地球科学进展 ›› 2004, Vol. 19 ›› Issue (1): 71 -080. doi: 10.11867/j.issn.1001-8166.2004.01.0071

研究论文 上一篇    下一篇

基于遥感数据的全球及区域土地覆盖制图———现状、战略和趋势
李晓兵;陈云浩;喻锋   
  1. 北京师范大学资源学院,环境演变与自然灾害教育部重点实验室,北京 100875
  • 收稿日期:2003-01-28 修回日期:2003-04-29 出版日期:2004-01-20
  • 通讯作者: 陈云浩(1974-),男,安徽省固镇人,副教授,主要从事环境遥感研究. E-mail:E-mail:cyh@bnu.edu.cn
  • 基金资助:

    国家自然科学基金项目“基于‘3S’检测中国北方典型草原植被盖度及其尺度转换研究”(编号:30370265);国家重点基础研究发展规划项目“草地与农牧交错带生态系统重建机理及优化生态—生产范式”(编号:G2000018604);北京师范大学青年科学基金项目(理科)联合资助

GLOBAL AND REGIONAL COVER MAPPING FROM REMOTE SENSING DATA: STATUS QUO, STRATEGIES AND TRENDS

LI Xiao bing, CHEN Yun hao, YU Feng   

  1. Institute of Resource Sciences, Key Laboratory of Environmental Change and Natural 
    Disaster of Ministry of Education, Beijing Normal University, Beijing 100875,China
  • Received:2003-01-28 Revised:2003-04-29 Online:2004-01-20 Published:2004-02-01

土地利用/土地覆盖变化研究是近年来全球变化研究的焦点之一。全球和区域尺度的土地覆盖特征对全球环境状况的评估、模拟未来全球环境的情景有重要的作用。2000年在Internat ionalJournalofRemoteSensing杂志上出版了题为"GlobalandRegionalLandCoverCharacterizat ion from Remotely Sensed Data"的专辑。在此基础上,介绍、总结了国际上利用遥感影像进行全球和区域等大尺度土地覆盖研究的新进展。分别从数据源与制图的时空尺度、制图方法(数据预处理、分类、精度评估)等方面进行了介绍,并对现今的两个全球土地覆盖数据库进行了比较分析。

 Land use and land cover change is one of the focuses in the study of global change in recent years. Land cover characteristics, at the global and regional scale, are very important for evaluating global environment status and simulating global environment scenario in the future. A special issue named "Global and regional land cover characterization from remotely sensed data" was published in 2000 in International Journal of Remote Sensing. Based on this, international advance of land cover characterization from remotely sensed data at global and regional scale was summarized and introduced in this paper, including data sources, dimension and land cover mapping methods (pre-processing, classification and accuracy assessment), etc. Two global land cover databases-IGBP DISover and University of Maryland 1 km products were introduced as examples. 
The domain of land cover mapping spans the range between two extremes: "coarse" resolution at frequent time intervals, and "fine" resolution at long intervals. Major steps in extracting land cover information by using satellite data at fine and coarse resolutions include: geometric corrections, compositing, radiometric corrections, classification and accuracy assessment. Land cover information that can be gleaned from satellite images is the spectral and spatial attributes of individual cover types. Two types of numerical classification approaches for satellite image classification have been evolved for more than 30 years, which are unsupervised algorithm and supervised algorithm. In recent years, numerous variants of these two basic classification methods have been developed, including decision trees, neural networks, fuzzy classification and mixture modeling for supervised classification, and classification by progressive generalization, classification through enhancement and post-processing adjustment for unsupervised techniques. "No land cover classification project would be complete without an accuracy assessment". In addition to purely methodological considerations, accuracy assessment tends to be strongly constrained by the resources available. Thus, in practice, accuracy assessment is "A balance between what is statistically sound and what is practically attainable must be found".
On board of EOS-AM-1 satellite, MODIS sensor acquires data with 250 m,500 m,1000 m spatial resolution and 36 bands spanning 0.4~14 μm. MODIS data, free for users all over the world, is up to date and is becoming the most important data source for land cover classification at the global and regional scale.

中图分类号: 

[1]Loveland T R, Reed B C, Brown J F, et al. Development of a global land cover characteristics database and IGBP discover from 1km AVHRR data [J]. International Journal of Remote Sensing, 2000, 21(6/7): 1 303-1 330.
[2]Lambin E F, Baulies X, Bockstael N, et al. Landuse and Landcover Change: Implementation Strategy[A]. In: IGBP Report 48 and IHDP Report 10[C]. Sweden: Stockholm, 1999.
[3]Pielke R, Lee T J, Copeland J H, et al. The use of USGSprovided data to improve weather and climate simulations[J]. Ecological Applications, 1997, 7: 3-21.
[4]Colwell R N ed. Manual for Photographic Interpretation [M]. Washington DC: The American Society of Photogrammetry, 1960.
[5]Townshend J R G, Justices C O, Skole D, et al. The 1 km resolution global data set: Needs of the International GeosphereBiosphere Programme[J]. International Journal of Remote Sensing, 1994, 15: 3 417-3 441.
[6]Eidenshink J C, Faundeen J L. The 1 km AVHRR global land data set: First stages in implementation [J]. International Journal of Remote Sensing, 1994, 15: 3 443-3 462.
[7]DeFries K L, Townshend J R G. NDVIderived land cover classification at global scales [J]. International Journal of Remote Sensing, 1994, 15: 3 567-3 586.
[8]Landland T R, Reed B C, Brown J F, et al. Development of a global land cover characteristics database and IGBP DISCover from 1km AVHRR data[J]. International Journal of Remote Sensing, 2000, 21: 1 303-1 330.
[9]IGBP. The International GeosphereBiosphere Programme: A study of global change[A].In: The initial core projects. IGBP Report 12[C]. Sweden: Stockholm, 1990.
[10]GCOS. GCOS/GTOS plan for terrestrial climaterelated observation[A]. In: Report GCOS32, WMO/TDNo. 796[C]. World Meteorological Organization, 1997.
[11]Saint G. VEGETATION onboard SPOT 4: Mission specifications[R]. Report No. 92102, Laboratoire d'etudes et de recherches en teledetection spatiale, Toulouse, France, 1992.
[12]Cihlar J. Land cover mapping of large areas form satellites: Status and research priorities[J]. International Journal of Remote Sensing, 2000, 21: 1 093-1 114.
[13]Holben B. Characteristics of maximumvalue composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 1986, 7: 1 417-1 434.
[14]Cihlar J, Beaubien J. Land Cover of Canada 1995 Version 1.1[M]. Digital data set docimentation, Natural Resources Canada, Ottawa, Ontario, 1998. 
[15]Laporte N T, Goetz S J, Justice C O, et al. A new land cover map of central Africa derived from multiresolution, multitemporal AVHRR data [J]. International Journal of Remote Sensing, 1998, 19: 3 537-3 550.
[16]Loveland T R, Merchant J W, Ohlen D O, et al. Development of a landcover characteristics database for the conterminous U.S[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57: 1 453-1 463.
[17]Eidenshink J C, Faundeen J L. The 1 km AVHRR global land data set: First stages in implementation[J].International Journal of Remote Sensing, 1994, 15: 3 443-3 462.
[18]Loveland T R, Belward A S. The IGBPDIS global 1 km land cover dataset, DISCover: First results[J].International Journal of Remote Sensing, 1997, 18: 3 289-3 295.
[19]Jennings M D. Gap analysis today: A confluence of biology, ecology, and geography for management of biological resources[J]. Wildlife Society Bulletin, 1995, 23: 658-662.
[20]Vogelmann J E, Sohl T, Howard S M. Regional characterization of land cover using multiple sources of data [J]. Photogrammetric Engineering and Remote Sensing, 1998, 64: 45-57.
[21]Moody A, Woodcock C E. Calibrationbased models for correction of area estimates derived from coarse resolution landcover data[J]. Remote Sensing of Environment, 1996, 58: 225-241.
[22]Cihlar J, Latifovic R, Chen J, et al. Selecting high resolution sample in land cover studies, Part 2: Application to estimating land cover composition [J]. Remote Sensing of Environment, 1998, 63: 84-95.
[23]Justice C, Vermote E, Townshend J R G, et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36: 1 228-1 249.
[24]DeFries R, Belward A S. Global and regional land cover characterization from satellite data: An introduction to the special issue [J]. International Journal of Remote Sensing, 2000, 21(6/7): 1 083-1 092.
[25]Cracknell A P, Paithoonwattanakij K. Pixel and subpixel accuracy in geometrical image correction of AVHRR imagery [J]. International Journal of Remote Sensing, 1989, 10: 661-667.
[26]Friedmann D E. Operational resampling for correcting images to a geocoded format[A]. In: Proceedings of the Fifteenth International Symposium on Remote Sensing of Environment[C]. Ann Arbor, MI (Environmental Research Institute of Michigan), 1981.195-199.
[27]Pokrant H. Land cover map of Canada derived from AVHRR images[M]. Winnipeg, MB, Canada: Manitoba Remote Sensing Centre, 1991.
[28]Cihlar J, Manak D, D' Iorio M. Evaluation of compositing algorithms for AVHRR data over land[J]. IEEE Transactions for Geoscience and Remote Sensing, 1994, 32: 427-437.
[29]Cihlar J, Manak D, Voisin N. AVHRR bidirectional reflectance effects and compositing[J]. Remote Sensing of Environment, 1994, 48: 77-88.
[30]Cihlar J, Ly H, Li Z,et al. Multitemporal, multichannel AVHRR data sets for land biosphere studies: Artifacts and corrections[J]. Remote Sensing of Environment, 1997, 60: 35-57.
[31]Sellers P J, Los S O, Tucker C J, et al. A global 1° by 1° NDVI data set for climate studies, Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI [J]. International Journal of Remote Sensing, 1994, 15: 3 519-3 545.
[32]Cihlar J, Ly H, Xiao Q. Land cover classiffication with AVHRR multichannel composites in northern environments[J]. Remote Sensing of Environment, 1996, 58: 36-51.
[33]Barnsley M J, Strahler A H, Morris K P, et al. Sampling the surface bidirectional reflectance distributionfunction (BRDF): 1. Evaluation of current and future sensors [J]. Remote Sensing Reviews, 1994, 8: 271-311.
[34]Cihlar J, Ly H, Li Z, et al. Multitemporal, multichannel AVHRR data sets for land biosphere studies: Artifacts and corrections[J]. Remote Sensing of Environment, 1997, 60: 35-57.
[35]Driese K L, Reiners W A, Merrill E H, et al. A digital land cover map of Wyoming, USA: A tool for vegetation analysis [J]. Journal of Vegetation Science, 1997, 8: 133-146.
[36]Beaubien J, Cihlar J, Simard G, et al. Land cover from multiple Thematic Mapper scenes using a new enhancementclassfication methodology[J]. Journal of Geophysical Research, 1999, 104(D22): 27 909-27 920.
[37]Guindon B. Assessing the radiometric fidelity of highresolution image mosaics[J].ISPRS Journal of Photogrammetry and Remote Sensing, 1997, 52: 229-243.
[38]Li Z, Leighton H G. Narrowband to broadband conversion with spatially autocorrelated reflectance measurements [J].Journal of Applied Meteorology, 1992, 31: 421-432.
[39]Hansen M, Dubayah R, DeFries R. Classification trees: An alternative to traditional land cover classifiers [J]. International Journal of Remote Sensing, 1996, 17: 1 075-1 081.
[40]Carpenter G A, Gjaja M N, Gopal S, et al.  ART neural networks for remote sensing: Vegetation classification from Landsat TM and terrain data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35: 308-325.
[41]Foody G M. Sharpening fuzzy classification output to refine the representation of subpixel land cover distribution [J]. International Journal of Remote Sensing, 1998, 19: 2 593-2 599.
[42]Van der Meer F. Spectral unmixing of landsat thematic mapper data[J]. International Journal of Remote Sensing, 1995, 16: 3 189-3 194.
[43]Cihlar J, Xiao Q, Beaubien J, et al. Classification by Progressive Generalization: A new automated methodology for remote sensing multichannel data[J].International Journal of Remote Sensing, 1998, 19: 2 685-2 704.
[44]Lark R M. A reappraisal of unsupervised classification, II: Optimal adjustment of the map legend and a neighbourhoodapproach for mapping legend units[J].International Journal of Remote Sensing, 1995, 16: 1 445-1 460.
[45]Achard F, Estreguil C. Forest classification of southeast Asia using NOAAAVHRR data [J]. Remote Sensing of Environment, 1995, 54: 198-208.
[46]Driese K L, Reiners W A, Merrill E H, et al. A digital land cover map of Wyoming, USA: A tool for vegetation analysis[J]. Journal of Vegetation Science, 1997, 8: 133-146.
[47]Gong P, Marceau D J, Howarth P J. A comparison of spatial feature extraction algorithms for landuse classification with SPOT HRV data[J].Remote Sensing of Environment, 1992, 40: 137-151.
[48]Kartikeyan B, Sarkar A, Majumder K L. A segmentation approach to classification of remote sensing imagery[J].International Journal of Remote Sensing, 1998, 19: 1 695-1 709.
[49]Hord R M, Brooner W. Landuse map accuracy criteria[J]. Photogrammetric Engineering and Remote Sensing, 1976, 42: 671-677.
[50]Edwards T C Jr, Moisen G G, Cutler D R. Assessing map accuracy in a remotely sensed, ecoregionscale cover map[J]. Remote Sensing of Environment, 1998, 63: 73-83.
[51]Magnussen S. Calibrating photointerpreted forest cover types and relative species compositions to their ground expectations[J]. Canadian Journal of Forest Research, 1997, 27: 491-500.
[52]Kalkhan M A, Reich R M, Stohlgren T J. Assessing the accuracy of Landsat ThematicMapper classification using double sampling[J]. International Journal of Remote Sensing, 1998, 19: 2 049-2 060.
[53]Congalton R G. Accuracy assessment: A critical component of land cover mapping[A]. In: Scott J M, Tear T H, Davis F,eds. Gap Analysis: A Landscape Approach to Biodiversity Planning[C]. Bethesda, Maryland: American Society for Photogrammetry and Remote Sensing, 1996. 119-131.
[54]Shi Peijun(史培军), Gong Peng(宫鹏), Li Xiaobing(李晓兵), et al. Methodology and Practice of Land Use/Cover Change Study[M]. Beijing: Science Press, 2000(in Chinese).
[55]Dwyer E, Pinnock S, Gregoire J M, et al. Global spatial and temporal distribution of vegetation fire as determined from satellite observations [J]. International Journal of Remote Sensing, 2000, 21(6/7): 1 289-1 302.
[56]Hansen M C, Defries R S, Townshend J R G, et al. Global land cover classification at 1 km spatial resolution using a classification tree approach [J]. International Journal of Remote Sensing, 2000, 21(6/7): 1 331-1 364.
[57]DeFires R S, Hansen M C, Townshend J R G. Global continuous fields of vegetation characteristics: A linear mixture model applied to multiyear 8km AVHRR data [J]. International Journal of Remote Sensing, 2000, 21(6/7): 1 389-1 414.
[58]Hansen M C, Reed B. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products[J]. International Journal of Remote Sensing, 2000, 21(6/7): 1 365-1 373.
[59]Loveland R, Zhu Z, Ohlen D O. An analysis of the IGBP global landcover characterization process[J]. Photogrammetric Engineering and Remote Sensing, 1999, 65(9): 1 021-1 032.
[60]Scepan J. Thematic validation of highresolution global landcover data set[J].Photogrammetric Engineering and Remote Sensing,1999, 65(9): 1 051-1 060.
[61]Defries R S, Los S O. Implications of landcover misclassification for parameter estimates in global landsurface models: An example from the Simple Biosphere Model (SiB2) [J]. Photogrammetric Engineering and Remote Sensing, 1999, 65(9): 1 083-1 098.
[62]Muchoney D, Borak J, Chi H. Application of the MODIS global supervised classification model to vegetation and land cover mapping of Central America[J]. International Journal of Remote Sensing, 2000, 21(6/7): 1 115-1 138.

[1] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[2] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
[3] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[4] 于晟,宋长青. “暴时东亚中低纬电离层不规则体变化特性研究”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1059-1061.
[5] 马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.
[6] 顾娟,李新,黄春林. 基于时序MODIS NDVI的黑河流域土地覆盖分类研究[J]. 地球科学进展, 2010, 25(3): 317-326.
[7] 刘绍民,李小文,施生锦,徐自为,白洁,丁晓萍,贾贞贞,朱明佳. 大尺度地表水热通量的观测、分析与应用[J]. 地球科学进展, 2010, 25(11): 1113-1127.
[8] 施生锦,黄彬香,刘绍民,杨燕,黄勇彬,徐自为. 大尺度水热通量观测系统的研制[J]. 地球科学进展, 2010, 25(11): 1128-1138.
[9] 张阳,柳钦火,黄华国,刘强. 大尺度辐射度模型敏感性分析及在祁连山林区的应用[J]. 地球科学进展, 2009, 24(7): 834-842.
[10] 王介民, 王维真, 刘绍民, 马明国, 李新. 近地层能量平衡闭合问题—综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-714.
[11] 张睿,马建文. 支持向量机在遥感数据分类中的应用新进展[J]. 地球科学进展, 2009, 24(5): 555-562.
[12] 冉有华,李新,卢玲. 基于多源数据融合方法的中国1 km土地覆盖分类制图[J]. 地球科学进展, 2009, 24(2): 192-203.
[13] 任娟,肖洪浪,李锦秀,赵良菊,陆明峰,程国栋. 美国大尺度综合环境观测站网计划介绍及其相关研究[J]. 地球科学进展, 2008, 23(3): 327-330.
[14] 柏延臣;王劲峰. 遥感数据专题分类不确定性评价研究:进展、问题与展望[J]. 地球科学进展, 2005, 20(11): 1218-1225.
[15] 黄先香;施能;顾骏强;高鸿. 1948—2001年全球大尺度区域 6~8月降水的长期变化[J]. 地球科学进展, 2004, 19(5): 824-830.
阅读次数
全文


摘要