地球科学进展 ›› 2014, Vol. 29 ›› Issue (12): 1383 -1393. doi: 10.11867/j.issn.1001-8166.2014.12.1383

综述与评述 上一篇    下一篇

高寒山区地表温度测算方法研究综述
阳勇, 陈仁升, 宋耀选   
  1. 1.中国科学院寒区旱区环境与工程研究所黑河上游生态—水文试验研究站,甘肃 兰州 730000; 2.中国科学院内陆河流域生态水文重点实验室,甘肃 兰州 730000
  • 收稿日期:2014-05-18 修回日期:2014-11-12 出版日期:2014-12-20
  • 基金资助:

    冰冻圈科学国家重点实验室开放基金项目“高寒山区不同植被覆盖条件下地表温度对比观测与估算”(编号:SKLCS-OP-2013-06); 国家自然科学基金项目“黑河寒区水文过程小流域综合观测与模拟”(编号:91025011)资助

An Overview of Measurement and Calculation Methods on the Land Surface Temperature on Alpine Mountainous Cold Regions

Yang Yong, Chen Rensheng, Song Yaoxuan   

  1. 1. Qilian Alpine Ecology and Hydrology Research Station, Cold and Arid Regions Environmental and Engineering Research Institute,CAS,Lanzhou 730000,China; 2.Key Laboratory of Inland Ecohydrology,CAS,Lanzhou 730000,China
  • Received:2014-05-18 Revised:2014-11-12 Online:2014-12-20 Published:2014-12-20

地表温度直接影响高寒山区冰川、积雪消融,冻土分布、消融和产汇流过程,蒸散发以及植被分布和演替等过程是寒区地表陆面过程、水文过程以及生态—水文过程研究的重要参数。系统总结了高寒山区地表温度的主要影响因素以及不同获取方法。研究结果认为海拔、地形和植被覆盖是影响高寒山区地表温度的主要因素。地面实测、遥感反演和模式估算是目前获取地表温度的主要手段,但在高寒山区三者均具有一定局限性:地面实测局限于实测点,难以反应区域坡面的地表温度;遥感反演受限于物理机制、地面验证和时空分辨率等,难以满足高寒山区地表生态—水文过程研究的高精度需求;模式估算试验点尺度地表温度精度较高,但在区域尺度上精度有所下降。未来的工作应加强高寒山区地表温度观测并提高模式精度,构建和发展普适性的山区任意地形和不同植被覆盖条件下的高精度地表温度计算公式,满足山区相关研究的需求。

Land surface temperature on alpine mountainous cold regions, which is one of basic parameters of the regional hydrological and meteorological conditions, directly affects glacial recession, snow melt, distribution and freezingthawing process of permafrost, evapotranspiration, vegetation growth, and various underlying surface change process, and then changes the regional hydrological and ecological environment, becomes the important parameter of the research on land surface process and the study of eco-hydrological process. This paper tried to provide an overview of research on land surface temperature, and to introduce its influence factors and the ways to obtain land surface temperature data in high mountainous cold region. Relative to low elevation plain, the land surface temperature was significantly affected by local altitude, terrain and plant cover. There were some methods to obtain land surface temperature, such as measurement in situ, retrieval based on remote sensing and calculation by land surface process models, but there were some limitations while used on alpine mountainous cold regions. Land surface temperature data from meteorological stations were only about level bare ground, and the influence of terrain or vegetable cover was not considered. Therefore, the data could not represent the information of region scale on mountainous area. Land surface temperature retrieval from remote sensing data, because of calculation theory, ground observation verification and spatiotemporal resolution, made it difficult to fulfill research on hydrology, land surface process and eco-hydrological process in alpine mountainous area. Land surface process models estimated land surface temperature in the experimental sites with high accuracy, but reduced the accuracy while upscale to the region scale on the mountainous cold area, because of the error from input control meteorological, soil and plant variables, and the error of ground observation site verification. The future research on land surface temperature on alpine mountainous cold regions should strengthen field observations and improve data accuracy, to build a physical land surface temperature estimation method with topographic and vegetation parameters, and to contribute to research on land-atmosphere-water process in alpine mountainous regions.

中图分类号: 

[1] Zhan W, Chen Y, Zhou J, et al. Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats[J]. Remote Sensing of Environment, 2013, 131: 119-139.
[2] Jiang Hao, Cheng Guodong, Wang Keli. Analyzing and measuring the surface temperature of Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics, 2006, 49(2): 391-397. [江灏, 程国栋, 王可丽. 青藏高原地表温度的比较分析[J]. 地球物理学报, 2006, 49(2): 391-397.]
[3] Chen Xiuzhi, Chen Shuisen, Li Dan, et al. Progress in land surface temperature retrieval from passive microwave remote sensing data[J]. Advances in Earth Science, 2010, 25(8): 827-835. [陈修治, 陈水森, 李丹, 等. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.]
[4] Kuchment L S, Gelfan A N, Demidov V N. A distributed model of runoff generation in the permafrost regions[J]. Journal of Hydrology, 2000, 240: 1-22.
[5] Chen Rensheng, Kang Ersi, Ji Xibing, et al. Clod regions in China[J]. Clod Regions Science and Technology, 2006, 45: 95-102.
[6] Yang Zhenniang, Liu Xinren, Zeng Qunzhu, et al. Hydrology in Cold Regions of China[M]. Beijing: Science Press, 2000. [杨针娘, 刘新仁, 曾群柱, 等. 中国寒区水文[M]. 北京: 科学出版社, 2000.]
[7] Woo M K. Cold Region Atmospheric and Hydrologic Studies—The Mackenzie GEWEX Experience Volume 2: Hydrologic Processes[M]. Berlin Heidelberg: Springer-Verlag, 2008.
[8] Beniston M. Mountain weather and climate: A general overview and a focus on climate change in the Alps[J]. Hydrobiologica, 2006, 562(1): 3-16.
[9] Becker A, Kömer C, Brun J J, et al. Ecological and land use studies along elevational gradients[J]. Mountain Research and Development, 2007, 27: 58-65.
[10] Aizen V B, Aizen E M, Melack J M. Precipitation, melt and runoff in the northern Tien Shan[J]. Journal of Hydrology, 1996, 186: 229-251.
[11] Key J R, Collins J B, Fowler C, et al. High-latitude surface temperature estimates from thermal satellite data[J]. Remote Sensing of Environment, 1997, 61(2): 302-309.
[12] Janke J R, Williams M W, Evans A J. A comparison of permafrost prediction models along a section of Trail Ridge Road, Rocky Mountain National Park, Colorado, USA[J]. Geomorphology, 2012, 138(1): 111-120.
[13] Julien Y, Sobrino J A, Verhoef W. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999[J]. Remote Sensing of Environment, 2006, 103: 43-55.
[14] Chou Y, Sheng Y, Wei Z, et al. Calculation of temperature differences between the sunny slopes and the shady slopes along railways in permafrost regions on Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2008, 53: 346-354.
[15] Cheng Guodong. Influences of local factors on permafrost occurrence and their implications for Qinghai-Xizang Railway design[J]. Science in China (Series D), 2004, 47(8): 704-709.
[16] Wang Y, Hou S. A new interpolation method for Antarctic surface temperature[J]. Progress in Natural Science, 2009, 19: 1843-1849.
[17] Jin Huijun, Sun Liping, Wang Shaoling, et al. Dual influences of local environmental variables on ground temperatures on the interior-eastern Qinghai-Tibet Plateau(I): Vegetation and snow cover[J]. Journal of Glaciology and Geocryology, 2008,30(4): 535-545. [金会军, 孙立平, 王绍令, 等. 青藏高原中、东部局地因素对地温的双重影响(I): 植被和雪盖[J]. 冰川冻土,2008,30(4): 535-545.]
[18] Randin C F, Vuissoz G, Liston G E, et al. Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the western Swiss alps[J]. Arctic, Antarctic, and Alpine Research, 2009, 41(3): 347-361.
[19] Li Jialun, Hong Zhongxiang, Sun Shufen. An observational experiment on the atmospheric boundary layer in Gerze area of the Tibet an Plateau[J]. Chinese Journal of Atmospheric Sciences, 2000, 24(3): 301-312. [李家伦, 洪钟祥, 孙菽芬. 青藏高原西部改则地区大气边界层特征[J]. 大气科学, 2000, 24(3): 301-312.]
[20] Rorison I H, Sutton F, Hunt R. Local climate, topography and plant growth in Lathkill Dale NNR. I. A twelve-year summary of solar radiation and temperature[J]. Plant, Cell and Environment, 1986, 9: 49-56.
[21] Wang Shaoling, Ding Yongjian, Zhao Lin, et al. The influence of local factor on surface layer ground temperature in Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2002, 21(1): 85-89. [王绍令, 丁永建, 赵林, 等. 青藏高原局地因素对近地表层地温的影响[J]. 高原气象, 2002, 21(1): 85-89.]
[22] Lipton A E. Effects of slope and aspect variations on satellite surface temperature retrievals and mesoscale analysis in mountainous terrain[J]. Meteorological and Science and Technology, 1993, 3: 73-81. [Lipton A E. 山地坡度与坡向对卫星地面温度反演及中尺度分析的影响[J]. 气象科技, 1993, 3: 73-81.]
[23] Šafanda J. Effects of topography and climatic changes on the temperature in borehole GFU-1, Prague[J]. Tectonophysics, 1994, 239(1/4): 187-197.
[24] Wundram D, Pape R, Löffler J. Alpine soil temperature variability at multiple scales[J]. Arctic, Antarctic, and Alpine Research, 2010, 42(1): 117-128.
[25] Whiteway J A, Carswell A I, Ward W E. Mesospheric temperature inversions with overlying nearly adiabatic lapse rate: An indication of a well-mixed turbulent layer[J]. Geophysical Research Letters, 1995, 22: 1201-1204.
[26] Richardson A D, Lee X, Friedland A J. Microclimatology of treeline spruce-fir forests in mountains of the northeastern United States[J]. Agricultural and Forest Meteorology, 2004, 125: 53-66.
[27] McCutchan M H. Determining the diurnal variation of surface temperature in mountainous terrain[J]. Journal of Applied Meteorology, 1979, 18: 1224-1229.
[28] Benniea J, Huntleya B, Wiltshirea A, et al. Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland[J]. Ecological Modelling, 2008, 216: 47-59.
[29] Li J, Heap A D. Spatial interpolation methods applied in the environmental sciences: A review[J]. Environmental Modelling & Software, 2014, 53: 173-189.
[30] Goering D J, Kumar P. Winter-time convection in opergraded embankments[J]. Cold Regions Science and Technology, 1996,24: 57-74.
[31] Hu Zeyong, Cheng Guodong, Gu Lianglei, et al. Calculating method of global radiation and temperature on the roadbed surface of Qinghai-Xizang railway[J]. Advances in Earth Science, 2008, 21(12): 1304-1313. [胡泽勇, 程国栋, 谷良雷. 青藏铁路路基表面太阳总辐射和温度反演方法[J]. 地球科学进展, 2008, 21(12): 1304-1313.]
[32] Sellers P J. Canopy reflectance, photosynthesis and transpiration[J]. International Journal of Remote Sensing, 1985, 6: 1335-1372.
[33] Zhang Mi, Guan Dexin, Wu Jiabing, et al. Research advances in eco-physiological model of plant canopy scale[J]. Chinese Journal of Ecology, 2006, 25(5): 563-571. [张弥, 关德新, 吴家兵, 等. 植被冠层尺度生理生态模型的研究进展[J]. 生态学杂志, 2006, 25(5): 563-571.]
[34] Aalto J, Roux P C, Luoto M. Vegetation mediates soil temperature and moisture in arctic-alpine environments[J]. Arctic, Antarctic, and Alpine Research, 2013, 45(4):429-439.
[35] Lenoir J, Gégout J C, Marquet P A, et al. A significant upward shift in plant species optimum elevation during the 20th century[J]. Science, 2008, 320: 1768-1771.
[36] Theurillat J P, Guisan A. Potential impact of climate change on vegetation in the European Alps: A review[J]. Climatic Change, 2001, 50: 77-109.
[37] Klein J A, Harte J, Zhao X Q. Dynamic and complex microclimate responses to warming and grazing manipulations[J]. Global Change Biology, 2005, 11: 1440-1451.
[38] Scherrer D, Kömer C. Infra-red thermometry of alpine landscapes challenges climatic, warming projections[J]. Global Change Biology, 2010, 16: 2602-2613.
[39] Graham E A, Rundel P W, Kaiser W, et al. Fine-scale patterns of soil and plant surface temperatures in an alpine fellfield habitat, White Mountains, California[J]. Arctic, Antarctic, and Alpine Research, 2012, 44(3):288-295.
[40] Vukovich F M, Toll D L, Murphy R E. Surface temperature and albedo relationships in Senegal derived from NOAA-7 satellite data[J]. Remote Sensing of Environment, 1987, 22(3): 413-421.
[41] Lee W, Liou K N. Effect of absorbing aerosols on snow albedo reduction in the Sierra Nevada original research article[J]. Atmospheric Environment, 2012, 55: 425-430.
[42] Fujita K, Ohta T, Ageta Y. Characteristics and climatic sensitivities of runoff from a cold-type glacier on the Tibetan Plateau[J]. Hydrological Processes, 2007, 21: 2882-2891.
[43] Peter-Lidard C D, Blackburm E, Liang X, et al. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperature[J]. Journal of the Atmospheric Sciences, 1998, 55: 1209-1224.
[44] He Ping, Cheng Guodong, Yu Qihao, et al. A couple model of heat, water and stress field of saturated soil during freezing[J]. Journal of Glaciology and Geocryology, 2000, 22(2): 135-138. [何平, 程国栋, 俞祁浩, 等. 饱和正冻土中的水、热、力场耦合模型[J]. 冰川冻土, 2000, 22(2): 135-138.]
[45] Yu Xiaojing, Liu Huanjun, Qu Changxiang, et al. Study on the spatial pattern of land surface temperature in black-soil zone, Heilongjiang Province[J]. Research of Soil and Water Conservation, 2012, 19(2): 66-70. [于晓静, 刘焕军, 曲长祥, 等. 基于MODIS数据的黑龙江省黑土带地温空间格局分析[J]. 水土保持研究, 2012, 19(2): 66-70. ]
[46] Shi Wei, Nan Zhuotong, Li Ren, et al. Support vector machine based soil mapping of a typical permafrost area in the Qinghai-Tibet Plateau[J]. Acta Pedologica Sinica, 2011, 48(3): 461-469. [石伟, 南卓铜, 李韧, 等. 基于支持向量机的典型冻土区土壤制图研究[J]. 土壤学报, 2011, 48(3): 461-469.]
[47] Oleson K W, Lawrence D M, Bonan G B, et al. Technical Description of Version 4.5 of the Community Land Model (CLM)[R]. NCAR Technical Note: NCAR/TN-503+STR, 2013.
[48] Leng Pei, Song Xiaoning, Li Xinhui, et al. Study on surface soul water estimation in regional scale[C]∥International Conference on Remote Sensing.Hangzhou, 2010, 4: 173-176. [冷佩, 宋小宁, 李新辉, 等. 区域表层土壤水分估算的方法研究[C]∥遥感国际会议录.杭州, 2010, 4: 173-176.]
[49] Xia Ziqiang. Effects of temperature variation on soil water movement and water exchange between soil water and phreatic water[J]. Geo-Information Science, 2001,(4):19-24. [夏自强. 温度变化对土壤水运动影响研究[J]. 地球信息科学, 2001,(4): 19-24.]
[50] Liu Zhiming. The approach of moisture content of soil by remote sensing information of meteorological satellite[J]. Remote Sensing Information, 1992, (1): 21-23. [刘志明. 利用气象卫星信息遥感土壤水分的探讨[J] . 遥感信息, 1992, (1): 21-23.]
[51] Ma Hongzhang, Liu Qinhuo, Yang Le, et al. Algorithm of reconstructing bare soil temperature time series by combining thermal infrared and passive microwave remote sensing technology[J]. Infrared and Laser Engineering, 2011, 40(3): 418-423. [马红章, 柳钦火, 杨乐, 等. 热红外联合被动微波重构裸土区地表温度时间序列数据算法[J]. 红外与激光工程, 2011, 40(3): 418-423.]
[52] Wen J, Su Z, Ma Y. Determination of land surface temperature and soil moisture from tropical rainfall measuring mission/microwave imager remote sensing data[J]. Journal of Geophysical Research, 2003, 108(D2): 4038.
[53] China Meteorological Administration. The Ground Meteorological Observation Criterion[M]. Beijing: Meteorology Press, 2003. [中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2003.]
[54] Li Qin, Guligena·Hailili, Zhao Ling, et al. Analysis on the features of grass-surface temperature in Xinjiang[J]. Desert and Oasis Meteorology, 2011, 5(2): 1-5. [李秦, 古丽格娜·海力力, 赵玲, 等. 新疆草面温度的特征分析[J]. 沙漠与绿洲气象, 2011, 5(2): 1-5.]
[55] Chen Rensheng, Song Yaoxuan, Liu Junfeng, et al. Chapter 10: Cryospheric and related observations in Heihe River Basin, Qilian mountains[M]∥CNC-Clic/IACS Annual Report. Beijing: China Meteorological Press, 2013: 187-205.
[56] Li Z L, Tang B H, Wu H, et al. Satellite-derived land surface temperature: Current status and perspectives[J].Remote Sensing of Environment, 2013, 131: 14-37.
[57] Zhang Jiahuai, Li Xin, Yao Fengmei, et al. The progress in retrieving land surface temperature based on thermal infrared and microwave remote sensing technologies[J]. Spectroscopy and Spectral Analysis, 2009, 29(8): 2 103-2 107. [张佳华, 李欣, 姚凤梅, 等. 基于热红外光谱和微波反演地表温度的研究进展[J]. 光谱学与光谱分析, 2009, 29(8): 2103-2107.]
[58] Qin Zhihao, Zhang Minghua, Arnon Karnieli, et al. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J]. Acta Geographica Sinica, 2001, 56(4): 456-466. [覃志豪, Zhang Minghua, Arnon Karnieli,等.用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 2001, 56(4): 456-466.]
[59] Jiménez-Muñoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research, 2003, 108(D22): 4688-4695.
[60] Gan Fuping, Chen Weitao, Zhang Xujiao, et al. The progress in the study of thermal infrared remote sensing for retrieving land surface temperature[J]. Remote Sensing for Land & Resources, 2006, 67(1): 6-11. [甘甫平, 陈伟涛, 张绪教, 等. 热红外遥感反演陆地表面温度研究进展[J]. 国土资源遥感, 2006, 67(1): 6-11.]
[61] Qin Zhihao, Zhang Minghua, Arnon Karnieli. Split window algorithms for retrieving land surface temperature from NOAA-AVHHRR data[J]. Remote Sensing for Land & Resources, 2001, 48(2): 33-42. [覃志豪, Zhang Minghua, Arnon Karnieli. 用NOAA-AVHRR热通道数据演算地表温度的劈窗算法[J]. 国土资源遥感, 2001, 48(2): 33-42.]
[62] Sobrino J A, Coll C, Caselles V. Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5[J]. Remote Sensing of Environment, 1991, 38: 19-34.
[63] Franca G B, Cracknell A P. Retrieval of land and sea surface temperature using NOAA-11 AVHRR data in northeastern Brazil[J]. International Journal of Remote Sensing, 1994, 15: 1695-1712.
[64] Qin Z, Dall’Olmo G, Karnieli A, et al. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA_advanced very high resolution radiometer data[J]. Journal of Geophysical Research, 2001, 106(D19): 22 655-22 670.
[65] Becker F, Li Z L. Temperature-independent spectral indices in TIR bands[J]. Remote Sensing of Environment, 1990, 32: 17-33.
[66] Barducci A, Pippi I. Temperature and emissivity retrieval from remotely sensed images using the“grey body emissivity”method[J]. IEEE Transactions on Geoscienee and Remote Sensing, 1996, 34: 681-695.
[67] Gillespie A R, Rokugawa S, Matsunaga T, et al. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36: 1113-1126.
[68] Zhu Huaisong, Liu Xiaomeng, Pei Huan. Summary on retrieval of land surface temperature using thermal infrared remote sensing[J]. Arid Meterology, 2007, 25(2): 17-21. [朱怀松, 刘晓锰, 裴欢. 热红外遥感反演地表温度研究现状[J]. 干旱气象, 2007, 25(2): 17-21.]
[69] Liu Hailong, Wang Ling, Bao Anming. The relationship between land surface temperature and underlying surface in Tianshan Mountains region based on remote sensing[J]. Journal of Shihezi University(Natural Science), 2011, 29(2): 224-229. [刘海隆, 王玲, 包安明. 基于遥感的天山山区地表温度与下垫面的关系研究[J]. 石河子大学学报:自然科学版, 2011, 29(2): 224-229.]
[70] Kerchovea R V D, Lhermitteb S, Veraverbekea S. Spatio-temporal variability in remotely sensed land surface temperature, and its relationship with physiographic variables in the Russian Altay Mountains[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 20: 4-19.
[71] Gao F, Wang J, Ma Y. Retrieval of land surface temperatures on the Tibetan Plateau using passive microwave data[J]. Proceedings of the International Geoscience and Remote Sensing Symposium, 2003, 5: 3145-3147.
[72] Gao H, Fu R, Robert E D, et al. A practical method for retrieving land surface temperature from AMSR-E over the Amazon forest[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 193-199.
[73] Jones L A, Craig R F, John S K, et al. Satellite microwave remote sensing of daily land surface air temperature minima and maxima from AMSR-E[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2010, 3(1): 111-123.
[74] Gu Lingjia, Zhao Kai, Sun Jian, et al. Review on the super resoulution enhancement and unmixing method for passive microwave remote sensing data[J]. Remote Sensing Technology and Application, 2012, 27(1): 1-7. [顾玲嘉, 赵凯, 孙健, 等. 被动微波遥感数据超分辨率增强与混合像元分解研究综述[J]. 遥感技术与应用, 2012, 27(1): 1-7.]
[75] Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5): 481-498. [李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.]
[76] Qin Z, Karnieli A. Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data[J]. International Journal of Remote Sensing, 1999, 20(12): 2367-2393.
[77] Zhao Limin, Yu Tao, Tian Qingjiu, et al. Error analysis of the land surface temperature retrieval using HJ-1B thermal infrared remote sensing data[J]. Spectroscopy and Spectral Analysis, 2010, 30(12): 3 359-3 362. [赵利民, 余涛, 田庆久, 等. HJ-1B热红外遥感数据陆表温度反演误差分析[J]. 光谱学与光谱分析, 2010, 30(12): 3359-3362.]
[78] Katsiabani K, Adaktilou N, Cartalis C. A generalised methodology for estimating land surface temperature for non-urban areas of Greece through the combined use of NOAA-AVHRR data and ancillary information[J]. Advances in Space Research, 2009, 43: 930-940.
[79] Sobrino J A, Jiménez-Muñoz J C, Balick L, et al. Accuracy of ASTER level-2 thermal-infrared standard products of an agricultural area in Spain[J]. Remote Sensing of Environment,2007, 106: 146-153.
[80] Liao Shunbao, Ma Lin, Yue Yanzhen, et al. A comparison and analysis of land surface temperature from remote sensing and observation stations[J]. Remote Sensing for Land & Resources, 2004, 59(1): 19-22. [廖顺宝, 马琳, 岳燕珍, 等.NOAA-AVHRR资料反演地温与地面实测值的对比分析[J]. 国土资源遥感, 2004, 59(1): 19-22.]
[81] Xue Hui, Ni Shaoxiang. Progress in the study on monitoring of soil moisture with thermal infrared remote sensing[J]. Agricultural Research in the Arid Areas, 2006, 24(6): 168-172. [薛辉, 倪绍祥. 我国土壤水分热红外遥感监测研究进展[J]. 干旱地区农业研究, 2006, 24(6): 168-172.]
[82] Zhang Qiang. Simple review of land surface process model[J]. Scientia Meteorologica Sinica, 1998, 18(3): 295-304. [张强. 简评陆面过程模式[J]. 气象科学, 1998, 18(3): 295-304.]
[83] Deardorff J W. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer vegetation[J]. Journal of Geophysical Research, 1978, 83: 1889-1903.
[84] Lin J D. On the force-restore method for prediction of ground surface temperature[J]. Journal of Geophysical Research, 1980, 85: 3251-3254.
[85] Dickinson R E. The force-restore model for surface temperatures and its generalizations[J]. Journal of Climate, 1988, 1: 1086-1097.
[86] Dai Yongjiu, Zeng Qingcun, Wang Bin. A simple land surface model for use in AGCM[J]. Scientia Atmospherica Sinica, 1997, 21(6): 705-716. [戴永久, 曾庆存, 王斌. 一个简单的陆面过程模式[J]. 大气科学, 1997, 21(6): 705-716.]
[87] Bonan G B. A Land Surface Model (LSM version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User’s Guide[R]. NCAR Technical Note: NCAR/TN-417+STR, 1996.
[88] Dai Yongjiu, Zeng Xubin, Dickson R E, et al. The common land model[J]. Bulletin of the American Meteorological Society, 2003, 84: 1013-1023.
[89] Ek M B, Mitchell K E, Lin Y, et al. Implementation of Noah land surface model advances in the National Centers for environmental prediction operational mesoscale Eta model[J]. Journal of Geophysical Research, 2003, 108(D22): 8851.
[90] Sellers P J, Mintz Y, Sud Y C, et al. A simple biosphere model (SiB) for use within general circulation models[J]. Journal of the Atmospheric Sciences, 1986, 986: 43(6): 505-531.
[91] Gao Z, Chae N, Kim J, et al. Modeling of surface energy partitioning, surface temperature, and soil wetness in the Tibetan prairie using the Simple Biosphere Model 2 (SiB2)[J]. Journal of Geophysical Research, 2004, 109: D06102.
[92] Chen Hao, Nan Zhuotong, Wang Shugong, et al. Simulationg the water-heat processes on typical sites in the mountainous areas of the upper reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 126-137. [陈浩, 南卓铜, 王书功, 等. 黑河上游山区典型站的水热过程模拟研究[J]. 冰川冻土, 2013, 35(1): 126-137.]
[93] Xiao Y, Zhao L, Dai Y, et al. Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibetan) Plateau[J]. Cold Regions Science and Technology, 2013, 87: 68-77.
[94] Meng C L, Li Z L, Zhan X, et al. Land surface temperature data assimilation and its impact on evapotranspiration estimates from the Common Land Model[J]. Water Resource Research,2009, 45: W02421, doi:10.1029/2008WR006971.
[95] Liu Shaofeng, Lin Zhaohui. Validation of common land model using field experiment data over typical land cover types in east Asia[J]. Climatic and Environmental Research, 2005, 10(3): 684-699. [刘少锋, 林朝晖. 通用陆面模式CLM在东亚不同典型下垫面的验证试验[J]. 气候与环境研究, 2005, 10(3): 684-699.]
[96] Jiang Lingmei, Lu Lixin, Xing Weipo, et al. Evaluating surface energy budgets simulated by SiB3 at three different climate ecosystem tower sites[J]. Journal of the Meteorological Sciences, 2011, 31(4): 493-500. [蒋玲梅, 卢立新, 邢伟坡, 等. SiB3对不同下垫面的模拟试验与验证[J]. 气象科学, 2011, 31(4): 493-500.]
[97] Zeng X, Wang Z, Wang A. Surface skin temperature and the interplay between sensible and ground heat fluxes over arid regions[J]. Journal of Hydrometeorology, 2012, 13: 1359-1370.
[98] Liu Jinting, Ma Zhuguo, Luo Dehai. A study on the thermal process simulations of multiple land surface models in Xinjiang[J]. Plateau Meteorology,2009, 28(6): 1 242-1 249. [刘金婷, 马柱国, 罗德海.三个陆面模式对新疆地区陆面过程模拟的对比研究[J]. 高原气象, 2009, 28(6): 1242-1249.]
[99] Gao Yanhong, Cheng Guodong, Cui Wenrui, et al. Coupling of enhanced land surface hydrology with atmospheric mesoscale model and its implement in Heihe River Basin[J]. Advances in Earth Science, 2006, 21(12): 1 283-1 292. [高艳红, 程国栋, 崔文瑞, 等. 陆面水文过程与大气模式的耦合及其在黑河流域的应用[J]. 地球科学进展, 2006, 21(12): 1283-1292.]
[100] Pavelsky T M, Kapnick S, Hall A. Accumulation and melt dynamics of snowpack from a multiresolution regional climate model in the central Sierra Nevada, California[J]. Journal of Geophysical Research, 2011, 116: D16115, doi:10.1029/2010JD015479.

[1] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[2] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[3] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[4] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[5] 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用[J]. 地球科学进展, 2020, 35(10): 1087-1098.
[6] 张克存, 屈建军, 鱼燕萍, 韩庆杰, 王涛, 安志山, 胡菲. 中国铁路风沙防治的研究进展[J]. 地球科学进展, 2019, 34(6): 573-583.
[7] 雒聪文,马玉贞,王凯,李丹丹. 东亚地区 MIS 5时期孢粉记录的植被与气候研究进展[J]. 地球科学进展, 2019, 34(5): 540-551.
[8] 李天生, 夏军. 基于Budyko理论分析珠江流域中上游地区气候与植被变化对径流的影响 *[J]. 地球科学进展, 2018, 33(12): 1248-1258.
[9] 沈巍, 许清海, 李建勇, 李曼玥, 张攀攀, 卢静瑶. 山区小流域花粉植被土地利用的关系:定量检测人类活动对环境的影响[J]. 地球科学进展, 2017, 32(9): 972-982.
[10] 唐子剑, 康明, 李军. 基于勘探工程位置建模方法和储量估算[J]. 地球科学进展, 2017, 32(8): 839-849.
[11] 戴璐. 末次冰期时暴露的巽他大陆架可能被热带稀树草原覆盖吗?[J]. 地球科学进展, 2017, 32(11): 1147-1156.
[12] 郭淑海, 陈仁升, 韩春坛, 刘国华, 宋耀选, 阳勇, 刘章文, 刘俊峰. 冰雪升华测算结果及影响因素研究进展[J]. 地球科学进展, 2017, 32(11): 1204-1217.
[13] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
[14] 史忠林, 文安邦, 严冬春, 龙翼, 周萍. 7Be法估算土壤侵蚀速率若干问题的探讨[J]. 地球科学进展, 2016, 31(9): 885-893.
[15] 曹沛雨, 张雷明, 李胜功, 张军辉. 植被物候观测与指标提取方法研究进展[J]. 地球科学进展, 2016, 31(4): 365-376.
阅读次数
全文


摘要