地球科学进展 ›› 2016, Vol. 31 ›› Issue (7): 668 -681. doi: 10.11867/j.issn.1001-8166.2016.07.0668.

所属专题: 地球系统科学大会纪念专刊

上一篇    下一篇

海洋碳汇对气候变化的响应与反馈
焦念志 1( ), 李超 2, 王晓雪 3   
  1. 1.厦门大学近海海洋环境科学国家重点实验室,福建 厦门 361005
    2.中国地质大学(武汉)生物地质与环境地质国家重点实验室,湖北 武汉 430074
    3.中国科学院南海海洋研究所,广东 广州 510301
  • 收稿日期:2016-07-06 修回日期:2016-07-08 出版日期:2016-07-20
  • 基金资助:
    国家重点基础研究发展计划项目“海洋微型生物碳泵储碳过程与机制研究”(编号2013CB955700)资助

Response and Feedback of Marine Carbon Sink to Climate Change

Nianzhi Jiao 1( ), Chao Li 2, Xiaoxue Wang 3   

  1. 1.State Key Laboratory of Marine Environmental Science, Xiamen University, Fujian 361005, China
    2.State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
    3.South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China
  • Received:2016-07-06 Revised:2016-07-08 Online:2016-07-20 Published:2016-07-10
  • Supported by:
    Project supported by the National Basic Research Program of China “Processes and mechanisms of carbon sequestration by microbial carbon pump in the ocean”(No.2013CB955700)

海洋碳汇对气候变化的响应与反馈是一个系统的科学命题,也是当前国际地球系统科学领域的前沿热点问题,需要通过微观与宏观结合、古今链接、多学科交叉融合进行深入研究。在我国科学家发起的海洋生物地球化学“戈登科学前沿论坛”(Gordon Research Conferences,GRC)首届论坛上,以海洋生物泵(Biological Pump,BP)、微型生物碳泵(Microbial Carbon Pump, MCP)以及碳酸盐泵(Carbonate Counter Pump,CCP)等海洋储碳机制为核心,深入研讨了海洋碳汇的过程与效应,起到了引领国际海洋学科发展方向的作用。国内学界也积极行动起来,在第四届地球系统科学大会上组织了海洋碳汇专题,从古海洋碳汇、现代海洋碳循环及海洋碳汇的生物海洋学过程3个方面开展研讨。海洋微型生物生态学过程与海洋碳汇以海洋浮游植物、细菌、古菌、病毒以及不同微型生物间的互作为切入点,探讨了微型生物的储碳和固碳作用的过程及其与全球气候变化的关系。古海洋碳汇方向的报告在时间尺度上跨越了从18~8亿年前的中元古代到距今2.5 Ma的第四纪,涵盖了包括古海洋碳汇形成的古海洋环境、古海洋碳汇的生态环境效应等前沿科学问题;古海洋碳汇的报告为现代海洋碳汇研究提供了有益的借鉴,并有助于本领域科学家对海洋碳汇的历史演化观的认识。现代海洋碳循环过程方面,专题报告结合时间梯度和空间梯度,以南海珊瑚礁碳循环源汇争议为代表,探讨了碳循环中的初级生产力、溶解有机碳的来源与有机碳的降解等过程,对现代海区和全球变化背景下海洋的源汇评估提出了新的想法与研究方向。

The response and feedback of ocean carbon sequestration to climate changes is a international hot topic and requires large spatial/temporal scale, collaborative and multi-disciplinary research. In the first conference of GRC Ocean biogeochemistry, scientists focus on three biologically-driven ocean carbon pumps (Biological Pump, BP; Microbial Carbon Pump, MCP; Carbonate Counter Pump, CCP) and their environmental and climate consequences. As a sister meeting in China, we organized the session to show the efforts and progress of ocean carbon sequestration of Chinese scientists. The microbial ecological processes of phytoplankton, bacteria, archaea and viruses and interactions between them were highlighted in the session. Use coral reefs in the South China Sea as an example, the presenters and the participants come to an agreement that interdisciplinary collaborations are needed to ensure a comprehensive understanding of the interactions between microbes and their geochemical environment and the consequences of microbial processing of carbon on outgassing of CO2 and carbon sequestration. The session also have presentations focusing on paleo-environmental reconstruction for carbon sinks as well as their paleo-ecological effects in ancient oceans with time spanning from the 1.8~0.8 Ga Proterozoic to the 2.5 Ma Quaternary. These talks provide specific geological cases for the oceanic carbon sink research and convey the emerging geological view of paleooceanic carbon sinks to the research community of modern ocean carbon sinks. As a summary, the discussion in this session of biological pump, microbial carbon pump and carbonate counter pump shows the latest research progress and future development trend in this field.

中图分类号: 

图1 海洋碳汇的主要生物学机制——海洋生物泵、微型生物碳泵以及碳酸盐泵(引自 “戈登科学前沿论坛”的“海洋生物地球化学与碳汇”永久论坛Logo)
Fig.1 The main biological mechanism for ocean carbon sequestration—BP,MCP and CCP
图2 模拟给出的20倍现代CO 2浓度条件下(7 100×10 -6)2种不同大陆分布条件下的全球年平均温度分布
(a)大陆主要分布在赤道,代表约14亿年前的陆地分布;(b)大陆主要分布在北半球高纬度,代表约15亿年前的陆地分布
Fig.2 Simulated surface air temperatures for two types of continients during the Boring Billion, The model is forced with 20 times present-day CO 2 concentration (7 100×10 -6) and 90% present-day solar constant (1 230 W/m 2)
(a) Continients located at low latitudets for about 1.4 billion years ago;(b) Continents located at middle and high latitudes of the Northern Hemisphere for about 1.5 billion years ago
图3 0~2 Ma时间序列模拟
(a)ODP 1143站K/Al XRF扫描结果,用于代表陆源风化和营养盐输入;(b)ODP 1143站底栖有孔虫δ 13C;(c)箱式模型模拟海水δ 13C结果;红色曲线为40万年滤波结果 [ 28 ]
Fig.3 The simulation result of the last 2 Ma
(a) Normalized K/Al record of ODP Site 1143, representing terrigenous weathering and nutrient input;(b) Benthic foraminifera δ 13C data from Site 1143;(c) Modeled global average δ 13C; Red lines are of 400-ka filtering [ 28 ]
图4 南海与西菲律宾海DOC浓度的比较 [ 31 ]
Fig.4 Comparison of DOC concentrations between the South China Sea and West Philippine Sea [ 31 ]
图5 δ 13C Bulk-δ 13C Compound=4~7时, 13C, 14C双同位素三元模型估算的渤、黄海表层沉积物中现代有机质(蓝色)、预陈化土壤有机质(绿色)和古老有机质(黑色)占总有机质的相对比例 [ 32 ]
每一个色条代表一定的比例(色条越高代表百分比越高,底部色条的高度代表的比例为100%)
Fig.5 Coupled isotopic mass balance results for the fractional contributions of OC from modern (blue bar), pre-aged soil (green bar) and ancient fossil (black bar) sources in surface sediments of the BS-YS basin over a range of prescribed δ 13C bulk-δ 13C compound offsets (4~7) [ 32 ]
The height of each bar is proportional to values (the higher bar correspond to the high percentage, assigning percentage of 100% as the height of bars shown at the bottom)
图6 海南三亚鹿回头珊瑚岸礁区海—气CO 2交换的日周期和季节性差异 [ 36 ]
(a)夏季(2009年8月); (b)秋季(2010年11月); (c)冬季(2011年2月); (d)春季(2011年4月)
Fig.6 Diurnal variations in different seasons [ 36 ]
(a)August 2009 for summer; (b)November 2010 for autumn; (c)February 2011 for winter; (d)April 2011 for spring
图7 海表通过化学缓冲吸收/储存人为CO 2从1960s到2000s下降了16% [ 37 ]
Fig.7 The efficiency of air-sea re-equilibration implied ocean surface accumulation of anthropogenic CO 2 has declined by 16% from the 1960s to 2000s [ 37 ]
图8 海洋碳汇的生物学机制(生物泵、微型生物碳泵、碳酸盐泵)及其环境效应 [ 27 ]
Fig.8 Biologically-driven ocean carbon pumps (BP, MCP, CCP) and their environmental consequences [ 27 ]
图9 海洋附着微生物的生态过程及其与海洋碳循环的相互作用 [ 45 ]
Fig.9 Key processes of microorganisms colonizing the surfaces of most marine organisms and its interactions with marine carbon cycle [ 45 ]
图10 在175(a),180 (b), 250 (c), 340 (d), 425 (e), 600 (f), 675 (g), 860 (h), and 1 085 (i) μatm pCO 2下微生物网络相互关系
展示了每个网络中的5~7个模块,每个点代表一个OTU,点的颜色代表不同的门,2个点之间的连线代 表2 个物种间的联系,蓝色为正相关关系,暗示为共生关系,红色为负相关关系,暗示为竞争关系;丰度最高的5个OTU用较大的点表示。点围成的圈表示一个模块,这些点在模块内的联系比模块外更加紧密 [ 51 ]
Fig.10 Bacterioplankton network interactions under 175 (a), 180 (b), 250 (c), 340 (d), 425 (e),600 (f), 675 (g), 860 (h), and 1 085 (i) μatm pCO 2
Five to seven modules were formed under different pCO 2 concentrations. Each node represents an OTU, which signified a species. Node colours indicate different phyla. Each line connects two OTUs. A blue line indicates a positive interaction between two individual nodes suggesting a mutualism or cooperation, while a red line indicates a negative interaction suggesting predation or competition. Top five highest-abundance OTUs are indicated by bigger dots and marked with OTU identification numbers. The cycle composed of several nodes is a module in the pMEN, which is more correlated in a module than between other modules. Only the module containing more than five OTUs are displayed
[1] Jiao Nianzhi.On the tendency of ocean carbon sequestration from Gordon Research Conferences[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[焦念志. 从戈登科学前沿论坛看海洋碳汇研究动向[C]//第四届地球系统科学大会摘要.上海,2016.]
[2] Jiao Nianzhi, Zhang Chuanlun, Li Chao, et al.Controlling mechanisms and climate effects of microbial carbon pump in the ocean[J]. Science in China(Series D), 2012, 43(1):1-18.
[焦念志,张传伦,李超,等.海洋微型生物碳泵储碳机制及气候效应[J]. 中国科学:D辑,2012, 43(1):1-18.]
[3] Anbar A D, Knoll A H.Proterozoic ocean chemistry and evolution: A bioinorganic bridge?[J]. Science,2002, 297(5 584): 1 137-1 142.
[4] Luo G, Junium C K, Kump L R, et al.Shallow stratification prevailed for~ 1700 to~ 1300 Ma ocean: Evidence from organic carbon isotopes in the North China Craton[J]. Earth and Planetary Science Letters,2014, 400: 219-232.
[5] Pisarevsky S A, Elming S A, Pesonen L J, et al.Mesoproterozoic paleogeography: Supercontinent and beyond[J]. Precambrian Research,2014, 244: 207-225.
[6] Hu Yongyun, Wang Yuwei, Liu Yonggang.Ocean circulation and stratification during the Boring Billion[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[胡永云,王玉玮,刘永岗.Boring Billion时期的大洋环流与海洋层结[C]//第四届地球系统科学大会摘要. 上海,2016.]
[7] Hoffman P F, Kaufman A J, Halverson G P, et al.A Neoproterozoic snowball earth[J].Science,1998, 281(5 381): 1 342-1 346.
[8] Och L M, Shields-Zhou G A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews,2012, 110(1): 26-57.
[9] Grotzinger J P, Fike D A, Fischer W W.Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history[J]. Nature Geoscience,2011, 4(5): 285-292.
[10] Rothman D H, Hayes J M, Summons R E.Dynamics of the Neoproterozoic carbon cycle[J]. Proceedings of the National Academy of Sciences,2003, 100(14): 8 124-8 129.
[11] Fike D A, Grotzinger J P, Pratt L M, et al.Oxidation of the Ediacaran ocean[J].Nature,2006, 444(7 120): 744-747.
[12] McFadden K A, Huang J, Chu X, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J].Proceedings of the National Academy of Sciences,2008, 105(9): 3 197-3 202.
[13] Swanson-Hysell N L, Rose C V, Calmet C C, et al. Cryogenian glaciation and the onset of carbon-isotope decoupling[J].Science,2010, 328(5 978): 608-611.
[14] Wang X, Jiang G, Shi X, et al.Paired carbonate and organic carbon isotope variations of the Ediacaran Doushantuo Formation from an upper slope section at Siduping, South China[J]. Precambrian Research,2016, 273: 53-66.
[15] Li C, Love G D, Lyons T W, et al.A stratified redox model for the Ediacaran ocean[J].Science,2010, 328(5 974): 80-83.
[16] Chang Huajin, Chu Xuelei, Feng Lianjun,et al.Euxinic waters in Early Cambrian Nanhua Basin[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[常华进,储雪蕾,冯连君, 等.早寒武世早期南华盆地存在硫化的水体[C]//第四届地球系统科学大会摘要.上海,2016.]
[17] Shi Wei, Li Chao.Large C-isotope excursion events and spatiotemporal oceanic oxygenation in Ediacaran: Evidence from sedimentary S-isotope records preserved in Ediacaran Doushantuo Formation[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[石炜,李超.埃迪卡拉纪极端碳同位素负偏事件与海洋时空氧化:来自硫同位素的证据[C]//第四届地球系统科学大会摘要. 上海,2016.]
[18] Chang Biao,Luo Genming, Huang Junhua, et al.Large C-isotope excursion events and the oxidation of oceanic dissolved organic carbon reservoir: Evidence from paleo-temperature records preserved in Ediacaran Doushantuo Formation[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[常标,罗根明,黄俊华,等.埃迪卡拉纪极端碳同位素负漂事件与海洋溶解有机碳库的氧化:来自古温度的证据[C]//第四届地球系统科学大会摘要.上海,2016.]
[19] Xie S, Pancost R D, Huang J, et al.Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis[J].Geology,2007, 35(12): 1 083-1 086.
[20] Song H, Wignall P B, Tong J, et al.Two pulses of extinction during the Permian-Triassic crisis[J].Nature Geoscience,2013, 6(1): 52-56.
[21] Xie Shucheng, Luo Genming, Yin Hongfu.Relationships and environmental effects between carbon cycling and microbes during biological extinction 0.25 billion years ago[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[谢树成,罗根明,殷鸿福. 2.5亿年前生物大灭绝期间碳循环与微生物之间的关系及其生态效应[C]//第四届地球系统科学大会摘要. 上海,2016.]
[22] Sun Y, Joachimski M M, Wignall P B, et al.Lethally hot temperatures during the Early Triassic greenhouse[J]. Science,2012, 338(6 105): 366-370.
[23] Clarkson M O, Kasemann S A, Wood R A, et al.Ocean acidification and the Permo-Triassic mass extinction[J]. Science,2015, 348(6 231): 229-232.
[24] Wang P X, Li Q Y, Tian J, et al.Long-term cycles in the carbon reservoir of the Quaternary ocean: A perspective from the South China Sea[J]. National Science Review,2014, 1(1): 119-143.
[25] Wang P, Tian J, Lourens L J.Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records[J]. Earth and Planetary Science Letters,2010, 290(3): 319-330.
[26] Russon T, Paillard D, Elliot M.Potential origins of 400-500 kyr periodicities in the ocean carbon cycle: A box model approach[J].Global Biogeochemical Cycles,2010, 24(2),doi:10.1029/2009GB003586.
[27] Jiao N, Herndl G J, Hansell D A, et al.Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J].Nature Reviews Microbiology,2010, 8(8): 593-599.
[28] Ma Wentao, Wang Pinxian, Tian Jun.Modeling 400-500-kyr Pleistocene carbon isotope cyclicity through variations in the dissolved organic carbon pool[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[29] Muller-Karger F E, Varela R, Thunell R, et al. The importance of continental margins in the global carbon cycle[J].Geophysical Research Letters,2005, 32(1):1-4.
[30] Dai Minhan, Wu Kai, Meng Feifei, et al.Net dissolved organic carbon production and carbon partitioning in the marginal seas[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[戴民汉,吴凯,孟菲菲,等.边缘海中溶解有机碳的生产和碳在不同形态之间的分配[C]//第四届地球系统科学大会摘要.上海,2016.]
[31] Wu K, Dai M, Chen J, et al.Dissolved organic carbon in the South China Sea and its exchange with the Western Pacific Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2015, 122: 41-51.
[32] Tao S Q, Timothy I, Eglinton D, et al. Diverse origins and pre-depositional histories of organic matter in contemporary Chinese marginal sea sediments[J].Geochimica et Cosmochimica Acta,2016,in press.
[33] Zhao Meixun,Yu Meng, Ding Yang, et al.Sources, age characteristics and carbon sink implications of sedimentary organic matter in China marginal seas[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[赵美训,于蒙,丁杨,等.我国边缘海沉积有机质来源、年龄及其碳汇意义[C]//第四届地球系统科学大会摘要.上海,2016.]
[34] Yan Hongqiang, Yu Kefu, Tan Yehui.Recent development in the research of carbon cycle in coral reef ecosystem[J]. Acta Ecologica Sinica,2009, 29(11): 6 207-6 215.
[严宏强,余克服,谭烨辉.珊瑚礁区碳循环研究进展[J].生态学报, 2009, 29(11): 6 207-6 215.]
[35] Yan H, Yu K, Shi Q, et al.Seasonal variations of seawater pCO2 and sea-air CO2 fluxes in a fringing coral reef, northern South China Sea[J]. Journal of Geophysical Research: Oceans,2016, 121(1): 998-1 008.
[36] Yu Kefu, Yan Hongqiang, Tao Shicheng,et al.A study on the carbon cycle in the coral reef area of the South China Sea[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[余克服,严宏强,陶士臣,等.南海珊瑚礁区的碳循环研究[C]//第四届地球系统科学大会摘要.上海,2016.]
[37] Zhai W.Quantifying air-sea re-equilibration-implied ocean surface CO2 accumulation against recent atmospheric CO2 rise[J]. Journal of Oceanography, 2016, 72:651-659.
[38] Liang Qianyong, Zhao Jing, Xia Zhen, et al.Distribution characteristicsand influential factorsof dissolved methane in the sea water above gas hydrate area at thenorthern slope of South China Sea[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[梁前勇,赵静,夏真,等. 南海北部陆坡天然气水合物区海水甲烷含量分布特征及其影响因素探讨[C]//第四届地球系统科学大会摘要.上海,2016.]
[39] Jiao N, Yang Y, Hong N, et al.Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea[J]. Continental Shelf Research,2005, 25(10): 1 265-1 279.
[40] Jiao N.New techniques reveal new mechanisms—The role of aerobic anoxygenic phototrophs in carbon cycling in the ocean[J]. Journal of Biotechnology, 2008, 136: S10.
[41] Carlson K M, Curran L M, Ratnasari D, et al.Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia[J]. Proceedings of the National Academy of Sciences,2012, 109(19): 7 559-7 564.
[42] Jiao N, Robinson C, Azam F, et al.Mechanisms of microbial carbon sequestration in the ocean-future research directions[J]. Biogeosciences,2014, 11(19): 5 285-5 306.
[43] Jiao N, Legendre L, Robinson C, et al.Comment on “Dilution limits dissolved organic carbon utilization in the deep ocean”[J]. Science,2015, 350(6 267): 1 483-1 483.
[44] Dang H, Lovell R.Microbial surface colonization and biofilm development in marine environments[J]. Microbiology and Molecular Biology Reviews, 2016, 80(1): 91-138.
[45] Dang Hongyue.Ecological characteristics and biogeochemical functions of marine particle-and surface-associated microbiota[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[46] Jiao N, Zheng Q.The microbial carbon pump: From genes to ecosystems[J].Applied and Environmental Microbiology,2016,77(21):7 439-7 444.
[47] Liang Yandao.Large-scale distribution and carbon sequestration potential of marine virio-and pico-plankton[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[梁彦稻. 海洋超微型浮游生物的大尺度分布及其固碳潜力研究[C]//第四届地球系统科学大会摘要.上海,2016.]
[48] Zhang Yongyu.The picophytoplankton-bacteria interactions and their impacts on carbon transport in microbial loop[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[张永雨. 海洋浮游植物与异养细菌互作关系及其对碳的微食物环传递的调控作用[C]//第四届地球系统科学大会摘要.上海,2016.]
[49] Yang Yufeng.Carbon sink potential and bioremediation effects of the large-scale cultivation of seaweed Gracilaria lemaneiformis[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[杨宇峰. 大型海藻龙须菜规模栽培的碳汇潜力及其环境修复效应[C]//第四届地球系统科学大会摘要.上海,2016.]
[50] Xie Wei.Localized high abundance of marine group II archaea in a P-limited subtropical estuary: Implication for microbial interaction and niche adaptation[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[谢伟. 珠江口异养浮游古菌MGII的勃发及机制探究[C]//第四届地球系统科学大会摘要.上海,2016.]
[51] Wang Y, Zhang R, Zheng Q, et al.Bacterioplankton community resilience to ocean acidification: Evidence from microbial network analysis[J]. ICES Journal of Marine Science: Journal du Conseil,2015,doi:10.1093/icesjms/fsv187.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[10] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[11] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[12] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[13] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[14] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[15] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
阅读次数
全文


摘要