地球科学进展 ›› 2016, Vol. 31 ›› Issue (7): 700 -707. doi: 10.11867/j.issn.1001-8166.2016.07.0700.

综述与评述 上一篇    下一篇

金伯利岩演化过程及金刚石含矿性评价的研究进展
杨志军 1, 2, 黄珊珊 1, 陈耀明 1, 李晓潇 1, 曾璇 1, 周文秀 1   
  1. 1.中山大学地球科学与地质工程学院,广东 广州 510275;
    2.广东省地质过程与矿产资源探查重点实验室,广东 广州 510275
  • 收稿日期:2016-03-27 修回日期:2016-06-23 出版日期:2016-07-10
  • 基金资助:
    国家自然科学基金项目“扬子克拉通西部砂矿金刚石多晶聚合体的形成机制及其对深部过程的响应”(编号:41373025)和“华北克拉通东部金刚石多晶的微结构、微成分标型及成因意义”(编号:41073021)资助

Progresses and Perspectives of Research of the Evolution of Kimberlite and Evaluation for Diamond Potential

Yang Zhijun 1, 2, Huang Shanshan 1, Chen Yaoming 1, Li Xiaoxiao 1, Zeng Xuan 1, Zhou Wenxiu 1   

  1. 1.School of Earth Science and Geological Engineering, Sun Yat-sen University, Guangzhou 510275, China;
    2.Guangdong Provincial Key Laboratory of Mineral Resource Exploration & Geological Processes, Guangzhou 510275, China
  • Received:2016-03-27 Revised:2016-06-23 Online:2016-07-10 Published:2016-07-10
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Formation mechanism of placer diamond polycrystalline aggregates from the western part of the Yangtze Craton and their response to deep earth”(No.41373025), “Study on the micro-structure, micro-component typomorphic characteristics of natural diamond polycrystalline from North China craton and their geological significance”(No.41073021)
金伯利岩是研究地幔动力学过程、探讨岩石圈演化等深部重大科学问题的有效载体,也是揭示金刚石这一稀缺矿产资源的形成环境、成因、来源及找矿实践等最为重要的研究对象之一。长期以来,由于受到研究手段、研究思路等的限制,对金伯利岩相关研究的核心与瓶颈性关键基础科学问题,即“金伯利岩的初始岩浆组成”、“金伯利岩的演化过程及其意义”、“金伯利岩的金刚石含矿性评价”等知之甚少,这极大地制约了人们对金伯利岩及其相关深部过程意义等方面的深入了解。例如,基于高压熔体模拟实验、基质矿物、细小同源包裹体及金伯利岩筒边部隐晶质物质的研究,可以有效分析金伯利质岩浆的初始组成特征,但却难于有效甄别金伯利质岩浆的源区特征,难于有效区分地幔同化/混染作用、流体分异以及就位期间的脱玻化作用等对岩浆的影响等;由于缺乏再结晶及(或)再生长矿物在微成分、微结构方面的系统研究报道,难于有效精准分析金伯利质岩浆组成的变化规律及脱气作用的影响,揭示金伯利质岩浆的演化过程;尽管根据共生矿物组合、橄榄石的含水性等可用于评估金伯利岩的金刚石含矿性,但存在指标体系过于简单、数据积累少等方面问题。理论上,从微区(微米级、纳米级)的角度,对金伯利岩各组成结构单元中矿物等的微成份、微结构进行系统研究,可以更为精准地提取金伯利质初始岩浆组成、演化过程等方面的信息,因此对含金刚石与不含金刚石的金伯利岩的微组构进行精细研究,可以为有效重建金伯利质岩浆的演化机制、深入揭示其对深部过程的响应等奠定科学基础。同时,也可以在对已知金刚石矿区研究的基础上,建立用于金刚石初始品位预测和保存潜力分析的模型,以实现有效评价未知金伯利岩区的含矿性的目的。
Kimberlite is an effective vector for researches and discussions on mantle dynamics process, lithosphere evolution and other major scientific problems, which plays an important role in revealing the forming environment, origin, source and prospecting of diamond. Currently, the developing research process of Kimberlite is still hampered by several key scientific problems, such as the evolution and the significance of the Kimberlite, evaluation for diamond potential and so on. Based on high-pressure melt simulation experiments, researches about matrix mineral, fine syngenetic inclusion (cognate xenolith?) and cryptocrystalline in the margin area of Kimberlite pipe, it seems that the initial composition features of Kimberlitic magma can be effectively analyzed. However, these experiments and researches are not only difficult to identify source characteristics of Kimberlitic magma efficiently, but also difficult to distinguish those effects on magma from which is assimilation/contamination, fluid fractionation or devitrification. Lacking of systematic research reports about recrystallization and (or) regrowth mineral on micro-composition and micro-structure, it is hard to efficiently and accurately analyze the changes and degassing effects in Kimberlitic magma, so far as to reveal the process of Kimberlitic magma evolution. Although Kimberlite diamond potential can be evaluated based on mineral assemblage, water content of olivine, there still exist some kinds of problems, like the index system being too simple, and the data accumulation being too little. Carrying out the fine micro-fabric studies between diamond-bearing Kimberlite and non diamond-bearing one can establish the scientific foundation for rebuilding the Kimberlitic magma evolution mechanism effectively and reveal the response to deep geological process. Meanwhile, on the basis of known diamond mines, a model for initial grade prediction of diamond and analysis of preservation potential can be set up to realize final purpose to evaluate the diamond potential in unknown Kimberlite areas in effect validity.

中图分类号: 

[1] Ai Qun, Yang Zhijun, Zeng Xiangqing, et al . Study on the FTIR Spectra of OH in Olivines from menyin Kimberlite[J]. Spectroscopy and Spectral Analysis ,2013,(9):2 374-2 378.
. 光谱学与光谱分析, 2013,(9):2 374-2 378.]
[2] Tang Yanjie,Zhang Hongfu,Ying Jifeng, et al . Indicative significance of Olivine in mantle peridotites[J]. Journal of Earth Sciences and Environment ,2011, 33(1):24-33.
. 地球科学与环境学报, 2011, 33(1):24-33.]
[3] Tang Y, Zhang H, Nakamura E, et al . Multistage melt/fluid-peridotite interactions in the refertilized lithospheric mantle beneath the North China Craton: Constraints from the Li-Sr-Nd isotopic disequilibrium between minerals of peridotite xenoliths[J]. Contributions to Mineralogy and Petrology , 2011, 161(6): 845-861.
[4] Sparks R S J, Brooker R A, Field M, et al . The nature of erupting Kimberlite melts[J]. Lithos , 2009, 112(Suppl.):429-438.
[5] Mitchell R H. Petrology of hypabyssal Kimberlites: Relevance to primary magma compositions[J]. Journal of Volcanology and Geothermal Research , 2008, 174(1/3):1-8.
[6] Peslier A H, Woodland A B, Wolff J A. Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa[J]. Geochimica et Cosmochimica Acta , 2008, 72(11): 2 711-2 722.
[7] Matveev S, Stachel T. FTIR spectroscopy of OH in olivine: A new tool in kimberlite exploration[J]. Geochimica et Cosmochimica Acta , 2007, 71(22):5 528-5 543.
[8] Basson I J, Creus P K, Anthonissen C J, et al . Structural analysis and implicit 3D modelling of high-grade host rocks to the Venetia Kimberlite diatremes, Central zone, Limpopo Belt, South Africa[J]. J ournal of Structural Geology , 2016,86: 47-61.
[9] Kamenetsky V S, Yaxley G M. Carbonate-silicate liquid immiscibility in the mantle propels Kimberlite magma ascent[J]. Geochimica et Cosmochimica Acta , 2015,158: 48-56
[10] Dalton J A, Presnall D C. The continuum of primary carbonatitic â ��Kimberlitic Melt compositions in equilibrium with Lherzolite: Data from the System CaO-MgO-Al 2 O 3 -SiO 2 -CO 2 at 6 GPa[J]. Journal of Petrology , 1998, 39(11/12): 1 953-1 964.
[11] Dongre A N, Viljoen K S, Chalapathi Rao N V, et al . Origin of Ti-rich garnets in the groundmass of Wajrakarur field kimberlites, southern India: Insights from EPMA and Raman spectroscopy[J]. Mineralogy and Petrology , 2016,110(2/3): 295-307.
[12] Willcox A, Buisman I, Sparks R S J, et al . Petrology, geochemistry and low-temperature alteration of lavas and pyroclastic rocks of the Kimberlitic Igwisi Hills volcanoes, Tanzania[J]. Chemical Geology , 2015,405: 82-101.
[13] Le Roex A P. Petrogenesis of group I kimberlites from kimberley, South Africa: Evidence from bulk-rock geochemistry[J]. Journal of Petrology , 2003, 44(12): 2 261-2 286.
[14] Zhao D, Zhang Y, Essene E J. Electron probe microanalysis and microscopy: Principles and applications in characterization of mineral inclusions in chromite from diamond deposit[J]. Ore Geology Reviews , 2015,65: 733-748
[15] Kavanagh J L, Sparks R S J. Temperature changes in ascending kimberlite magma[J]. Earth and Planetary Science Letters , 2009, 286(3/4): 404-413.
[16] Kamenetsky V S,Belousova E A, Giuliani A, et al . Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: Implications for the composition of kimberlite melts[J]. Chemical Geology , 2014, 383: 76-85.
[17] Eggler D H. Role of CO 2 in Melting Processes in the Mantle[R]. Carnegie Institution of Washington Yearbook 1972-1973, 1973.
[18] Le Pioufle A, Canil D. Iron in monticellite as an oxygen barometer for kimberlite magmas[J]. Contributions to Mineralogy and Petrology , 2012,163(6):1 033-1 046.
[19] Mitchell R H. Kimberlites, Orangeites, and Related Rocks[M].New York:Plenum Press, 1995.
[20] Pell J, Russell J K, Zhang S. Kimberlite emplacement temperatures from conodont geothermometry[J]. Earth and Planetary Science Letters , 2015,411: 131-141.
[21] Лазько Е Е, Zhu Hebao. Olivine in Kimberlite and its genesis[J]. Geology-Geochemistry ,1983,9:22-25.
. 地质地球化学, 1983,9:22-25.]
[22] Dong Zhenxin. Kimberlite in China[M].Beijing:Science Press, 1994.
. 科学出版社, 1994.]
[23] Bulanova G P. The formation of diamond[J]. Journal of Geochemical Exploration , 1995, 53: 1-23.
[24] Ren Xirong. The garnets and diopsides from deep-seated xenoliths in the kimberlites in Shandong[J]. Geology of Shandong ,1985,(2): 52-60.
. 山东地质, 1985,(2): 52-60.]
[25] Xu Renyan. Statistical analysis for composition characteristics of Pyrope and the diomond content of Kimberlite[J]. Computing Techniques for Geophysical and Geochemical Exploration ,1988,(3): 220-228.
. 物探化探计算技术, 1988,(3): 220-228.]
[26] Frick C. The garnets in kimberlite and in the associated griquaite and ultramafic nodules[J]. Contributions to Mineralogy & Petrology , 1972, 35(1): 63-76.
[27] Griffin W L, Smith D, Boyd F R, et al . Trace-element zoning in garnets from sheared mantle xenoliths[J]. Geochimica et Cosmochimica Acta , 1989, 53(2): 561-567.
[28] Matveev S, Stachel T. Evaluation of kimberlite diamond potential using FTIR spectroscopy of xenocrystic olivine[J]. Lithos , 2009, 112:36-40.
[29] Grant K, Ingrin J, Lorand J P, et al . Water partitioning between mantle minerals from peridotite xenoliths[J]. Contributions to Mineralogy and Petrology , 2007, 154(1): 15-34.
[30] Demouchy S, Mackwell S. Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine[J]. Physics and Chemistry of Minerals , 2006, 33(5): 347-355.
[31] Zhang Hongfu,Ying Jifeng,Tang Yanjie, et al . Heterogeneity of Mesozoic and Cenozoic lithospheric mantle beneath the eastern North China Craton: Evidence from olivine compositional mapping[J]. Acta Petrologica Sinica ,2006, 22(9): 2 279-2 288.
. 岩石学报, 2006, 22(9): 2 279-2 288.]
[32] Matsyuk S S, Langer K. Hydroxyl in olivines from mantle xenoliths in kimberlites of the Siberian platform[J]. Contributions to Mineralogy and Petrology , 2004, 147(4): 413-437.
[33] Bell D R. Abundance and partitioning of OH in a high-pressure magmatic system: Megacrysts from the Monastery Kimberlite, South Africa[J]. Journal of Petrology , 2004, 45(8): 1 539-1 564.
[34] Jia Zubing,Xia Qunke,Tian Zhenzhen. Style of volcanic eruption and volatile content[J]. Acta Petrologica Sinica , 2014,30(12): 3 701-3 708.
. 岩石学报, 2014,30(12): 3 701-3 708.]
[35] Le Pioufle, Canil A D. Iron in monticellite as an oxygen barometer for kimberlite magmas[J]. Contributions to Mineralogy and Petrology , 2012,163(6):1 033-1 046.
[36] Castillo-Oliver M, Gali S, Melgarejo J C, et al . Trace-element geochemistry and U-Pb dating of perovskite in kimberlites of the Lunda Norte province (NE Angola): Petrogenetic and tectonic implications[J]. Chemical Geology ,2016,426: 118-134.
[37] Zhao Xin, Shi Guanghai, Zhang Ji. Review of lithospheric diamonds and their mineral inclusions[J]. Advances in Earth Science ,2015,30(3):310-322.
. 地球科学进展, 2015,30(3): 310-322.]
[38] Agrosì G, Nestola F, Tempesta G, et al . X-ray topographic study of a diamond from Udachnaya: Implications for the genetic nature of inclusions[J]. Lithos , 2016,248/251:153-159.
[39] Kaur G, Mitchell R H. Mineralogy of the P-12 K-Ti-richterite diopside olivine lamproite from Wajrakarur, Andhra Pradesh, India: Implications for subduction-related magmatism in eastern India[J]. Mineralogy and Petrology , 2016,110(23): 223-245.
[40] Brett R C, Russell J K, Moss S. Origin of olivine in kimberlite: Phenocryst or impostor?[J]. Lithos , 2009, 112:201-212.
[41] Jones T J, Russell J K, Porritt L A, et al .Morphology and surface features of olivine in kimberlite: Implications for ascent processes[J]. Solid Earth , 2014,5(1): 313-326.
[1] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[2] 张旗. 岩石化学[J]. 地球科学进展, 1992, 7(1): 84-.
阅读次数
全文


摘要