地球科学进展 ›› 2015, Vol. 30 ›› Issue (4): 495 -504. doi: 10.1167/j.issn.1001-8166.2015.04.0495

上一篇    下一篇

导航卫星太阳辐射压模型研究进展
武子谦 1, 2( ), 宋淑丽 1, 周伟莉 1, 朱文耀 1   
  1. 1.中国科学院上海天文台,上海 200030
    2.中国科学院大学,北京 100049
  • 收稿日期:2015-01-30 修回日期:2015-03-26 出版日期:2015-04-20
  • 基金资助:
    中国第二代北斗导航系统重大专项“iGMAS分析中心建设与运行”(编号:GFZX0301040308)资助

Research Progress of Solar Radiation Pressure Model for Navigation Satellite

Ziqian Wu 1, 2( ), Shuli Song 1, Weili Zhou 1, Wenyao Zhu 1   

  1. 1.Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
    2.University of Chinese Academy of Sciences, Beijing 100094, China
  • Received:2015-01-30 Revised:2015-03-26 Online:2015-04-20 Published:2015-04-20

由于难以精确模制,太阳辐射压摄动已经成为导航卫星精密定轨的主要误差源。因此,为了提高导航卫星的定轨精度,必须对太阳辐射压进行精确建模。随着我国北斗卫星导航系统的稳定运行,开发适用于北斗卫星的太阳辐射压模型已经成为一个研究热点。通过回顾国内外近几十年的太阳辐射压模型研究成果,详细介绍了几种常用的太阳辐射压模型,对其建模原理以及模型的优缺点进行了分析,并介绍了北斗卫星太阳辐射压建模的研究现状,为我国北斗卫星导航系统的太阳辐射压建模提供借鉴。

Solar Radiation Pressure (SRP) has become the major error factor of the precise orbit determination of the navigation satellites because its model is very difficult to establish. Hence, in order to improve the precision of orbit determination of the satellites, it is necessary to construct SRP model precisely. With the stable operation of COMPASS satellite navigation system, the development of SRP model suitable for COMPASS satellites has become a research hotspot. This paper reviews the research progress on SRP models in recent decades, introduces several common SRP models, analyzes their modeling principles, compares the advantages and disadvantages of each model. In addition, this paper also introduces the research progress of COMPASS satellites SRP modeling and provides a reference for further modeling researches.

中图分类号: 

图1 坐标系及各参数示意图
Fig.1 Diagram of coordinate systems and parameters
图2 垂直于太阳-卫星矢量的像素阵列 [ 12 ]
Fig.2 Pixel array orthogonal to the Sun-spacecraft vector [ 12 ]
表1 各模型优缺点
Table 1 Advantages and disadvantages of each model
[1] Kaplan E D, Hegarty C.Understanding GPS Principles and Applications[M]. London: London Artech House Inc., 2005.
[2] Liu Lin.Orbital Mechanics of Artificial Earth Satellite[M] .Beijing:Higher Education Press, 1992.
[刘林. 人造地球卫星轨道力学[M]. 北京:高等教育出版社, 1992.]
[3] Zhao Qunhe, Wang Xiaoya, He Bing, et al.The solar radiation pressure modeling on high-altitude Earth orbit satellite[C]//5th China Satellite Navigation Conference(CSNC). Nanjing, 2014.
[赵群河,王小亚,何冰,等. 高轨卫星的太阳辐射压模型建立[C]//第五届中国卫星导航学术年会. 南京, 2014.]
[4] Fliegel H F, Gallini T E.Global positioning system radiation force model for geodetic applications[J]. Journal of Geophysical Research, 1992, 97(B1): 559-568.
[5] Fliegel H F, Gallini T E.Solar force modeling of BlockⅡR global positioning system satellites[J]. Journal of Spacecraft and Rockets, 1996, 33(6): 863-866.
[6] Colombo O L.The dynamics of global positioning orbits and the determination of precise ephemerides[J]. Journal of Geophysical Research, 1989, 94(B7): 9 167-9 182.
[7] Beutler G, Brockmann E, Gurtner W, et al.Extended orbit modeling techniques at the CODE processing center of the International GPS Service for geodynamics (IGS): Theory and initial results[J]. Manuscript Geodaetica, 1994, 19: 367-386.
[8] Springer T A, Beutler G, Rothacher M.A new solar radiation pressure model for GPS satellites[J]. GPS Solutions, 1999, 2(3): 50-62.
[9] Dach R, Brockmann E, Schaer S, et al.GNSS processing at CODE: Status report[J]. Journal of Geodesy, 2009, 83: 353-365.
[10] Bar-Sever Y E, Russ K M. New and Improved Solar Radiation Models for GPS Satellites Based on Flight Data[R]. Pasadena, California: Jet Propulsion Laboratory, 1997.
[11] Bar-Sever Y E, Kuang D. New Empirically Derived Solar Radiation Pressure Model for Global Positioning System Satellites[R]. Pasadena, California: Interplanetary Network Progress Report, 2004: 42-159.
[12] Ziebart M, Dare P.Analytical solar radiation pressure modelling for GLONASS using a pixel array[J]. Journal of Geodesy, 2001, 75: 587-599.
[13] Rodriguez-Solano C J, Hugentobler U, Steigenberger P. Adjustable box-wing model for solar radiation pressure impacting GPS satellites[J]. Advances in Space Research, 2012, 49: 1 113-1 128.
[14] Rodriguez-Solano C J, Hugentobler U, Steigenberger P. Improving the orbits of GPS block ⅡA satellites during eclipse seasons[J]. Advances in Space Research, 2013, 52: 1 511-1 529.
[15] Montenbruck O, Steigenberger P, Hugentobler U.Enhanced solar radiation pressure modeling for Galileo satellites[J]. Journal of Geodesy, 2015, 89(3):287-297, doi: 10.1007/s00190-014-0774-0.
[16] Hu Xiaogong.A new modeling of solar radiation pressure[J]. Progress in Astronomy, 1998, 16(1): 8-16.
[胡小工. 太阳辐射压模型计算的新进展[J]. 天文学进展, 1998, 16(1): 8-16.]
[17] Jiang Guojun.Comparison of Solar Radiation Pressure Models for GPS Satellites and Research on Precise Orbit Determination of GPS Satellite in Regional Network[D]. Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences, 1998.
[姜国俊. GPS卫星太阳光压模型的比较和GPS区域网定轨问题研究[D]. 上海:中国科学院上海天文台, 1998.]
[18] Chen Junping, Wang Jiexian.Solar radiation pressure models for the GPS satellites[J]. Acta Astronomica Sinica, 2006, 47(3): 310-319.
[陈俊平,王解先. GPS定轨中的太阳辐射压模型[J]. 天文学报, 2006, 47(3): 310-319.]
[19] Song Xiaoyong, Mao Yue, Jia Xiaolin.Analysis of the parameter of BERNESE radiation force model by statistic method[J]. Science of Surveying and Mapping, 2009, 34(3): 25-27.
[宋小勇,毛悦,贾小林. BERNESE光压模型参数的统计分析[J]. 测绘科学, 2009, 34(3): 25-27.]
[20] Yang Yang, Dong Xurong, Liu Li, et al.Research for ground orbit determination of navigation satellite based on solar pressure macroscopic model[J]. Journal of Academy of Equipment, 2012, 23(6): 71-75.
[杨洋,董绪荣,柳丽,等. 基于光压宏观模型的导航卫星地基定轨研究[J]. 装备学院学报, 2012, 23(6): 71-75.]
[21] Chen Qiuli, Chen Zhonggui, Wang Haihong.Modeling and analysis of solar radiation pressure for GPS satellites[J]. Spacecraft Engineering, 2013, 22(2): 98-103.
[陈秋丽,陈忠贵,王海红. GPS卫星光压摄动建模发展与启示[J]. 航天器工程, 2013, 22(2): 98-103.]
[22] Chen Qiuli, Wang Haihong, Chen Zhonggui.Method of modeling solar radiation pressure based on attitude control law of navigation satellites[C]//4th China Satellite Navigation Conference(CSNC). Wuhan, 2013.
[陈秋丽,王海红,陈忠贵. 基于导航卫星姿态控制规律的光压摄动建模方法[C]//第四届中国卫星导航学术年会. 武汉, 2013.]
[23] Chen Qiuli, Wang Haihong, Chen Zhonggui.Analysis modeling and verification of solar radiation pressure for navigation satellite[J]. Chinese Space Science and Technology, 2014, 4: 16-23.
[陈秋丽,王海红,陈忠贵. 导航卫星高精度太阳光压摄动分析建模及验证[J]. 中国空间科学技术, 2014, 4: 16-23.]
[24] Arnold D, Dach R, Beutler G, et al.Impact of GNSS orbit modelling on reference frame[C]//IAG Commission 1 Symposium 2014: Reference Frames for Applications in Geosciences (REFAG2014). Luxembourg, 2014.
[25] Huang Hai, Li Jianwen, Luo Fulong.A new solar radiation pressure for BeiDou navigation system satellites[C]//5th China Satellite Navigation Conference(CSNC). Nanjing, 2014.
[黄海,李建文,罗福龙. 北斗卫星太阳光压建模[C]//第五届中国卫星导航学术年会. 南京, 2014.]
[26] Feng Weidong, Guo Xiangyu, Qiu Hongxing, et al.A study of analytical solar radiation pressure modeling for BeiDou navigation satellites based on ray tracing method[C]//China Satellite Navigation Conference(CSNC) 2014 Proceedings: Volume II, Springer, Lecture, Notes in Electrical Engineering, 2014, 304: 425-435.
[27] Tan Hongli, Li Xiaojie, Wu Shan, et al.Analyze the solar radiation pressure in the transition of yaw steering mode to orbit normal mode[C]//5th China Satellite Navigation Conference(CSNC). Nanjing, 2014.
[谭红力,李晓杰,吴杉,等. 导航卫星动态偏航转零偏航状态的太阳光压分析[C]//第五届中国卫星导航学术年会. 南京, 2014.]
[28] Mao Yue, Song Xiaoyong, Wang Wei, et al.IGSO satellite orbit determining strategy analysis with the yaw-steering and orbit-normal attitude control mode switching[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1 352-1 356.
[毛悦,宋小勇,王维,等.IGSO姿态控制模式切换期间定轨策略研究[J]. 武汉大学学报:信息科学版, 2014, 39(11): 1 352-1 356.]
[1] 孙小荣,张书毕,吴继忠,郑南山. 基于 SNRGPS-IR技术机理分析[J]. 地球科学进展, 2019, 34(2): 156-163.
[2] 周江存,孙和平. 高精度GPS观测中的负荷效应[J]. 地球科学进展, 2007, 22(10): 1036-1040.
阅读次数
全文


摘要