地球科学进展 ›› 2015, Vol. 30 ›› Issue (3): 310 -322. doi: 10.11867/j.issn.1001-8166.2015.03.0310

上一篇    下一篇

岩石圈地幔中的金刚石及其矿物包裹体的研究进展
赵欣, 施光海, 张骥   
  1. 中国地质大学(北京)珠宝学院,北京 100083
  • 出版日期:2015-04-08
  • 基金资助:
    国家自然科学基金青年基金项目“华北克拉通金伯利岩中金刚石及其矿物包裹体研究”(编号:41302031);中央高校基本科研业务费专项资金项目“山东蒙阴金伯利岩中金刚石及其矿物包裹体研究”(编号:2652011269)资助

Review on Lithospheric Diamonds and Their Mineral Inclusions

Xin Zhao, Guanghai Shi, Ji Zhang   

  1. School of Gemmology, China University of Geosciences, Beijing, 1000083
  • Online:2015-04-08 Published:2015-03-20

金刚石及封存于其中的矿物包裹体对于研究金刚石的成因以及古老岩石圈地幔、超深地幔的性质和地幔过程具有重要的研究意义,是国内外地质学家们的研究热点。大多数金刚石来源于岩石圈地幔,根据包裹体相对于寄主金刚石形成的时间可分为先成包裹体、同生包裹体和后生包裹体,包裹体属于哪种类型直接关系到数据所代表的意义,根据包裹体源区的岩石类型,通常将包裹体分为P/U型和E型,介绍了2种类型包裹体包含的矿物种类,并对出现较多的橄榄石、单斜辉石、斜方辉石、石榴石、铬铁矿和硫化物包裹体的矿物学特征进行了详细描述,归纳了金刚石及其矿物包裹体的主要研究方向:包裹体矿物的化学成分、金刚石的碳同位素组成、金刚石形成的温度、压力及年龄,综述了克拉通岩石圈地幔金刚石及其矿物包裹体的成因,总结了我国金刚石中包裹体的研究成果,分析了国内研究工作与国际上的差距。

Diamonds and their mineral inclusions are valuable for studying the genesis of diamonds, the characteristics and processes of ancient lithospheric mantle and deeper mantle. This has been paid lots of attentions by geologists both at home and abroad. Most diamonds come from lithospheric mantle. According to their formation preceded, accompanied or followed crystallization of their host diamonds, mineral inclusions in diamonds are divided into three groups: protogenetic, syngenetic and epigenetic. To determine which group the mineral inclusions belong to is very important because it is vital for understanding the data’s meaning. According to the type of mantle source rocks, mineral inclusions in diamonds are usually divided into peridotitic (or ultramafic) suite and eclogitic suite. The mineral species of each suite are described and mineralogical characteristics of most common inclusions in diamonds, such as olivine, clinopyroxene, orthopyroxene, garnet, chromite and sulfide are reviewed in detail. In this paper, the main research fields and findings of diamonds and their inclusions were described: ①getting knowledge of mineralogical and petrologic characteristics of diamond source areas, characteristics of mantle fluids and mantle dynamics processes by studying the major element and trace element compositions of mineral inclusions; ②discussing deep carbon cycle by studying carbon isotopic composition of diamonds; ③determining forming temperature and pressure of diamonds by using appropriate assemblages of mineral inclusions or single mineral inclusion as geothermobarometry, by using the abundance and aggregation of nitrogen impurities in diamonds and by measuring the residual stress that an inclusion remains under within a diamond ; ④estimating the crystallization ages of diamonds by using the aggregation of nitrogen impurities in diamonds and by determine the radiometric ages of syngenetic mineral inclusions in diamonds. Genetic model of craton lithospheric diamonds and their mineral inclusion were also introduced. In the end, the research progress on diamonds and their inclusions in China and the gap between domestic and international research are discussed.

中图分类号: 

表1 克拉通岩石圈中常见硅酸盐和氧化物矿物包裹体的数量对比 [ 2 ]
Table 1 Abundance of common silicate and oxide inclusions in cratonic lithospheric diamonds [ 2 ]
图1 克拉通金刚石矿床的地幔成因标准模型 [ 2 ]
Fig. 1 Standard model for the mantle origin of cratonic diamond deposits [ 2 ]
[1] Stachel T, Brey G P, Harris J W. Inclusions in sublithospheric diamonds: Glimpses of deep Earth[J]. Elements, 2005, 1: 73-78.
[2] Stachel T, Harris J W. The origin of cratonic diamonds-constraints from mineral inclusions[J]. Ore Geology Reviews, 2008, 34(1/2): 5-32.
[3] Meyer H O A. Inclusions in diamond[M]//Nixon P H,ed. Mantle Xenoliths. Chichester: Wiley, 1987: 501-523.
[4] Harris J W. Mineral inclusions in diamond—A scouser’s view[J]. Geochimica et Cosmochimica Acta, 2006, 70(Suppl.): A233.
[5] Wang A, Pasteris J D, Meyer H O A, et al. Magnesite-bearing inclusion assemblage in natural diamond[J]. Earth and Planetary Science Letters, 1996, 141(1/4): 293-306.
[6] Sobolev N V, Kaminsky F V, Griffin W L, et al. Mineral inclusions in diamonds from the sputnik Kimberlite pipe, Yakutia[J]. Lithos, 1997, 39(3/4): 135-157.
[7] Pearson D G, Shirey S B, Harris J W, et al. Sulphide inclusions in diamonds from the koffiefontein kimberlite, S Africa: Constraints on diamond ages and mantle Re-Os systematics[J]. Earth and Planetary Science Letters, 1998, 160(3/4): 311-326.
[8] Wang W, Takahashi E, Sueno S. Geochemical properties of lithospheric mantle beneath the Sino-Korea Craton:Evidence from garnet xenocrysts and diamond inclusions[J]. Physics of the Earth and Planetary Interiors, 1998, 107(1/3): 249-260.
[9] Taylor L A, Snyder G A, Crozaz G, et al. Eclogitic inclusions in diamonds: Evidence of complex mantle processes over time[J]. Earth and Planetary Science Letters, 1996, 142(3/4): 535-551.
[10] Bulanova G P, Muchemwa E, Pearson D G, et al. Syngenetic inclusions of yimengite in diamond from sese kimberlite (Zimbabwe)—Evidence for metasomatic conditions of growth[J]. Lithos, 2004, 77(1/4): 181-192.
[11] Schulze D J, Harte B, Valley J W, et al. Evidence of subduction and crust—Mantle mixing from a single diamond[J]. Lithos, 2004, 77(1/4): 349-358.
[12] Van Rythoven A D, Schulze D J. In-situ analysis of diamonds and their inclusions from the diavik mine, Northwest Territories, Canada: Mapping diamond growth[J]. Lithos, 2009, 112,(Suppl.): 870-879.
[13] Walter M J, Kohn S C, Araujo D, et al. Deep mantle cycling of oceanic crust—Evidence from diamonds and their mineral inclusions[J]. Science, 2011, 334: 54-57.
[14] Kaminsky F. Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond[J]. Earth-Science Reviews, 2012, 110(1/4): 127-147.
[15] Wiggers de Vries D F, Drury M R, de Winter D A M, et al. Three-dimensional cathodoluminescence imaging and electron backscatter diffraction: Tools for studying the genetic nature of diamond inclusions[J]. Contributions to Mineralogy and Petrology, 2011, 161: 565-579.
[16] Schulze D J. A classification scheme for mantle-derived garnets in kimberlite: A tool for investigating the mantle and exploring for diamonds[J]. Lithos, 2003, 71: 195-213.
[17] Grütter H S, Gurney J J, Menzies A H, et al. An updated classification scheme for mantle-derived garnet, for use by diamond explorers[J]. Lithos, 2004, 77: 841-845.
[18] Prinz M, Vincent Manson D, Hlava P F, et al. Inclusions in diamonds: Garnet lherzolite and eclogite assemblages[J]. Physics and Chemistry of the Earth, 1975, 9: 797-815.
[19] Hall A E, Smith C B. Lamporite diamonds-are they different?[M]//Glover J E, Harris P G,eds. Kimberlite Occurrence and Origin: A Basis for Conceptual Models in Exploration. Australia: Geology Department and University Extension, University of Western Australia, 1985: 167-212.
[20] Otter M L, Gurney J J. Mineral inclusions in diamond from the sloan diatremes, Colorado-Wyoming State line kimberlite district, North America[M]//Ross J, ed. Kimberlites and Related Rocks. Carlton: Blackwell Science Publicaton, 1989: 1 042-1 053.
[21] Moore R O, Gurney J J. Mineral inclusions in diamond from the monastery Kimberlite, South Africa[M]//Ross J, ed. Kimberlites and Related Rocks. Carlton: Blackwell Science Publicaton,1989: 1 029-1 041.
[22] Wang W. Formation of diamond with mineral inclusions of‘Mixed’eclogite and peridotite paragenesis[J]. Earth and Planetary Science Letters, 1998, 160(3/4): 831-843.
[23] Meyer H O A, Boyd F R. Composition and origin of crystalline inclusions in natural diamonds[J]. Geochimica et Cosmochimica Acta, 1972, 36(11): 1 255-1 273.
[24] Li J P, O’Neill H S C, Seifert F. Subsolidus phase-relations in the system Mgo-SiO2-Cr-O in equilibrium with metallic Cr, and their significance for the petrochemistry of chromium[J]. Journal of Petrology, 1995, 36: 107-132.
[25] Doroshev A M, Brey G P, Girnis A V, et al. Pyropeknorringite Garnets in the Earth’s upper mantle: Experiments in the mgo-Al2O3-SiO2-Cr2O3 system[J]. Russian Geology and Geophysics, 1997, 38: 559-586.
[26] Taylor L A, Liu Y. Sulfide inclusions in diamonds: Not monosulfide solid solution[J]. Russian Geology and Geophysics, 2009, 50(12): 1 201-1 211.
[27] Kullerud G, Yund R A, Moh G H. Phase relations in the Cu-Fe-S, Cu-Ni-S and Fe-Ni-S systems[M]//Wilson H D B, ed. Magmatic Ore Deposits. Lancaster: Economic Geology Publishing Co., 1969: 323-343.
[28] Yefimova E S, Sobolev N V, Pospelova L N. Sulfide inclusions in diamond and specific features of their paragenesis[J]. Zap Vsesoyuz Mineral Obsh, 1983, 112: 300-310.
[29] Bulanova G P, Griffin W L, Ryan C G, et al. Trace elements in sulfide inclusions from Yakutian diamonds[J]. Contributions to Mineralogy and Petrology, 1996, 124: 111-125.
[30] Xiao Huayun, Liu Congqiang, Huang Zhilong. Information of old mantle from inclusions in diamonds[J]. Advances in Earth Science, 2001, 16(2): 244-250.
[肖化云,刘丛强,黄智龙. 金刚石包裹体中的古地幔信息[J]. 地球科学进展, 2001, 16(2): 244-250.]
[31] Phillips D, Harris J W, Viljoen K S. Mineral chemistry and thermobarometry of inclusions from de Beers Pool Diamonds, kimberley, South Africa[J]. Lithos, 2004, 77(1/4): 155-179.
[32] Shimizu N, Richardson S H. Trace element abundance patterns of garnet inclusions in peridotite-suite diamonds[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 755-758.
[33] Stachel T, Aulbach S, Brey G P, et al. The trace element composition of silicate inclusions in diamonds: A review[J]. Lithos, 2004, 77(1/4): 1-19.
[34] Zhang Zhou, Zhang Hongfu. Diamonds and deep carbon cycling[J]. Earth Science Frontiers, 2011, 18(3): 268-283.
[张舟, 张宏福. 金刚石与深部碳循环[J]. 地学前缘, 2011, 18(3): 268-283.]
[35] Zhang Hongfu, Lu Fengxiang, Zhao Lei,et al. Carbon isotopes in China natural diamonds[J]. Earth Science—Journal of China University of Geosciences, 2009, 34(1): 37-42.
[张宏福, 路凤香, 赵磊,等. 中国原生金刚石的碳同位素组成及其来源[J]. 地球科学——中国地质大学学报, 2009, 34(1): 37-42.]
[36] Han Youke, An Na. Analysis of carbon isotopes by diamond delamination combustion method[J]. Rock and Mineral Analysis, 1986, 5(4): 296-303.
[韩友科, 安娜. 金刚石剥层燃烧法分析其碳同位素组成[J]. 岩矿测试, 1986, 5(4): 296-303.]
[37] Miao Qing, Liu Guanliang, Wang Xiongwu, et al. New found of inclusions with complex components in diamond and discussion of their origin[J]. Geological Science and Technology Information, 1991, 10(Suppl.): 117-124.
[苗青, 刘观亮, 汪雄武,等. 金刚石中复杂成分包裹体的新发现及其成因探讨[J]. 地质科技情报, 1991, 10(增刊): 117-124.]
[38] Chen H, Qiu Z L, Lu T J, et al. Variations in carbon isotopic composition in the subcontinental lithospheric mantle beneath the Yangtze and North China Cratons: Evidence from in-situ analysis of diamonds using sims[J]. Chinese Science Bulletin, 2013, 58(1): 99-107.
[39] Zhang Jian, Chen Hua, Lu Taijin, et al. Microanalysis of the carbon isotopic composition in diamonds from Shandong of China by secondary ion mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(4):591-596.
[张健, 陈华, 陆太进,等. 山东金刚石碳同位素组成的二次离子质谱显微分析[J]. 岩矿测试, 2012, 31(4): 591-596.]
[40] Lu T J, Chen H, Qiu Z L, et al. Multiple core growth structure and nitrogen abundances of diamond crystals from Shandong and Liaoning Kimberlite Pipes, China[J]. European Journal of Mineralogy,2012, 24: 651-656.
[41] Cartigny P, Harris J W, Phillips D,et al. Subduction-related Diamonds?—The evidence for a mantle-derived origin from Coupled 13C-15N determinations[J]. Chemical Geology, 1998, 147: 147-159.
[42] Javoy M, Pineau F, Delorme H. Carbon and nitrogen isotopes in the mantle[J]. Chemical Geology, 1986, 57(1/2): 41-62.
[43] Deines P, Harris J W, Gurney J J. Carbon isotopic composition, nitrogen-content and inclusion composition of diamonds from the roberts victor kimberlite, South Africa-Evidence for C-13 depletion in the mantle[J]. Geochimica et Cosmochimica Acta, 1987, 51(5): 1 227-1 243.
[44] Kirkley M B, Gurney J J, Otter M L, et al. The application of C isotope measurements to the identification of the sources of C in diamonds—A review[J]. Applied Geochemistry, 1991, 6(5): 477-494.
[45] Schidlowski J M, Hayes J M, Kaplan I R. Isotopic inferences of ancient biochemistries: Carbon,sulfur, hydrogen, and nitrogen[M]//Schopf J W,ed. Earth’s Earliest Biosphere. Princeton: Princeton University Press, 1983: 149-186.
[46] Sobolev N V. Crystallin inclusions in diamonds from New South Wales, Australia[M]//Glover J E, Harris P G, eds. Kimberlite Occurrence and Origin: A Basis for Conceptual Models in Exploration. Perth: University of Western Australia, 1984: 213-226.
[47] Harley S L. An experimental-study of the partitioning of Fe and Mg between garnet and orthopyroxene[J]. Contributions to Mineralody and Petrology, 1984, 86(4): 359-373.
[48] Krogh E J. The garnet-clinopyroxene Fe-Mg geothermometer—A reinterpretation of existing experimental data[J]. Contributions to Minerology and Petrology, 1988, 99: 44-48.
[49] O’Neill H S C, Wood B J. An experimental study of Fe-Mg-Partition between garnet and olivine and its calibration as a geothermometer[J]. Contributions to Mineralody and Petrology, 1979,70(11): 59-70.
[50] O’Neill H S. An experimental study of the iron-magnesium partitioning between garnet and olivine and its calibration as a geothermometer: Corrections[J]. Contributions to Minerology and Petrology, 1980, 72: 337.
[51] Brey G, Kohler T. Geothermobarometry in four-phase Lherzolites.Ⅱ. New thermobarometers, and practical assessment of existing thermobarometers[J]. Journal of Petrology, 1990, 31: 1 353-1 378.
[52] Nimis P. The pressure and temperatures of formation of diamond based on thermobarometry of chromian diopside inclusions[J]. The Canadian Mineralogist, 2002, 40: 871-884.
[53] Meyer H O A, Tsai H M. Mineral inclusions in diamond: Temperature and pressure of equilibration[J]. Scinece, 1976, 191: 849-851.
[54] Nimis P, Taylor W R. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer[J]. Contributions to Minerlogy and Petrology, 2000, 139(5): 541-554.
[55] Evans T, Harris J W. Nitrogen aggregation, inclusion equilibration temperatures and the age of diamonds[M]//Ross J, ed. Kimberlites and Related Rocks(Volume 2). Carlton: Blackwell Science Publicaton, 1989: 1 001-1 006.
[56] Evans T, Qi Z. The kinetics of the aggregation of nitrogen-atoms in diamond[J]. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 1982, 381(1 780): 159-178.
[57] Davies G. Decomposing the ir absorption spectra of diamonds[J]. Nature, 1981, 290: 40-41.
[58] Clark C D, Davey S T. One-phonon infrared absorption in diamond[J]. Journal of Physics, 1984, 17: 1 127-1 140.
[59] Allen B P, Evans T. Aggregation of nitrogen in diamond including platelet formation[J]. Proceedings of the Royal Society of London, 1981, 375(A): 93-104.
[60] Woods G S, Purser G C, Mtimkulu A S S, et al. The nitrogen content of type la natural diamonds[J]. Journal of Physics and Chemistry of Solids, 1990, 51(10): 1191-1197.
[61] Chen Zheng, Chen Meihua. New methods of calculating temperature and pressure of diamond’s source area[J]. Journal of Gems and Gemology, 2002, 4(2): 13-16.
[陈征,陈美华. 钻石源区温度、压力计算的新方法[J]. 宝石和宝石学杂志, 2002, 4(2): 13-16.]
[62] Sorby H C, Bulter P J. On the structure of rubies, sapphire, diamonds and some other minerals[J]. Proceedings of the Royal Society of London, 1869, 17: 291-302.
[63] Rosenfeld J L, Chase A B. Pressure and temperature of crystallization from elastic around solid inclusions in minerals?[J]. American Journal of Science, 1961, 259: 519-541.
[64] Cohen L H, Rosenfeld J L. Diamond: Depth of crystallization inferred form compressed included garnet[J]. Journal of Geology,1979, 87: 333-340.
[65] Harris J W, Milledge H J, Barron T H K, et al. Thermal expansion of garnet included in diamond[J]. Journal of Geophysical Research, 1970, 75: 5 775-5 792.
[66] Izraeli E S, Harris J W, Navon O. Raman barometry of diamond formation[J]. Earth and Planetary Science Letters, 1999, 173: 351-360.
[67] Howell D, Wood I G, Dobson D P, et al. Quantifying strain birefringence halos around inclusions in diamond[J]. Contributions to Mineralogy and Petrology, 2010, 160(5): 705-717.
[68] Glazer A M, Lewis J G, Kaminsky W. An automatic optical imaging system for birefringent media[J]. Proceedings of the Royal Society of London, 1996, 452: 2 751-2 765.
[69] Taylor W R, Jaques A L, Ridd M. Nitrogen-defect aggregation characteristics of some australasian diamonds-time-temperature constraints on the source regions of pipe and alluvial diamonds[J]. American Mineralogist, 1990, 75: 1 290-1 310.
[70] Tappert R, Tappert M C. Diamonds in Nature: A Guide to Rough Diamonds[M]. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
[71] Rudnick R L, Eldridge C S, Bulanova G P. Diamond growth history from in-situ measurement of Pb and S isotopic compositions of sulfid inclusions[J]. Geology, 1993, 21(1): 13-16.
[72] Eldridge C S, Compston W, Williams I S, et al. Isotope evidence for the involvement of recycled sediments in diamond formation[J]. Nature, 1991, 353(6 345): 649-653.
[73] Welke H J, Allsopp H L, Harris J W. Measurements of K, Rb, U, Sr, and Pb in diamonds containing inclusions[J]. Nature, 1974, 252: 35-36.
[74] Aulbach S, Shirey S B, Stachel T, et al. Diamond formation episodes at the southern margin of the kaapvaal craton: Re-Os systematics of sulfide inclusions from the jagersfontein mine[J]. Contributions to Mineralogy and Petrology, 2009, 157(4): 525-540.
[75] Richardson S H, Gurney J J, Erlank A J, et al. Origin of diamonds in old enriched mantle[J]. Nature, 1984, 310(5 974): 198-202.
[76] Richardson S H. Latter-day origin of diamonds of eclogitic paragenes[J]. Nature, 1986, 322(6 080): 623-626.
[77] Richardson S H, Harris J W, Poeml P F. Antiquity of harzburgitic diamonds from the venetia Kimberlite, Limpopo Belt, Kaapvaal Craton[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): A531-A531.
[78] Burgess R, Turner G, Laurenzi M, et al. 40Ar/39Ar laser probe dating of individula clinopyroxene inclusions in premier eclogitic diamonds[J]. Earth and Planetary Science Letters, 1989, 94(1/2): 22-28.
[79] Phillips D, Onstott T C, Harris J W. 40Ar/39Ar laser-probe dating of diamond inclusions from the premier kimberlite[J]. Nature, 1989, 340(6 233): 460-462.
[80] Phillips D, Harris J W, Kiviets G B. 40Ar/39Ar analyses of clinopyroxene inclusions in African diamonds: Implications for source ages of detrital diamonds[J]. Geochimica et Cosmochimica Acta, 2004, 68(1): 151-165.
[81] Shirey S B, Harris J W, Richardson S H, et al. Diamond genesis, seismic structure, and evolution of the Kaapvaal Zimbabwe Craton[J]. Science, 2002, 297: 1 683-1 686.
[82] Pearson D G, Shirey S B. Isotopic dating of diamonds[M]//Applications of Radiogenic Isotopes to Ore Deposit Research. Littleton: Society of Economic Geologis, 1999,12:143-171.
[83] Spetsius Z V, Belousova E A, Griffin W L, et al. Archean sulfide inclusions in paleozoic zircon megacrysts from the mir Kimberlite, Yakutia: Implications for the dating of diamonds[J]. Earth and Planetary Science Letters, 2002, 199(1/2): 111-126.
[84] Taylor L A, Anand M, Promprated P, et al. The significance of mineral inclusions in large diamonds from Yakutia, Russia[J]. American Mineralogist, 2003, 88(5/6): 912-920.
[85] Donnelly C L, Stachel T, Creighton S, et al. Diamonds and their mineral inclusions from the A154 South Pipe, diavik diamond mine, Northwest Territories, Canada[J]. Lithos, 2007, 98(1/4): 160-176.
[86] Tappert R, Stachel T, Harris J W, et al. Mineral inclusions in diamonds from the Panda Kimberlite, Slave Province, Canada[J]. European Journal of Mineralogy, 2005, 17(3): 423-440.
[87] Aulbach S, Stachel T, Creaser R A, et al. Sulphide survival and diamond genesis during formation and evolution of archaean Subcontinental Lithosphere: A comparison between the Slave and Kaapvaal Cratons[J]. Lithos, 2009, 112: 747-757.
[88] Cartigny P, Farquhar J, Thomassot E, et al. A mantle origin for paleoarchean peridotitic diamonds from the panda Kimberlite, Slave Craton: Evidence from 13C,15N and 33S,34S stable isotope systematics[J]. Lithos, 2009, 112: 852-864.
[89] Westerlund K J, Shirey S B, Richardson S H, et al. A subduction wedge origin for paleoarchean peridotitic diamonds and harzburgites from the panda kimberlite, slave craton: Evidence from Re-Os isotope systematics[J]. Contributions to Mineralogy and Petrology,2006, 152(3): 275-294.
[90] Richardson S H, Harris J W, Gurney J J. Three generations of diamonds from old continental mantle[J]. Nature, 1993, 366: 256-258.
[91] Gurney J J, Helmstaedt H H, Roex L. Diamonds: Crustal distribution and formation processes in time and space, and an integrated deposit model[J]. Economic Geology, 2005, 100: 143-177.
[92] Pearson D G. The age of continental roots[J]. Lithos, 1999, 48(1): 171-194.
[93] Boyd F R, Pineau F, Javoy M. Modelling the growth of natural diamonds[J]. Chemical Geology, 1994, 116: 29-42.
[94] Capdevila R, Arndt N, Letendre J, et al. Diamonds in volcaniclastic komatiite from French Guiana[J]. Nature, 1999, 399: 456-458.
[95] Wu Fuyuan, Xu Yigang, Gao Shan, et al. Main academic debates on lithospheric thinning and destruction of the North China Craton[J]. Acta Petrologica Sinica, 2008, 24(6): 1 145-1 174.
[吴福元, 徐义刚, 高山,等. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报, 2008, 24(6): 1 145-1 174.]
[96] Gao Shan, Zhang Junfeng, Xu Wenliang, et al. Delamination and destruction of the North China Craton[J]. Chinese Science Bulletin, 2009, 54(14): 1 962-1 973.
[高山, 章军锋, 许文良,等. 拆沉作用与华北克拉通破坏[J]. 科学通报, 2009, 54(14): 1 962-1 973.]
[97] Zhang Andi, Xie Xilin, Guo Lihe. Research and Database on Prospecting Indicator Mineral of Diamond [M].Beijing: Beijing Science and Technology Press,1991.
[张安棣,谢锡林,郭立鹤. 金刚石找矿指示矿物研究及数据库[M]. 北京: 北京科学技术出版社, 1991.]
[98] Wang Zhende, Guo Guorong. Characteristics of inclusions in diamonds from pipe 50, Wafangdian, Liaoning Province[J]. Liaoning Geology, 1994, 3: 263-274.
[王振德, 郭国荣. 辽宁瓦房店50号岩管金刚石包体特征[J]. 辽宁地质, 1994, 3: 263-274.]
[99] Miao Qing. Paragenetic ultramafic and eclogitic mineral inclusions in one diamond[J].Liaoning Geology, 1996, 1: 39-46.
[苗青. 共生于同一金刚石中的超镁铁岩于榴辉岩矿物包裹体[J]. 辽宁地质, 1996, 1: 39-46.]
[100] Qi Lijian, Tang Zuojun, Lü Xinbiao, et al. Typomorphic peculiarities and significance of mineral inclusions in diamond in Liaoning Province, China[J].Journal of Gems and Gemmology, 1999, 1(3): 27-44.
[亓利剑, 唐左军, 吕新彪,等. 辽宁金刚石中矿物包裹体标型特征及其意义[J]. 宝石和宝石学杂志, 1999, 1(3): 27-44.]
[101] Yin Li, Zhang Ruisheng. Mineral chemistry characters of diamond inclusions and the nature of the lithospheric mantle beneath the eastern north China craton[J]. Geological Science and Technology Information, 2008, 27(5): 21-28.
[殷莉, 张瑞生. 金刚石包裹体矿物化学特征与华北东部克拉通岩石圈地幔属性[J]. 地质科技情报, 2008, 27(5): 21-28.]
[102] Lu Qi, Shi Nicheng, Liu Huifang, et al. TiC inclusion first found in diamond from fuxian, Liaoning of China[J]. Geological Science and Technology Information, 2011, 30(2): 1-5.
[陆琦, 施承倪, 刘惠芳,等. 中国辽宁复县金刚石中新发现的碳化钛矿物[J]. 地质科技情报, 2011, 30(2): 1-5.]
[103] Chen Feng, Ding Zhenhua, Wang Sanxue, et al. Sphalerite inclusions in diamond[J]. Chinese Science Bulletin, 1996, 41(14): 1 304-1 306.
[陈丰, 丁振华, 王三学,等. 金刚石中发现闪锌矿包体[J]. 科学通报, 1996, 41(14): 1 304-1 306.]
[104] Chen Feng, Wang Mingzai, Wang Sanxue, et al. The first discovery of high-Cu and high-Cl inclusions in diamond[J]. Chinese Science Bulletin, 1992, 19: 1782-1785.
[陈丰, 王明再, 王三学,等. 金刚石中首次发现高铜高氯包体[J]. 科学通报, 1992, 19: :1782-1785.]
[105] Chen Feng, Guo Jiugao, Wang Sanxue, et al. Halite inclusions in diamond[J]. Chinese Science Bulletin, 1992, 16: 1489-1491. [陈丰, 郭九皋, 王三学, 等. 金刚石中发现石盐包体[J]. 科学通报, 1992, 16: 1489-1491.]
[106] Chen Feng, Guo Jiugao, Wang Sanxue, et al. High-K and High-Cl inclusions in diamond and mantle metasomatism[J].Acta Mineralogica Sinaca, 1992, 12(3): 193-198.
[陈丰, 郭九皋, 王三学,等. 金刚石中的高钾高氯包体和地幔交代作用[J]. 矿物学报, 1992, 12(3): 193-198.]
[107] Chen Feng, Guo Jiugao, Chen Jichang, et al. The first discovery of high-K and high-Cl inclusions in diamond[J]. Chinese Science Bulletin,1992, 10: 921-923.
[陈丰, 郭九皋, 陈积昌,等. 金刚石中首次发现高钾高氯包体[J]. 科学通报, 1992, 10: 921-923.]
[108] Zheng Jianping, Lu Fengxiang,Guo Hui,et al. Study on fluid inclusions in diamond[J]. Chinese Science Bulletin,1994, 3(3): 253-256.
[郑建平, 路凤香, 郭晖,等. 金刚石中流体包裹体的研究[J]. 科学通报, 1994, 3(3): 253-256.]
[109] Zhao Lei,Lu Fengxiang, Zheng Jianping, et al. The first discovery of natural silver and Ag-bearing Fe-Au alloy inclusions in diamonds[J].Chinese Science Bulletin, 1995, 40(12): 1 114-1 115.
[赵磊, 路凤香, 郑建平,等. 金刚石中首次发现自然银和含银铁—金合金包裹体[J]. 科学通报, 1995, 40(12): 1114-1115.]
[110] Liu Guanliang, Lu Qi, Zhai Li’na, et al. Magma melt inclusions in diamonds[J]. Geology and Mineral Resources of South China, 1997, 2: 1-5.
[刘观亮, 陆琦, 翟丽娜,等. 金刚石中岩浆熔融包裹体[J]. 华南地质与矿产, 1997, 2: 1-5.]
[111] Liu Huifang. Hexagonal pentlandite and sylvite inclusions in diamond from Liaoning[J]. Geological Science and Technology Information, 2002, 21(2): 51-54.
[刘惠芳. 辽宁金刚石中的六方镍黄铁矿及钾盐包裹体[J]. 地质科技情报, 2002, 21(2): 51-54.]
[112] Shi Nicheng, Lu Qi, Li Guowu, et al. Study on some inclusion minerals in diamond of China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011,(Suppl.): 306.
[施倪承, 陆琦, 李国武,等. 我国金刚石中若干包体矿物的研究[J]. 矿物岩石地球化学通报, 2011, (增刊): 306.]
[113] Liu Huifang, Li Guowu, Lu Qi, et al. Rhombohedral structure: A new phase of pentlandite in diamond inclusion from Liaoning,China[J]. Earth Science—Journal of China University of Geosciences, 2012, 37(3): 501-506.
[刘惠芳, 李国武, 陆琦,等. 地幔超高压条件下镍黄铁矿的一种新结构相——菱面体相:辽宁金刚石包体的镍黄铁矿晶体结构[J]. 地球科学——中国地质大学学报, 2012, 37(3): 501-506.]
[1] 郑昕雨,丘志力,邓小芹,马瑛,陆太进. 超深金刚石包裹体:对深部地幔物理化学环境的指示[J]. 地球科学进展, 2020, 35(5): 452-464.
[2] 杨志军, 黄珊珊, 陈耀明, 李晓潇, 曾璇, 周文秀. 金伯利岩演化过程及金刚石含矿性评价的研究进展[J]. 地球科学进展, 2016, 31(7): 700-707.
[3] 王金荣;翟新伟;边少之;李双文;董宁芳;王廷印. 地壳早期演化的研究进展[J]. 地球科学进展, 2004, 19(4): 591-598.
[4] 杨志军,彭明生,苑执中. 金刚石中氢的研究及其意义[J]. 地球科学进展, 2002, 17(1): 91-95.
[5] 肖化云,刘丛强,黄智龙. 金刚石包裹体中的古地幔信息[J]. 地球科学进展, 2001, 16(2): 244-250.
[6] 马金龙,邱亮斌,程 真,曾乔松,许德如,金晓东. 急缺矿种金刚石合成固体密封传压介质叶蜡石资源开发研究及其对策[J]. 地球科学进展, 2000, 15(4): 477-478.
[7] 侯渭; 谢鸿森. 应用于地球深部物质科学研究的静态超高压实验技术[J]. 地球科学进展, 1993, 8(3): 7-13.
阅读次数
全文


摘要