schumann D.Mineralogy of sediments cored during Deep Sea Project Leg 58-60 in the North and South Philippine Sea:Results of X-ray diffraction analyses[M]∥Hussong D M, Uyeda S, Blanchet R, et al, eds. Initial Reports of the Deep Sea Drilling Project.USA:National Science Famdation,1981,60:415-435.
[34] Yu Zhaojie.Research on Asian Eolian Input to the West Philippine Sea over the Last one Million Years[D]. Qingdao: Institute of Oceanology,Chinese Acedemy of Sciences, 2013.
[于兆杰. 近百万年以来西菲律宾海风尘沉积研究[D]. 青岛: 中国科学院海洋研究所, 2013.]
[35] Shi Y, Dai X, Li J.Origin and significance of clay minerals in the Last Interglacial loess in Lanzhou area, North Central China[J]. Marine Geology and Quaternary Geology, 1997, 17(1): 87-94.
[36] Shi Yuxin, Dai Xuerong, Song Zhiguang, et al.Characteristics of clay mineral assemblages and their spatial distribution of Chinese loess in different clmiatic zones[J]. Acta Sedimentologica Sinica,2005,23(4):690-695.
[师育新,戴雪荣,宋之光,等.我国不同气候带黄土中黏土矿物组合特性分析[J]. 沉积学报, 2005, 23(4): 690-695.]
[37] Zheng Honghan,Gu Xiongfei,Han Jiamao,et al.Clay minerals in loess of China and their tendency in loess section[J].Quaternary Sciences,1985,6(1):158-165.
[郑洪汉,顾雄飞,韩家懋,等.中国黄土中的黏土矿物及其在地层剖面中的变化趋势——洛川和陇西黄土剖面的初步研究[J].第四纪研究,1985,6(1):158-165.]
[38] Tang Songliu, Gu Xinjia, Luo Jiaxian.Mineralogical prooerties of the Quaternary sedients in Northern Henan[J].Acta Pedologica Sinica, 1979, 16(2): 157-163.
[唐诵六,顾新运,罗家贤.豫北第四纪沉积物的矿物特征[J]. 土壤学报, 1979, 16(2): 157-163.]
[39] Liu Z, Zhao Y, Colin C, et al.Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments[J].Applied Geochemistry, 2009, 24(11): 2 195-2 205.
[40] Ming J, Li Anchun, Meng Qingyong, et al.Quaternary assemblage characteristic and provenance of clay minerals in the Parecevela Basin of the east Philippine Sea[J].Marine Geology & Quaternary Geology, 2012, 32(4):139-148.
[41] Zhang Deyu.Clay mineral composition and distribution in the mariana trough[J].Journal of Oceanography of Huanghai & Bohai Seas, 1994, 12(2): 32-39.
[张德玉. 马里亚纳海槽区黏土矿物组成及分布特征[J]. 黄渤海海洋, 1994, 12(2): 32-39.]
[42] Yang S, Jung H S, Lim D I, et al.A review on the provenance discrimination of sediments in the Yellow Sea[J].Earth-Science Reviews, 2003, 63(1): 93-120.
[43] Zheng X, Li A, Wan S, et al.ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene: Sedimentological evidence from the Okinawa Trough[J].Journal of Geophysical Research: Oceans,2014, 119(7): 4 410-4 429.
[44] Lu J, Li A, Huang P, et al.Mineral distributions in surface sediments of the western South Yellow Sea: Implications for sediment provenance and transportation[J]. Chinese Journal of Oceanology and Limnology, 2015,33(2): 1-15.
[45] Duan Jing, Chen Zhaohui, Wu Lixin.Study on intraseasonal variation of current at the source region of kuroshio by analyzing the buoy observation data[J]. Advances in Earth Science,2014, 29(4): 523-530.
[段静, 陈朝晖, 吴立新. 黑潮源区海流季节内变化观测分析[J]. 地球科学进展, 2014, 29(4): 523-530.]
[46] Liu Wei,Song Jinming,Yuan Huamao, et al.Pathway and flux of inputting chemical substances from the Kuroshio to the East China Sea[J].Advances in Earth Science,2015,30(8):904-914.
[刘伟,宋金明,袁华茂,等. 黑潮化学物质输入东海的途径与通量[J]. 地球科学进展,2015,30(8):904-914.]
[47] Chi Ye, Li Anchun, Jiang Fuqing, et al.Assemblage and provenance of clay minerals of the east of Luzon Island[J]. Marine Science,2009, 33(9): 80-88.
[池野, 李安春, 蒋富清, 等. 吕宋岛东部海域黏土矿物组合特征及物源分析[J]. 海洋科学, 2015,33(9): 80-88.]
[48] Chamley H, Cadet J P, Charvet J.Nankai Trough and Japan Trench late Cenozoic paleoenvironments deduced from clay mineralogic data[J].DSDP Initiative Reports,1986,87:633-641.
[49] Andres M, Wimbush M, Park J H, et al.Observations of Kuroshio flow variations in the East China Sea[J].Journal of Geophysical Research: Oceans(1978-2012), 2008, 113(C5),doi:10.1029/2007JC004200.
[50] Honza E, Fujioka K.Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous[J].Tectonophysics,2004, 384(1): 23-53.
[51] Petschick R, Kuhn G, Gingele F.Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography[J].Marine Geology,1996, 130(3): 203-229.
[52] Ehrmann W, Setti M, Marinoni L.Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal palaeoclimatic history[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2005,229(3):187-211.
[53] Aoki S, Oinuma K.Clay mineral compositions in recent marine sediments around Nansei-Kyoto islands, south of Kyushu, Japan[J].Journal of Geological Society of Japan,1974, 80: 57-63.
[54] Murdmaa J O, Demidenko Y L, Kurnosov V B, et al.Composition and rates of accumulation of clayey sediments in the Philippine Sea[J].Oceanology,1977, 17: 318-321.
[55] Kolla V, Nadler L, Bonatti E.Clay mineral distributions in surface sediments of the Philippine Sea[J].Oceanologica Acta,1980, 3(2): 245-250.
[56] Ji J, Chen J, Lu H.Origin of illite in the loess from the Luochuan area, Loess Plateau, Central China[J].Clay Minerals,1999, 34(4): 525-525.
[57] Windom H L.Lithogenous material in marine sediments[J].Chemical oceanography,1976, 5: 103-135.
[58] Millot G.Géologie des Argues[Z]. 1964.
[59] Lisiecki L E, Raymo M E.A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1),doi:10.1029/2004PA001071.
[60] Sun Y, Clemens S C, An Z, et al.Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2006, 25(1): 33-48.
[61] Sun Y, An Z.Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau[J].Journal of Geophysical Research:Atmospheres (1984-2012), 2005,110(D23),doi:10.1029/2005JD006064.
[62] Hovan S A, Rea D K, Pisias N G, et al.A direct link between the China loess and marine δ18O records: Aeolian flux to the north Pacific[J].Nature, 1989, 340: 296-298.
[63] An Zhisheng, Zhang Peizhen, Wang Erqi, et al.Changes of the Monsoon-arid environment in China and growth of the Tibetan Plateau since the Miocene[J].Quaternary Sciences, 2006,26(5):678-693.
[安芷生, 张培震, 王二七, 等.中新世以来我国季风—干旱环境演化与青藏高原的生长[J]. 第四纪研究, 2006, 26(5): 678-693.]
[64] Wu F, Fang X, Ma Y, et al.Plio-Quaternary stepwise drying of Asia: Evidence from a 3-Ma pollen record from the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2007,257(1):160-169.
[1] 许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.
[2] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[3] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[4] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[5] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[6] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[7] 邹银洪, 张润宇, 陈敬安, 王立英, 陆顶盘. 黏土矿物在富营养化水体和底泥磷污染控制中的应用研究进展[J]. 地球科学进展, 2018, 33(6): 578-589.
[8] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[9] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[10] 唐志敏, 侯青叶, 游远航, 杨忠芳, 李括. 珠三角平原区第四系剖面重金属分布特征及其影响因素[J]. 地球科学进展, 2017, 32(8): 885-898.
[11] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[12] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[13] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[14] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.
[15] 黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.
阅读次数
全文


摘要