地球科学进展 ›› 2015, Vol. 30 ›› Issue (11): 1260 -1267. doi: 10.11867/j.issn.1001-8166.2015.11.1260

新技术 上一篇    下一篇

国外空域资源开发利用的理论基础、方法论变革与实践
路紫 1, 杜欣儒 2   
  1. 1. 河北师范大学旅游学院,河北 石家庄 050024;
    2. 河北师范大学资源与环境科学学院,河北 石家庄 050024
  • 收稿日期:2015-09-29 修回日期:2015-11-05 出版日期:2015-11-20
  • 基金资助:
    国家自然科学基金项目“社会性网络服务社区中人际节点空间关系研究”(编号:41271142)资助

The Theoretical Sources, Innovation of Methodologies and Practice of the Exploitation and Utilization of Airspace in Western Countries

Lu Zi 1, Du Xinru 2   

  1. 1. School of Tourism,Hebei Normal University,Shijiazhuang 050024,China;
    2. School of Resource and Environment,Hebei Normal University,Shijiazhuang 050024,China
  • Received:2015-09-29 Revised:2015-11-05 Online:2015-11-20 Published:2015-11-20
  • About author:First author: Lu Zi(1960-), male, Beijing City, Professor. Research areas include regional development and management. E-mail: luzi1960@126.com
  • Supported by:
    Project supported by the National Nature Science Foundation of China “The spatial relationship of interpersonal node in social networking services community”(No.41271142)
空中交通流量的持续增长引发充分开发利用空域资源的理论建设和方法论研究及其应用实践,旨在突破原有的空域结构及其扇区边界的限制。在过去的10年里航线结构及其需求有了显著变化,仍保持相对固定的几何扇区形态面临新的挑战,需要重新设计动态空域功能分区。首先分析了当前空域资源开发利用的理论基础,包括新一代航空运输体系,灵活空域使用,平衡扇区等;然后评价了方法论的变革,总结了从动态空域配置(DAC)到动态空域功能分区(DAS)的转变,以及动态空域功能分区的2D-DAS常用方法向3D-DAS新方法的演进,并讨论了“基于个体模型”(ABM)的局限性和“改进的基于个体模型”(iABM)的应用优势;最后展望了地理学空间研究向空域拓展的前景。
The continuing air traffic growth causes the full development and utilization of theoretical construction, methodology research and application practice in airspace, which aims at changing the fixed airspace structure and sector boundaries. The geometry of sectors has stayed relatively constant despite the fact that route structures and demand have changed dramatically over the past decade. Only the dynamic airspace sectorization can accommodate the traffic demands. This paper first analyzes the current theoretical sources of the airspace development and utilization, which includes next generation air transportation system, flexible use of airspace and balanced sector. Second, this paper evaluates changes of methodology and also summaries the transfer from Dynamic Airspace Configuration (DAC) to Dynamic Airspace Sectorization (DAS), 2D-DAS methods to 3D-DAS methods in Dynamic Airspace Sectorization. Then, the paper identifies drawbacks in Agent Based Model (ABM) and proposes improved Agent Based Model (iABM). Finally based on change of airspace utilization, the future expanding of research of geography to airspace is proposed.

中图分类号: 

[1] Xie Rong, Liu Yawen, Li Xiangxiang. Key technologies of Earth observation satellite data integration system under big data environment[J]. Advances in Earth Science,2015, 30(8): 855-862.[谢榕, 刘亚文, 李翔翔. 大数据环境下卫星对地观测数据集成系统的关键技术[J]. 地球科学进展, 2015, 30(8): 855-862.]
[2] Han Chengming, Li Yaodong, Shi Xiaokang. Overview of researches on cloud analysis and prediction methods[J]. Advances in Earth Science, 2015, 30(4):505-516.[韩成鸣, 李耀东, 史小康. 云分析预报方法研究进展[J]. 地球科学进展, 2015,30(4): 505-516.]
[3] Cindy F, Jonathan B, Robert M, et al. Enhancing the security of aircraft surveillance in the next generation air traffic control system[J]. International Journal of Critical Infrastructure Protection, 2013, 6(1): 3-11.
[4] Dimitis B, Shubham G, Guglielmo L. Dynamic resource allocation: A flexible and tractable modeling framework[J]. European Journal of Operational Research, 2014, 236(1): 14-26.
[5] Rowe D W, Borowski M, Wendling V S, et al. Redesigning high altitude airspace in the national airspace system: Modeling, simulation, and assessment[J]. Journal of Air Traffic Control, 2003, 45(2): 17-23.
[6] Brinton C. Pledgie S. Airspace partitioning using flight clustering and computational geometry[C]//27 th Digital Avionics Systems Conference (DASC), St. Paul, MN, 2008.
[7] Xue M. Airspace sector redesign based on voronoi diagrams[J]. Journal of Aerospace Computing Information and Communication,2009, 6(12): 624-634.
[8] Jung J, Lee P U, Kessell A, et al. Effect of dynamic sector boundary changes on air traffic controllers[C]//AIAA Guidance, Navigation, and Control (GNC) Conference and Exhibit. Toronto, Canada, 2010.
[9] Lee P U, Prevot T, Homola J, et al. Impact of airspace reconfiguration on controller workload and task performance[C]//3 rd International Conference on Applied Human Factors and Ergonomics. Miami, FL, 2010.
[10] Lee P U, Prevot T, Homola J, et al. Sector design and boundary change considerations for flexible airspace management[C]//10 th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Fort Worth, TX, 2010.
[11] Delahaye D, Alliot J M, Schoenauer M, et al. Genetic algorithms for partitioning air space[C]//10 th IEEE Conference on Artificial Intelligence Applications. San Antonio, TX, 1994.
[12] Kopardekar P, Bilimoria K, Sridhar B. Initial concepts for dynamic airspace configuration[C]//7 th AIAA Aviation Technology, Integration and Operations Conference (ATIO). Belfast, Northern Ireland, 2007.
[13] McNally P, Thipphavong D. Automated separation assurance in the presence of uncertainty[C]//26 th International Congress of the Aeronautical Sciences. Anchorage, Alaska, 2008.
[14] Doble N, Hoffman R, Krozel J, et al. Current airspace configuration practices and their implications for future airspace concepts[C]//8 th AIAA Aviation Technology, Integration, and Operations Conference. Anchorage Alaska, 2008.
[15] Delahaye D, Puechmorel S. 3D airspace sectoring by evolutionary computation[C]//8 th  Annual Conference on Genetic and Evolutionary Computation. Seattle, WA, 2006.
[16] Xue M. Airspace sector redesign based on Voronoi diagrams[C]//AIAA Guidance, Navigation, and Control Conference. Honolulu, HI, 2008.
[17] Trandac H, Baptiste P, Duong V. A constraint-programming formulation for dynamic airspace sectorization[C]//21 st Digital Avionics Systems Conference. Irvine, CA, 2002.
[18] Klein A, Rodgers M D, Kaing H. Dynamic FPAs: A new method for dynamic airspace configuration[C]//Integrated Communications, Navigation and Surveillance Conference. Bethesda, MD, 2008.
[19] Tien A, Hoffmann R. Optimizing airspace sectors for varying demand patterns using multi-controller staffing[C]//8 th USA/Europe Air Traffic Management Research and Development Seminar, 2009.
[20] Mitchell J S B, Sabhnani G, Krozel J, et al. Dynamic airspace configuration management based on computational geometry techniques[C]//AIAA Guidance, Navigation, and Control Conference. Honolulu, HI, 2008.
[21] Basu A, Mitchell J S B, Sabhnani G. Geometric algorithms for optimal airspace design and air traffic controller workload balancing[J]. Journal of Experiment Algorithmics, 2008, 14(3): 75-89.
[22] Klein A, Rogers M, Kaing H. Dynamic FPAs: A new method for dynamic airspace configuration[C]//Integrated Communications Navigation and Surveillance (ICNS) Conference. Bethesda, MD, 2008.
[23] Kopardekar P, Magyarits S. Measurement and prediction of dynamic density[C]//5 th  USA/Europe Air Traffic Management R&D Seminar, Budapest. Hungary, 2003.
[24] Xue M. Three-dimensional sector design with optimal number of sectors[J]. Journal of Guidance Control and Dynamics,2012, 35(2): 609-618.
[25] Zelinski S. A comparison of algorithm generated sectorizations[C]//8 th USA/Europe Air Traffic Management Research and Development Seminar. Napa, CA, 2009.
[26] Lee P, Mercer J, Gore B, et al. Examining airspace structural components and configuration practices for dynamic airspace configuration[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Honolulu, HI, 2008.
[27] Alam S, Abbass H, Barlow M. ATOMS:Air traffic operations and management simulator[J].IEEE Transactions on Intelligent Transportation System, 2009, 9(2): 209-225.
[28] Jiangjun T, Sameer A, Chris L, et al. A multi-objective approach for dynamic airspace sectorization using agent based and geometric models[J].Transportation Research Part C:Emerging Technologies, 2012, 21: 89-121.
[29] Songchen H, Zhang M. The optimization method of the sector partition based on metamorphic voronoi polygon[J]. Chinese Journal of Aeronautics, 2004, 17(1): 7-12.
[30] Delahaye D, Puechmorel S. 3D airspace design by evolutionary computation[C]//IEEE/AIAA 27 th Digital Avionics Systems Conference, 2008.
[31] Hanif D S, Justin M H. Configuration of airspace sectors for balancing air traffic controller workload[J]. Annals of Operations Research, 2013, 203: 3-31.
[32] Fu Bojie, Leng Shuying, Song Changqing. The characteristics and tasks of geography in the new era[J]. Scientia Geographica Sinica, 2015, 8: 939-945.[傅伯杰, 冷疏影, 宋长青. 新时期地理学的特征与任务[J]. 地理科学, 2015, 8: 939-945.]
[33] Liu Hui, Su Jilan. Theory and practice for marine ecosystem-based management[J].Advances in Earth Science, 2014, 29(2): 275-284.[刘慧, 苏纪兰. 基于生态系统的海洋管理理论与实践[J]. 地球科学进展, 2014,29(2): 275-284.]
[1] 张一诺,路紫,杜欣儒,董雅晴,张菁. 时空连续数据支持下的空域资源配置研究:评述与展望[J]. 地球科学进展, 2019, 34(9): 912-921.
[2] 杜欣儒, 路紫, 郜方, 姚赛. 灵活空域使用的设计方法与应用及其时间替代机制[J]. 地球科学进展, 2016, 31(6): 643-649.
[3] 杜欣儒, 路紫. 信息通信技术在空域协同管理决策中的应用——以危险天气条件下风险规避分析为例[J]. 地球科学进展, 2016, 31(3): 269-276.
阅读次数
全文


摘要