地球科学进展 ›› 2016, Vol. 31 ›› Issue (9): 894 -906. doi: 10.11867/j.issn.1001-8166.2016.09.0894

上一篇    下一篇

叶蜡单体氢同位素古高程计研究进展
林杰 1, 3( ), 庄广胜 2, 王成善 1, 3, 戴紧根 1, 3   
  1. 1.中国地质大学(北京)地球科学与资源学院,北京 100083
    2.路易斯安那州立大学地质与地球物理系,路易斯安那州 巴吞鲁日 70803
    3.中国地质大学(北京)生物与环境地质国家重点实验室,北京 100083
  • 收稿日期:2016-07-06 修回日期:2016-08-28 出版日期:2016-09-20
  • 基金资助:
    中国地质调查局项目“青藏高原拉萨—羌塘地块构造热年代学填图和矿产调查”(编号:DD20160027)资助

Research Progress of Leaf-wax Hydrogen Isotope Paleoaltimetry

Jie Lin 1, 3( ), Guangsheng Zhuang 2, Chengshan Wang 1, 3, Jin’gen Dai 1, 3   

  1. 1.School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
    2.Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA
    3.State Key Laboratory of Biogeology and Environmental Geology, Research Center for Tibetan Plateau Geology, China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2016-07-06 Revised:2016-08-28 Online:2016-09-20 Published:2016-09-20
  • About author:

    First author:Lin Jie(1992-),male,Yuncheng City,Shanxi Province,Ph.D student. Research areas include paleoaltimetry of Tibetan Plateau.E-mail:ljietibet@163.com

  • Supported by:
    Project supported by the China Geological Survey project “Thermochronological mapping and mineral resources survey of Lhasa-Qiangtang Terrane in Tibetan Plateau”(No.DD20160027)

高等植物类脂物广泛分布于土壤、河流和湖泊沉积物中,正构烷烃是植物类脂物的重要组成部分。高等陆生植物叶蜡正构烷烃具有较长的链长(nC27-nC33)以及明显的奇偶优势(CPI>5), 其氢同位素组成在一定程度上反映了大气降水的同位素特征,对古高程重建具有重要的指示意义。不同地区的现代土壤正构烷烃氢同位素随高程的递减率有所不同,说明地区性的校正是必要的。蒸散富集作用和生物合成作用过程也会影响正构烷烃氢同位素值。在利用长链正构烷烃重建古高程时,需结合古气候、古纬度、古植被等多方面资料综合分析。

Leaf waxes/lipids which are derived from terrestrial higher plants are ubiquitous in fluvial, lake, and marine sediments. N-alkanes are an important component of leaf waxes. Modern leaf wax n-alkanes from terrestrial higher plants are characterized with long chains with 27 to 33 carbon atoms (nC27-nC31) and high carbon preference index (CPI) values (>5). The hydrogen isotopes in n-alkanes are determined by meteoric water compositions, which makes them a potential proxy in paleoaltimetry studies. The lapse rates at which n-alkane hydrogen isotopes in modern soils change with altitude vary in different areas, implying that local calibration has to be conducted. The enrichment due to evapotranspiration and difference in fractionation during biosynthesis also influence n-alkane hydrogen isotopes values. When using long-chain n-alkanes to reconstruct paleoaltitude, many factors such as paleoclimate, paleolatitude and paleobotany should be considered.

中图分类号: 

图1 湖水富集程度与 nC 29表观分馏系数关系图(据参考文献[69]修改)
Fig.1 Relationship between the isotopic enrichment of lake water from local precipitation and the apparent fractionation between the C 29 n-alkane and local precipitation(modified after reference [69])
图2 东亚季风主控地区土壤 δ 2 H n C 29 与高程关系图
贡嘎山数据引自参考文献[39,52];太白山数据引自参考文献[37];武夷山和神农架数据引自参考文献[36]
Fig.2 Soil δ 2 H n C 29 vs. altitude in East Asian Monsoon dominant area
Mt. Gongga data from references[39,52], Mt. Taibai data from reference[37], Mt. Wuyi and Shengnongjia data from reference[36]
图3 印度季风主控地区土壤 δ 2 H n C 29 与高程关系图
乞力马扎罗山数据引自参考文献[77];梅加拉亚邦数据引自参考文献[40];喜马拉雅山南坡,八一—拉萨和察隅—波密数据引自参考文献[76]
Fig.3 Soil δ 2 H n C 29 vs. altitude in Indian Monsoon dominant areas
Mt. Kilimanjaro data from reference[77], Meghalaya area data from reference[40], South Himalayan,Bayi-Lhasa and Zayu-Bomi data from reference[76]
图4 西风带主控地区 δ 2 H n C 29 与高程关系图
马衔山、北大河和西营河数据引自参考文献[38],西昆仑山数据引自参考文献[39],天山数据引自参考文献[36],南阿尔卑斯山数据引自参考文献[42]
Fig.4 δ 2 H n C 29 vs. altitude in Westerlies dominant areas
Mt. Maxian, R.Beida and R.Xiying data from reference[38], Mt.West Kunlun data from reference[39], Mt. Tianshan data from reference[36], Mt. Southern Alps data from reference [42]
图5 中新世丁青湖组由叶蜡和湖相碳酸盐岩计算出的蒸发水和未蒸发降水氢氧同位素组成
实心圆代表叶蜡和湖相碳酸盐岩计算得到蒸发水的氢氧同位素组成;空心圆代表经LLEL校正后的大气降水的氢氧同位素组成。数据来自伦坡拉盆地丁青湖组泥岩,据参考文献[69]修改
Fig.5 Hydrogen and oxygen isotopic composition of evaporated waters and unevaporated precipitation calculated from plant-waxes and lacustrine carbonates of the Miocene Dingqing Formation
Filled dot represent δ 2H and δ 18O of evaporated waters calculated from leaf waxes and lacustrine carbonates, while empty dots represent δ 2H and δ 18O of meteoric precipitations which are revised by LLEF. Modified after reference[69]
[1] Bishop P.Long-term landscape evolution: Linking tectonics and surface processes[J].Earth Surface Processes and Landforms, 2007, 32(3): 329-365.
[2] Molnar P R,Boos W,Battisti D S.Orographic controls on climate and paleoclimate of Asia:Thermal and mechanical roles for the Tibetan Plateau[J].Annual Review of Earth and Planetary Sciences,2010,38(1):77-102.
[3] Ruddiman W.Tectonic Uplift and Climate Change[M]. New York: Springer Science & Business Media, 1997.
[4] Mulch A.Stable isotope paleoaltimetry and the evolution of landscapes and life[J]. Earth and Planetary Science Letters, 2016, 433: 180-191,doi:10.1016/j.epsl.2015.10.034.
[5] Mulch A, Graham S A,Chamberlain C P.Hydrogen isotopes in eocene river gravels and paleoelevation of the Sierra Nevada[J]. Science, 2006, 313(5 783): 87-89.
[6] Mulch A, Sarna-Wojcicki A M, Perkins M E, et al. A miocene to pleistocene climate and elevation record of the Sierra Nevada (California)[J].Proceedings of National Academy of Sciences, 2008, 105(19): 6 819-6 824.
[7] Bishop P.Long-term landscape evolution: Linking tectonics and surface processes[J]. Earth Surface Processes and Landforms, 2007, 32(3): 329-365.
[8] Chamberlain C P, Mix H T, Mulch A, et al.The Cenozoic climatic and topographic evolution of the western North American Cordillera[J]. American Journal of Science, 2012, 312(2): 213-262.
[9] Gébelin A, Mulch A, Teyssier C, et al. Coupled basin-detachment systems as paleoaltimetry archives of the western North American Cordillera[J]. Earth and Planetary Science Letters, 2012, 335/336: 36-47,doi:10.1016/j.epsl.2012.04.029.
[10] Garzione C N, Quade J, DeCelles P G, et al. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya[J]. Earth and Planetary Science Letters, 2000, 183(1/3): 215-229.
[11] Rowley D B,Currie B S.Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature, 2006, 439: 677-681,doi:10.1038/natare04506.
[12] Saylor J E, Quade J, Dettman D L, et al.The late Miocene through present paleoelevation history of southwestern Tibet[J]. American Journal of Science, 2009, 309(1): 1-42.
[13] Xu Q, Ding L, Zhang L, et al.Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau[J]. Earth and Planetary Science Letters, 2013, 362: 31-42,doi:10.1016/j.epsl.2012.11.058.
[14] Ding L, Xu Q, Yue Y, et al.The andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264,doi:10.1016/j.epsl.2014.01.045.
[15] Quade J, Breecker D O, Daeron M, et al.The paleoaltimetry of Tibet: An isotopic perspective[J]. American Journal of Science, 2011, 311(2): 77-115.
[16] Garzione C N, Molnar P, Libarkin J C, et al.Rapid late Miocene rise of the Bolivian Altiplano: Evidence for removal of mantle lithosphere[J]. Earth and Planetary Science Letters, 2006, 241: 543-556,doi:10.1016/j.epsl.2005.11.026.
[17] Garzione C N, Auerbach D J, Smith J J S, et al. Clumped isotope evidence for diachronous surface cooling of the Altiplano and pulsed surface uplift of the Central Andes[J]. Earth and Planetary Science Letters, 2014, 393: 173-181.
[18] Mulch A, Uba C E, Strecker M R, et al.Late Miocene climate variability and surface elevation in the central Andes[J]. Earth and Planetary Science Letters, 2010, 290(1/2): 173-182.
[19] Campani M,Mulch A,Kempf O, et al.Miocene paleotopography of the Central Alps[J]. Earth and Planetary Science Letters, 2012, 337: 174-185,doi:10.1016/j.epsl.2012.05.017.
[20] Chamberlain C, Poage M, Craw D, et al.Topographic development of the Southern Alps recorded by the isotopic composition of authigenic clay minerals, South Island, New Zealand[J]. Chemical Geology, 1999, 155(3): 279-294.
[21] Ambach W, Dansgaard W, Eisner H, et al.The altitude effect on the isotopic composition ofprecipitation and glacier ice in the Alps[J]. Tellus, 1968, 20(4): 595-600.
[22] Araguas-Araguas L, Froehlich K,Rozanski K.Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture[J]. Hydrological Processes, 2000, 14(8): 1 341-1 355.
[23] Gonfiantini R, Roche M A, Olivry J C, et al.The altitude effect on the isotopic composition of tropical rains[J]. Chemical Geology, 2001, 181(1): 147-167.
[24] Poage M A, Chamberlain C P.Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters:Considerations for studies of paleoelevation change[J]. American Journal of Science, 2001, 301(1): 1-15.
[25] Rowley D B, Pierrehumbert R T,Currie B S.A new approach to stable isotope-based paleoaltimetry:Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene[J].Earth and Planetary Science Letters, 2001, 188(1): 253-268.
[26] Rowley D B.Stable Isotope-Based Paleoaltimetry: Theory and Validation[J]. Reviews in Mineralogy and Geochemistry, 2007, 66(1): 23-52.
[27] Quade J, Garzione C,Eiler J.Paleoelevation reconstruction using Pedogenic Carbonates[J]. Reviews in Mineralogy and Geochemistry, 2007, 66(1): 53-87.
[28] Mulch A,Chamberlain C P.Stable isotope paleoaltimetry in orogenic belts the silicate record in surface and crustal geological archives[J]. Reviews in Mineralogy and Geochemistry, 2007, 66(1): 89-118.
[29] Kohn M J,Dettman D L.Paleoaltimetry from stable isotope compositions of fossils[J]. Reviews in Mineralogy and Geochemistry, 2007, 66(1): 119-154.
[30] Morrill C,Koch P L.Elevation or alteration? Evaluation of isotopic constraints on paleoaltitudes surrounding the Eocene Green River Basin[J]. Geology, 2002, 30(2): 151-154.
[31] Garzione C N, Dettman D L,Horton B K.Carbonate oxygen isotope paleoaltimetry: Evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(2): 119-140.
[32] Blisniuk P M,Stern L A.Stable isotope paleoaltimetry:A critical review.[J]. American Journal of Science, 2005, 305(10): 1 033-1 074.
[33] Anderson V J, Saylor J E, Shanahan T M, et al.Paleoelevation records from lipid biomarkers: Application to the tropical Andes[J]. Geological Society of America Bulletin, 2015, 127(11/12): 1 604-1 616.
[34] Jia G, Bai Y, Ma Y, et al.Paleoelevation of Tibetan Lunpola basin in the Oligocene-Miocene transition estimated from leaf wax lipid dual isotopes[J]. Global and Planetary Change, 2015, 126: 14-22,doi:10.1016/j.gloplacha.2014.12.007.
[35] Polissar P J, Freeman K H, Rowley D B, et al.Paleoaltimetry of the Tibetan Plateau from DH ratios of lipid biomarkers[J]. Earth and Planetary Sciences Letters, 2009, 287(1): 64-76.
[36] Luo P, Peng P A, Gleixner G, et al.Empirical relationship between leaf wax n-alkane δD and altitude in the Wuyi, Shennongjia and Tianshan Mountains, China: Implications for paleoaltimetry[J]. Earth and Planetary Science Letters, 2011, 301(1): 285-296.
[37] Zhang Pu, Liu Weiguo.Effect of plant life form on relationship between δD values of leaf wax n-alkanes and altitude along Mount Taibai, China[J]. Organic Geochemistry, 2011, 42(1): 100-107.
[38] Bai Y, Tian Q, Fang X, et al.The “inverse altitude effect” of leaf wax-derived n-alkane δD on the northeastern Tibetan Plateau[J]. Organic Geochemistry, 2014, 73: 90-100,doi:10.1016/j.orggeochem.2014.05.013.
[39] Bai Y, Fang X, Gleixner G, et al.Effect of precipitation regime on δD values of soil n-alkanes from elevation gradients-Implications for the study of paleo-elevation[J]. Organic Geochemistry, 2011, 42(7): 838-845.
[40] Ernst N, Peterse F, Breitenbach S F M, et al. Biomarkers record environmental changes along an altitudinal transect in the wettest place on Earth[J]. Organic Geochemistry, 2013, 60: 93-99.
[41] Zhuang G, Brandon M T, Pagani M, et al.Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma[J]. Earth and Planetary Science Letters, 2014, 390: 186-198,doi:10.1016/j.epsl.2014.01.003.
[42] Zhuang G, Pagani M, Chamberlin C, et al.Altitudinal shift in stable hydrogen isotopes and microbial tetraether distribution in soils from the Southern Alps, NZ: Implications for paleoclimatology and paleoaltimetry[J]. Organic Geochemistry, 2015, 79: 56-64,doi:10.1016/j.orggeochem.2014.12.007.
[43] Eglinton G,Hamilton R J.Leaf epicuticular Waxes[J]. Science, 1967, 156(3 780): 1 322-1 335.
[44] Schimmelmann A, Sessions A L,Mastalerz M.Hydrogen isotopic(D/H) composition of organic matter during diagenesis and thermal maturation[J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 501-533.
[45] Sessions A L, Sylva S P, Summons R E, et al.Isotopic exchange of carbon-bound hydrogen over geologic timescales[J]. Geochimica et Cosmochimica Acta, 2004, 68(7): 1 545-1 559.
[46] Yang H,Huang Y.Preservation of lipid hydrogen isotope ratios in Miocene lacustrine sediments and plant fossils at Clarkia, northern Idaho, USA[J]. Organic Geochemistry, 2003, 34(3): 413-423.
[47] Gao L, Hou J, Toney J, et al.Mathematical modeling of the aquatic macrophyte inputs of mid-chain n-alkyl lipids to lake sediments: Implications for interpreting compound specific hydrogen isotopic records[J]. Geochimica et Cosmochimica Acta, 2011, 75(13): 3 781-3 791.
[48] Diefendorf A F, Freeman K H, Wing S L, et al.Production of n-alkyl lipids in living plants and implications for the geologic past[J]. Geochimica et Cosmochimica Acta, 2011, 75(23): 7 472-7 485.
[49] Bi X, Sheng G, Liu X, et al.Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes[J]. Organic Geochemistry, 2005, 36(10): 1 405-1 417.
[50] Chikaraishi Y,Naraoka H.Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants[J]. Phytochemistry, 2003, 63(3): 361-371.
[51] Sachse D, Radke J,Gleixner G.δD values of individual n-alkanes from terrestrial plants along a climatic gradient—Implications for the sedimentary biomarker record[J]. Organic Geochemistry, 2006, 37(4): 469-483.
[52] Jia G, Wei K, Chen F, et al.Soil n-alkane δD vs. altitude gradients along Mount Gongga, China[J]. Geochimica et Cosmochimica Acta, 2008, 72(21): 5 165-5 174.
[53] Sachse D, Radke J,Gleixner G.Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability[J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4 877-4 889.
[54] Schimmelmann A, Lewan M D,Wintsch R P.D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III[J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3 751-3 766.
[55] Cranwell P.Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change[J]. Freshwater Biology, 1973, 3(3): 259-265.
[56] Rieley G, Collier R J, Jones D M, et al.Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds[J]. Organic Geochemistry, 1991, 17(6): 901-912.
[57] Ficken K J, Li B, Swain D L, et al.An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7): 745-749.
[58] Viso A-C, Pesando D, Bernard P, et al.Lipid components of the Mediterranean seagrass Posidonia oceanica[J]. Phytochemistry, 1993, 34(2): 381-387.
[59] Cranwell P, Eglinton G,Robinson N.Lipids of aquatic organisms as potential contributors to lacustrine sediments—II[J]. Organic Geochemistry, 1987, 11(6): 513-527.
[60] Han J,Calvin M.Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments[J]. Proceedings of the National Academy of Sciences, 1969, 64(2): 436-443.
[61] Gelpi E, Schneider H, Mann J, et al.Hydrocarbons of geochemical significance in microscopic algae[J]. Phytochemistry, 1970, 9(3): 603-612.
[62] Hou J, Huang Y, Oswald W W, et al.Centennial-scale compound-specific hydrogen isotope record of Pleistocene-Holocene climate transition from southern New England[J]. Geophysical Research Letters, 2007, 34(19),doi: 10.1029/2007GL030303.
[63] Smith F A,Freeman K H.Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses[J]. Geochimica et Cosmochimica Acta, 2006, 70(5): 1 172-1 187.
[64] Liu W, Yang H,Li L.Hydrogen isotopic compositions of n-alkanes from terrestrial plants correlate with their ecological life forms[J]. Oecologia, 2006, 150(2): 330-338.
[65] Liu W,Huang Y.Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau[J]. Organic Geochemistry, 2005, 36(6): 851-860.
[66] Hou J, D’Andrea W J, MacDonald D, et al. Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond, Massachusetts (USA)[J]. Organic Geochemistry, 2007, 38(6): 977-984.
[67] Polissar P J,Freeman K H.Effects of aridity and vegetation on plant-wax δD in modern lake sediments[J]. Geochimica et Cosmochimica Acta, 2010, 74(20): 5 785-5 797.
[68] Rosenmeier M F, Hodell D A, Brenner M, et al.Influence of vegetation change on watershed hydrology: Implications for paleoclimatic interpretation of lacustrine δ18O records[J]. Journal of Paleolimnology, 2002, 27(1): 117-131.
[69] Douglas P M J, Pagani M, Brenner M, et al. Aridity and vegetation composition are important determinants of leaf-wax δD values in southeastern Mexico and Central America[J]. Geochimica et Cosmochimica Acta, 2012, 97: 24-45,doi:10.1016/j.gca.2012.09.005.
[70] Rao Z, Zhu Z, Jia G, et al.Compound specific δD values of long chain n-alkanes derived from terrestrial higher plants are indicative of the δD of meteoric waters: Evidence from surface soils in eastern China[J]. Organic Geochemistry, 2009, 40(8): 922-930.
[71] McInerney F A, Helliker B R,Freeman K H. Hydrogen isotope ratios of leaf wax n-alkanes in grasses are insensitive to transpiration[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 541-554.
[72] Feakins S J,Sessions A L.Controls on the D/H ratios of plant leaf waxes in an arid ecosystem[J]. Geochimica et Cosmochimica Acta, 2010, 74(7): 2 128-2 141.
[73] Sachse D, Gleixner G, Wilkes H, et al.Leaf wax n-alkane δD values of field-grown barley reflect leaf water δD values at the time of leaf formation[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6 741-6 750.
[74] Bai Y, Fang X, Jia G, et al.Different altitude effect of leaf wax n-alkane δD values in surface soils along two vapor transport pathways, southeastern Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 2015, 170: 94-107,doi:10.1016/j.gca.2015.08.016.
[75] Peterse F, Kim J-H, Schouten S, et al.Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway)[J]. Organic Geochemistry, 2009, 40(6): 692-699.
[76] Ramesh R,Sarin M.Stable isotope study of the Ganga (Ganges) river system[J]. Journal of Hydrology, 1992, 139(1/4): 49-62.
[77] Hou J, D’Andrea W J,Huang Y. Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and experimental assessments[J]. Geochimica et Cosmochimica Acta, 2008, 72(14): 3 503-3 517.
[78] Chikaraishi Y,Naraoka H.Carbon and hydrogen isotope variation of plant biomarkers in a plant-soil system[J]. Chemical Geology, 2006, 231(3): 190-202.
[79] Peterse F, Vander Meer M T J, Schouten S, et al. Assessment of soil n-alkane D and branched tetraether membrane lipid distributions as tools for paleoelevation reconstruction[J]. Biogeosciences Discussions, 2009, 6(12):2 799-2 807.
[80] Sun Huizhen,Guo Qingxi,Zhou Xiaofeng.Classification attribute and approach of plant functional types[J]. Journal of Northeast Forestry University, 2004, 32(2):81-83.
[孙慧珍, 国庆喜,周晓峰. 植物功能型分类标准及方法[J]. 东北林业大学学报, 2004, 32(2): 81-83.]
[81] Zhang Z,Sachs J P.Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species[J]. Organic Geochemistry, 2007, 38(4): 582-608.
[82] Mügler I, Sachse D, Werner M, et al.Effect of lake evaporation on δD values of lacustrine n-alkanes: A comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany)[J]. Organic Geochemistry, 2008, 39(6): 711-729.
[83] Hren M T, Pagani M, Erwin D M, et al.Biomarker reconstruction of the early Eocene paleotopography and paleoclimate of the northern Sierra Nevada[J]. Geology, 2010, 38(1): 7-10.
[84] Deng T, Wang S, Xie G, et al.A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry[J]. Chinese Science Bulletin, 2011, 57(2/3):261-269.
[85] Sun J, Xu Q, Liu W, et al.Palynological evidence for the latest Oligocene-early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014,399: 21-30,doi:10.1016/j.palaeo.2014.02.004.
[86] Jiang Gaolei, Zhang Kexin, Xu Yadong.Research progress of quantitative paleoelevation reconstruction of Tibetan Plateau[J]. Advances in Earth Science, 2015, 30(3): 334-345.
[姜高磊, 张克信,徐亚东. 青藏高原古高程定量恢复研究进展[J]. 地球科学进展, 2015, 30(3): 334-345.]
[1] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[2] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[3] 张杰,贾国东. 植物正构烷烃及其单体氢同位素在古环境研究中的应用[J]. 地球科学进展, 2009, 24(8): 874-881.
[4] 杨红梅,王成善. 古高程计:氢氧同位素的新应用[J]. 地球科学进展, 2007, 22(9): 960-968.
阅读次数
全文


摘要