地球科学进展 ›› 2017, Vol. 32 ›› Issue (6): 668 -676. doi: 10.11867/j.issn.1001-8166.2017.06.0668

上一篇    

壁画盐害水汽来源研究——以隆兴寺为例
于宗仁 1, 2( ), 王彦武 2, 王小伟 2, 赵林毅 2, 郭青林 2, 王旭东 1, 2   
  1. 1.兰州大学土木工程与力学学院,甘肃 兰州 730000
    2.国家古代壁画与土遗址保护工程技术研究中心,甘肃 敦煌 736200
  • 收稿日期:2017-02-13 修回日期:2017-05-03 出版日期:2017-06-20
  • 基金资助:
    国家文物局“文物保护科技优秀青年研究计划”(编号:2014224)资助

Research on the Water Vapor Source Induced Diseases of Wall Paintings in Longxing Temple

Zongren Yu 1, 2( ), Yanwu Wang 2, Xiaowei Wang 2, Linyi Zhao 2, Qinglin Guo 2, Xudong Wang 1, 2   

  1. 1.School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000,China
    2.National Ancient Wall Painting and Earthen Archaeological Site Engineering Research Center, Gansu Dunhuang 736200,China
  • Received:2017-02-13 Revised:2017-05-03 Online:2017-06-20 Published:2017-06-10
  • About author:

    First author:Yu Zongren(1975-),male,Jingtai County,Gansu Province,Associate professor. Research areas include coservation of cultuarl relics.E-mail:13588975@qq.com

  • Supported by:
    Project supported by the State Administration of Cultural Heritage “Research program for outstanding youth of heritage conservation”(No.2014224)

利用高密度电法、微波测湿和热红外成像等无损检测手段,结合便携式离子色谱的现场分析和温湿度监测等方法,从水汽和盐分2个角度开展对隆兴寺摩尼殿扇面墙壁画病害区域的综合调查,研究盐害的主要成因。结果表明,壁画支撑体和地仗中的水汽主要来源是空气中的水汽和大气降水,毛细水作用通道的存在和区域温差导致的水汽运移速度加快为水分在文物本体中的活动创造了条件,支撑体和地仗中较高含量的易溶盐是病害产生的根本原因,高湿、高盐是壁画病害区域的典型特征。

The method of ion chromatographic analysis was used to analyze major salt induced diseases of wall paintings in Moni Temple of Longxing Temple, and the non-destructive testing methods included electrical resistivity tomography, microwave moisture measurement, thermal infrared imaging and temperature and humidity monitor were applied to survey the source water vapor source. The results showed as follows: NaCl is head fact induced disease; there are latent areaways in walls and buddha stage; at the same time, the temperature difference between the lesion area and the surrounding murals accelerates the velocity of water vapor migration; the main water vapor source is water vapor in the air of Moni Temple and atmospheric rainfall.

中图分类号: 

表1 摩尼殿取样记录表
Table 1 The list of sample from Moni Temple
序号 编号 取样位置 样品说明 备注
1 bsm-1 北扇面墙内侧,佛像后下部墙体,距地面0.3 m 细泥层 原始地仗
2 bsm-2 北扇面墙内侧,佛像后下部墙体,距地面1.5 m 粗泥层,含有纤维 原始地仗
3 X-1 西扇面墙外侧,距山墙南端3.1 m,距地面1.2 m 表层地仗,表面呈青灰色,内侧呈土红色,碎片状 后期加固地仗
4 X-2 西扇面墙外侧,距山墙南端3.9 m,距地面1.3 m 细泥层,粉末状,暗红色 后期加固地仗
5 X-3 西扇面墙外侧,距地面1.5 m 粗泥层地仗,碎块状,灰白色 后期加固地仗
6 X-4 西扇面墙外侧,距山墙南端3.9 m,距地面1.5 m 粗泥层地仗,碎块状,灰白色 后期加固地仗
7 T-1 文殊菩萨莲花台根部,距西扇面墙内侧1.2 m,距
莲花台底部20 cm
风化砖样,碎块状,青色 原始支撑体
8 T-2 北扇面墙内侧,文殊菩萨莲花台根部,距西扇面
墙内侧1.6 m,距莲台底部20 cm
风化砖样,粉末状,青色 原始支撑体
9 T-3 北扇面墙内侧,文殊菩萨莲花台根部风化处,距
西扇面墙内侧2.2 m,距佛台边3.3 m
风化砖样,粉末状,灰色 原始支撑体
10 T-Y 北扇面墙内侧,文殊菩萨莲花台根部盐霜,距西
扇面墙内侧1.4 m,距佛台边3.3 m
砖体表面盐霜,粉末状,灰白色 原始支撑体
11 D-1 东扇面墙外侧木头表面,距地面1.2 m,距山墙北
壁4.5 m
尘土样,粉末,土黄色 表面尘土
12 D-2 东扇面墙外侧,距地面1.3 m,距山墙北壁4.5 m 地仗,细颗粒状,土黄色 原始地仗
图1 摩尼殿温湿度监测点分布图
Fig.1 The distribution of temperature and humidity monitor
表2 摩尼殿易溶盐分析结果
Table 2 The results of salt analysis for Moni Temple
图2 相对湿度年际变化图
Fig.2 The annual change map of RH
图3 L12高密度电法测试结果
Fig.3 The electrical resistivity tomography result of L12
图4 摩尼殿内高密度电法测试结果
Fig.4 The electrical resistivity tomography result of Moni Temple
图5 L1,L2,L4和L5测线的测试结果
Fig.5 The microwave moisture measurement result of L1,L2,L4 and L5
图6 L3,L6和L7的测试结果
Fig.6 The microwave moisture measurement result of L3, L6 and L7
图7 红外热像仪测试前后对比图
Fig.7 The comparison of thermal infrared imaging
表3 不同位置原始壁画及病害区域温度统计表
Table 3 The temperature statistics of each diseases area
[1] Liu Youheng, Guo Lingdi, Fan Ruiping.The study on mural of Longxing Temple(I)[J]. Wenwu Chunqiu,2009,(5): 20-27.
[刘友恒, 郭玲娣,樊瑞平. 隆兴寺摩尼殿壁画初探(上)[J]. 文物春秋, 2009, (5): 20-27.]
[2] Ren Ye.The Research on Mani Temple Murals of Longxing Temple at Hebei[D]. Beijing: Capital Normal University, 2014.
[任晔. 河北隆兴寺摩尼殿壁画研究[D]. 北京:首都师范大学, 2014.]
[3] Guo Hong, Li Zuixiong, Qiu Yuanxun, et al.The mechanisms of efflorescent disaster of murals in Mogao Grottoes at Dunhuang(III)[J]. Dunhuang Research, 1999,3: 153-175.
[郭宏, 李最雄, 裘元勋, 等. 敦煌莫高窟壁画酥碱病害机理研究之三[J]. 敦煌研究, 1999,3: 153-175.]
[4] Ni Yong, Ge Chengbin, Wang Wanfu, et al.Study on flaking mechanism of Mogao Grottoes murals at Dunhuang[J]. Modern Electronics Technique, 2016,39(3): 120-122.
[倪勇, 葛承滨, 汪万福, 等. 敦煌莫高窟壁画起甲机理研究[J]. 现代电子技术, 2016,39(3): 120-122.]
[5] Zhang Mingquan, Zhang Huyuan, Zeng Zhengzhong, et al.The mechanisms of efflorescent disaster of Wall-paintings in Mogao Grottoes[J]. Journal of Lanzhou University (Natural Science), 1995,31(1):96-101.
[张明泉,张虎元,曾正中,等. 莫高窟壁画酥碱病害产生机理[J]. 兰州大学学报:自然科学版, 1995,31(1): 96-101.]
[6] Chai Lijie.Controls of Water Movement and Transform in Yungang Grottoes, Datong, China[D]. Beijing:China University of Geoscience (Beijing),2011.
[柴利杰. 云冈石窟水分来源控制因素[D].北京:中国地质大学(北京), 2011.]
[7] Gan Xiangming.Study and Control of Condensation Water in Yungang Grottoes[D]. Beijing: China University of Geoscience (Beijing), 2006.
[甘向明. 云冈石窟凝结水研究与防治[D].北京:中国地质大学(北京), 2006.]
[8] Huang Xuan.Simulation Experimental Study on Deterioration of Carbonate Rock Surface Induced by Condensed Water in Longmen Grottoes[D]. Beijing: China University of Geoscience (Beijing), 2012.
[黄璇. 凝结水对龙门石窟碳酸盐岩体表面劣化作用的模拟试验研究[D].北京:中国地质大学(北京), 2012.]
[9] Ma Chaolong, Fang Yun, Li Jianhou, et al.Comprehensive prevention and control measures and analysis on the causes of leakage in the northern section of Longfu Grottoes and the Fengxian Temple in Longmen Grottoes[J]. Dunhuang Reseach, 2007,(5): 36-38.
[马朝龙, 方云, 李建厚, 等. 龙门石窟万佛洞至奉先寺北段渗漏水成因分析及综合防治措施研究[J]. 敦煌研究, 2007,(5): 36-38.]
[10] Wang Bin, Guo Shuhua.Comprehensive treatment of water penetration of the Laoshan Han Dynasty acient Grave[J]. Construction Technology, 2005, 34(1): 65-66.
[王斌,郭书华. 老山汉墓渗水综合治理[J]. 施工技术, 2005, 34(1): 65-66.]
[11] Zhao Fan, Yao Xue.The treatment of water disease in Grottoes[J]. The Silk Road, 2012,(4): 108-111.
[赵凡,姚雪. 浅谈石窟水害的治理[J]. 丝绸之路, 2012,(4): 108-111.]
[12] Li Hongsong, Wang Wanfu, Zhan Hongtao, et al.New judgement on the source of soil water in extremely dry zone[J]. Acta Ecologica Sinica, 2010, 30(1): 1-7.
[13] Jin Zhiliang, Chen Gangquan, Xia Yin, et al.Comparative study of salt damage caused by sulfates and chlorides to mural paintings-evidence of superpenetration,migration and crystallization destruction resulting from sodium sulfate[J]. Science of Conservation and Archaeology, 2015,(1): 29-38.
[靳治良, 陈港泉, 夏寅, 等. 硫酸盐与氯化物对壁画的破坏性对比研究——硫酸钠超强的穿透, 迁移及结晶破坏力证据[J]. 文物保护与考古科学, 2015,(1): 29-38.]
[14] Zuo Chunying, Ding Yanmei.The principle and application with testing water content in material by using microwave technique[J]. Journal of Microwaves, 2006, 21(B4): 153-156.
[左春英,丁言镁. 微波测湿原理及其应用[J]. 微波学报, 2006, 21(B4): 153-156.]
[15] Qian Ling, Xia Yin, Hu Hongyan, et al.Investigation and analysis of disastrous soluble salts in Sanmenxia Guoji Tomb sites[J]. Analysis and Testing Technology and Instruments, 2016,(2): 80-89.
[钱玲, 夏寅, 胡红岩, 等. 三门峡虢季墓遗址盐害分析与调查[J]. 分析测试技术与仪器, 2016,(2): 80-89.]
[16] Qinghai Institute of Salt Lakes,Chinese Academy of Sciences. Brine and Salt Analysis Methods[M].Beijing: Science Press, 1988: 14-17.
[中国科学院青海盐湖研究所. 卤水和盐的分析方法[M]. 北京:科学出版社,1988: 14-17.]
[17] Agnew N.Conservation of ancient sites on the silk road[C]∥Proceedings of an International Conference on the Conservation of Grotto Sites, Mogao Grottoes, Dunhuang. 1997.
[18] Liu Fei, Chen Jun, Mu Junying, et al.Detection of soil temperature and its relationship with moisture content[J]. Agricultural Research in the Arid Areas, 2013, 31(3): 95-99.
[刘斐, 陈军, 慕军营, 等. 土壤温度检测及其与含水率关系研究[J]. 干旱地区农业研究, 2013, 31(3): 95-99.]
[19] Zeng Yijian, Wan Li, Su Zhongbo, et al.The diurnal pattern of soil water fluxes in subsurface zone and its simulation analysis[J]. Earth Science Frontiers, 2008, 15(5):330-343.
[曾亦键, 万力, 苏中波, 等. 浅层包气带水汽昼夜运移规律及其数值模拟研究[J].地学前缘, 2008, 15(5): 330-343.]
[1] 葛双超, 邓明, 陈凯. 复电阻率测量方法与模型仿真 *[J]. 地球科学进展, 2014, 29(11): 1271-1276.
[2] 崔喜红,陈晋,关琳琳. 探地雷达技术在植物根系探测研究中的应用[J]. 地球科学进展, 2009, 24(6): 606-611.
[3] 王绪本,毛立峰,李文超,林春. 灾害救助超宽带电磁生命探测方法的模拟研究[J]. 地球科学进展, 2008, 23(5): 541-545.
阅读次数
全文


摘要