地球科学进展 ›› 2017, Vol. 32 ›› Issue (9): 926 -936. doi: 10.11867/j.issn.1001-8166.2017.09.0926

上一篇    下一篇

水下火山喷发沉积特征研究进展
焦鑫 1, 2( ), 柳益群 1, *( ), 杨晚 2, 周鼎武 1   
  1. 1.大陆动力学国家重点实验室, 西北大学地质系, 陕西 西安 710069
    2.Geology and Geophysics Program, Missouri University of Science and Technology, Rolla 65401, MO, USA
  • 收稿日期:2017-02-13 修回日期:2017-06-25 出版日期:2017-09-20
  • 通讯作者: 柳益群 E-mail:jxin807@163.com;liu-yiqun@263.net
  • 基金资助:
    国家自然科学基金项目“二叠系纹层状微生物白云岩研究——以新疆准噶尔盆地东部为例”(编号:41572086)和“新疆北东部三塘湖地区二叠纪地幔热液喷流沉积及其形成机理”(编号:41272116)资助

Progress on Sedimentation of Subaqueous Volcanic Eruption

Xin Jiao 1, 2( ), Yiqun Liu 1, *( ), Wan Yang 2, Dingwu Zhou 1   

  1. 1.State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University,Xi’an 710069,China
    2.Geology and Geophysics Program,Missouri University of Science and Technology,Rolla 65401,MO,USA
  • Received:2017-02-13 Revised:2017-06-25 Online:2017-09-20 Published:2017-09-20
  • Contact: Yiqun Liu E-mail:jxin807@163.com;liu-yiqun@263.net
  • About author:

    First author:Jiao Xin(1985-), male, Baoji City, Shaanxi Province, Ph.D student. Research areas include volcanic-hydrothermal sedimentation.E-mail:jxin807@163.com.

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Research on laminated microbial dolomite in Permian-reference with the Eastern Junggar Basin, Xinjiang” (No.41572086) and “Mantle-originated hydrothermal exhalative deposition in Permian and its mechanism, Santanghu area, NE Xinjiang”(No.41272116)

近年来,随着我国开展大量致密油层的基础地质研究工作,越来越多原本被称作含油气的黑色泥岩,被发现其成因与水下火山作用密切相关。然而由于受到矿物粒度细小,与正常陆源搬运成因泥岩难以区分,以及难以开展对现代水下远端沉积物的采集等问题的影响,国内关于水下火山喷发沉积特征的研究明显薄弱。在阅读大量国内外文献基础上,分别叙述了水下火山喷发作用产生的沉积物的破碎、搬运、沉积作用研究进展。并以三塘湖盆地芦草沟组纹层状泥岩与白云岩中的特殊夹层为研究对象,发现:①这些夹层中的矿物成分成熟度低,磨圆差,多呈自形晶体或鸡骨状,显示火山物质来源。②夹层呈纹层状和薄层状2类;前者底部具冲刷层,内部具正粒序,且颗粒多具有平行层理的定向性,显示侧向牵引流沉积作用;后者呈混杂堆积,无明显内部结构,显示高密度碎屑流沉积作用。③夹层在层序上往往具有局部性和重复性,代表火山脉动式喷发沉积。认为这些夹层可能由水下火山—热液喷发沉积作用形成。最后,对内碎屑、陆源碎屑以及深源碎屑,水下喷发与陆表喷发区别,以及水下喷发沉积岩命名3个问题展开讨论。并建议以宏观微观相结合、超微观岩矿学观察、重视与火山相关的热液喷流沉积作用、与多学科交叉研究4个方面为今后的研究方法与方向。

In recent years, more and more originally regarded as black oil and gas-bearing shales have been found, whose formation has close relationship with subaqueous volcanic activities, with much more fundamental research work on tight oil in China. However, our study of sedimentations of subaqueous eruption has not been well studied since their sediments are very tiny, not easy to be sampled, and extremely difficult to differentiate from mud-size clastic sediments. This paper reviewed the advances of the processes of fragmentation, transportation, and deposition of sediments originated by subaqueous eruption, on the basis of publications and research experience on some special intervals in interlaminated shales and dolostones in Permian Lucaogou Formation in Santanghu Basin. Three main features and their implications were documented. ① Minerals in those intervals were angular with a low component maturity, and some of them were shard-like, suggesting volcanic-eruptive origin. ② Intervals were laminated and thin bedded. The former had a sharp erosional base, and was internal normal graded, and showed crude orientation of elongate grains parallel to bedding plane, suggesting deposition of lateral tractive current; the latter showed messy accumulation without internal structure, suggesting deposition of dense granular flow. ③ Intervals were localized and repetitive in stratigraphy, indicating origin from episodic-pulsating volcanic activities. We preliminarily interpreted those intervals as sedimentations of subaqueous volcanic-hydrothermal activities (phreatomagmatic/hydrovolcanic deposition). Then, the relationship of intraclasts, extraclasts, and deep-derived clasts, the difference of sedimentary rocks formed by subaqueous between subaerial eruptions, and the terminology of these eruptive rocks were discussed. Finally, macro to micro scale observation, micro-texture of minerals, attaching importance on hydrothermal exhalative sedimentations, and multidisciplinary studies were suggested for future research on those rocks.

中图分类号: 

图1 水下火山喷发模式图及其沉积模式图
(a)水下火山喷发方式及其喷出物搬运、沉积模式图 (据参考文献[3,4]修改,无比例尺),其中a为火山碎屑与周围湖/海水混合后形成喷发柱,b为火山碎屑不与周围湖/海水混合保持高温并沉积,c为火山碎屑逐渐从保持高温的碎屑流中向上剥离出来,d为火山碎屑流顶部逐渐降温后,部分碎屑上浮;(b) 理想状况下水下火山喷发沉积物柱状图 (据参考文献[25]修改,无比例尺);(c)三塘湖盆地芦草沟组ML1井(3 669~3 676 m)岩心描述简化图
Fig.1 Schematic diagram of subaqueous eruption and its sedimentation
(a)Transport and deposition mode of sediments originated from subaqueous eruption (modified after references[3,4], no relative scales are implied).a.Pyroclasts mix with ambient lake/sea water to form eruption column; b. Pyroclasts do not mix with ambient water and retain heat to deposit;c.Pyroclasts liable to be stripped from thermal flow; d. Flow-top stripping. (b) Idealized stratigraphic deposit from a subaqueous volcanic eruption (modified after reference[25], No relative scales are implied). (c) Simplified interpreted petrology of core from Well ML1 (3 669~3 676 m) in Permian Lucaogou Formation in Santanghu Basin
图2 三塘湖盆地芦草沟组水下火山喷发沉积岩
(a)纹层状火山碎屑(白色)岩与白云岩(深褐色)互层,M11井,2 944.8 m;(b)为(a)中B框的放大,长英质颗粒(白色)呈棱角状,个别具鸡骨状结构(红箭头);(c)为(a)中C框的放大,火山碎屑岩(上半部)与白云岩(下半部)呈明显的剥蚀面接触(红箭头),火山碎屑岩显示正粒序;(d)方沸石质火山碎屑岩与黑色泥岩呈明显剥蚀面接触,方沸石(褐色)呈较自形粒状并被铁白云石(染色为蓝绿色)胶结。部分方沸石颗粒彼此接触构成团块。M33井,1 720.1 m;(e)白云岩质火山碎屑岩,上部呈类似火山岩的斑状结构,下部呈条带状。可见泄水结构(红色虚线)。ML1井,3 670 m;(f)为图(e)中F框的放大,条带有粗晶白云石组成。(a)~(d),(f)为单偏光显微镜薄片照片;(e)为岩心剖面照片;(c),(e)和(f)修改自参考文献[75]
Fig.2 Subaqueous eruptive sedimentary rocks in Lucaogou Formation in Santanghu Basin
(a) Interlaminated pyroclastic rock (white) and dolostone (dark brown). Well M11 at 2 944.8 m; (b) is a magnified image of the box B in (a), felsic grains (white) are angular, and some of them are shard-like (red arrow); (c) is a magnified image of the box C in (a), pyroclastic rock (upper part) and dolostone are contact with a erosional base (red arrows), and the pyroclastic rock are internal normal graded; (d) Analcime pyroclastic rock and black mud rock show erosional contaction, the analcime grains (brown) are subhedral and cemented by stained ankerite (blue-green),and some of the analcime grains are aggregated together, Well M33 at 1 720.1 m; (e) Dolomitic pyroclastic rock show suspected porphyritic texture of volcanic rock at upper part, and laminae at lower part, a vertical-subvertical veinlet (dashed red line) may have originated from lower laminated part as a gas/water escaping conduit; (f) is a magnified image of the box F in (e). The laminae are composded of coarse dolomite cyrastals. (a)~(d), (f) are plane-polarized light image; (e) is a vertical cut of a core; (c), (e) and (f) are modified after reference[75]
表1 火山来源沉积物及岩石类型粒度划分表 (据参考文献[18]修改)
Table 1 Grain-size terms for primary volcaniclastic deposits and rocks (modified after reference[18])
[1] Wohletz K H, Sheridan M F.Hydrovolcanic explosions II. Evolution of basaltic tuff rings and tuff cones[J]. American Journal of Science, 1983, 283(5): 384-413.
[2] Fisher R V.Submarine volcaniclastic rocks[J]. Geological Society, London (Special Publications), 1984, 16(1): 5-27.
[3] Kokelaar B P, Busby C J.Subaqueous explosive eruption and welding of pyroclastic deposits[J]. Science, 1992, 257(5 067): 196-201.
[4] White J D L. Subaqueous eruption-fed density currents and their deposits[J]. Precambrian Research, 2000, 101(2/4): 87-109.
[5] Fiske S R, Naka J, Iizasa K, et al.Submarine silicic caldera at the front of the Izu-Bonin arc, Japan: Voluminous seafloor eruptions of rhyolite pumice[J]. GSA Bulletin, 2001, 113(7): 813-824.
[6] Rinaldi M, Campos V M.The submarine eruption of the Bombarda volcano, Milos Island, Cyclades, Greece[J]. Bulletin of Volcanology, 2003, 65(4): 282-293.
[7] Roberge J, White V R, Wallace J P.Volatiles in submarine basaltic glasses from the Ontong Java Plateau (ODP Leg 192): Implications for magmatic processes and source region compositions[J]. Geological Society, London (Special Publications), 2004, 229(1): 239-257.
[8] Martin U, Nemeth K.Eruptive and depositional history of a Pliocene tuff ring that developed in a fluvio-lacustrine basin: Kissomlyo volcano (western Hungary)[J]. Journal of Volcanology and Geothermal Research, 2005, 147(3/4): 342-356.
[9] Allen R S, Hayward W B, Mathews E.A facies model for a submarine volcaniclastic apron: The Miocene Manukau Subgroup, New Zealand[J]. GSA Bulletin, 2007, 119(5/6): 725-742.
[10] Miyabuchi Y, Terada A.Subaqueous geothermal activity revealed by lacustrine sediments of the acidic Nakadake crater lake, Aso Volcano, Japan[J]. Journal of Volcanology and Geothermal Research, 2009, 187(1/2): 140-145.
[11] Perez-Torrado J F, Gimeno D, Aulinas M, et al. Polygonal feeder tubes filled with hydroclasts: A new volcanic lithofacies marking shoreline subaerial-submarine transition[J]. Journal of the Geological Society, 2015, 172(1): 29-43.
[12] Critelli S, Marsaglia M K, Busby J C.Tectonic history of a Jurassic backarc-basin sequence (the Gran Canon Formation, Cedros Island, Mexico), based on compositional modes of tuffaceous deposits[J]. GSA Bulletin, 2002, 114(5): 515-527.
[13] Johns M S, Helmstaedt H H, Kurtis Kyser T.Paleoproterozoic submarine intrabasinal rifting, Baffin Island, Nunavut, Canada: Volcanic structure and geochemistry of the Bravo Lake Formation[J]. Canada Journal of Earth Science, 2006, 43(5):593-616.
[14] Retallack J G.Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland[J]. GSA Bulletin, 2014, 126(5/6): 619-638.
[15] Knott R T, Branney J M, Reichow K M, et al.Mid-Miocene record of large-scale Snake River-type explosive volcanism and associated subsidence on the Yellowstone hotspot track: The Cassia Formation of Idaho, USA[J]. GSA Bulletin, 2016,128(7/8): 1 121-1 146.
[16] Liu Y Q, Jiao X, Li H, et al.Mantle exhalative hydrothermal original dolostones of Permian, in Yuejingou section, Santanghu area, Xinjiang Province[J]. Science in China(Series D), 2012, 55: 183-192.
[17] Liu Yiqun, Zhou Dingwu, Jiao Xin, et al.A new type of sedimentary rocks: Mantle-originated hydroclastites and hydrothermal exhalites Santanghu area, Xinjiang NW China[J]. Acta Sedimentological Sinica, 2013, 31(5): 773-781.
[柳益群, 周鼎武, 焦鑫, 等. 一类新型沉积岩: 地幔热液喷积岩——以中国新疆三塘湖地区为例[J]. 沉积学报, 2013, 31(5): 773-781.]
[18] White D L J, Houghton B F. Primary volcaniclastic rocks[J]. Geology, 2006, 34(8): 677-680.
[19] Kokelaar B P.Magma-water interactions in subaqueous and emergent basaltic volcanism[J]. Bulletin of Volcanology, 1986, 48(5): 275-289.
[20] Wohletz K H.Explosive magma-water interactions: Thermodynamics, explosion mechanisms, and field studies[J]. Bulletin of Volcanology, 1986, 48(5): 245-264.
[21] Thompson Stiegler M, Lowe R D, Byerly R G.Fragmentation and dispersal of komatiitic pyroclasts in the 3.5~3.2 Ga Onverwacht Group, Barberton greenstone belt, South Africa[J]. GSA Bulletin, 2011, 123(5/6): 1 112-1 126.
[22] Seghedi I.Permian rhyolitic volcanism, changing from subaqueous to subaerial in post-Variscan intra-continental Sirinia Basin (SW Romania-Eastern Europe)[J]. Journal of Volcanology and Geothermal Research, 2011, 201(1/4): 312-324.
[23] Marani M P, Gamberi F, Rosi M, et al.Subaqueous density flow processes and deposits of an island volcano landslide (Stromboli Island, Italy)[J]. Sedimentology, 2009, 56(5): 1 488-1 504.
[24] Garcia O M.Turbidites from slope failure on Hawaiian volcanoes[J].Geological Society, London (Special Publications), 1996, 110(1): 281-294.
[25] Mueller W, White D L.Febic fire-fountaining beneath Archean Seas: Pyroclastic deposits of the 1730 Ma Hunter Mine Group, Quebec, Canada[J]. Journal of Volcanology and Geothermal Research, 1992, 54(1/2): 117-134.
[26] Bahlburg H.The geochemistry and provenance of Ordovician turbidites in the Argentine Puna[J]. Geological Society, London (Special Publications), 1998, 142(1): 127-142.
[27] Heiken G, Wohletz K.Fragmentation processes in explosive volcanic eruptions: Sedimentation in Volcanic Settings[J]. SEPM, 1991, 45: 19-26.
[28] Schumacher R, Schmincke H U.Models for the origin of accretionary lapilli[J]. Bulletin of Volcanology, 1995, 56(8): 626-639.
[29] Le Masurier W E. Architeture and evolution of haydrovolcanic delatas in Marie Byrd Land, Antartica[J]. Geological Society, London (Special Publications), 2002, 202(1): 32-39.
[30] Doyle M G, Allen R L.Subsea-floor replacement in volcanic-hosted massive sulfide deposits[J]. Ore Geology Reviews, 2003, 23(3/4): 183-222.
[31] Murtagh R M, White J D L. Pyroclast characteristics of a subaqueous to emergent Surtseyan eruption, Black Point volcano, California[J]. Journal of Volcanology and Geothermal Research, 2013, 267(6): 75-91.
[32] Urabe T, Marumo K.A new model for Kuroko-type deposits of Japan[J]. Episodes, 1991, 14(3): 246-251.
[33] Fouquet Y, Stackelberg U, Charlou J L, et al.Hydrothermal activity in the Lau back-arc basin: Sulfides and water chemistry[J]. Geology, 1991, 19(4): 303-306.
[34] Paulick H, Vanko D A, Yeats C J.Drill core-based facies reconstruction of a deep-marine felsic volcano hosting an active hydrothermal system (Pual Ridge, Papau New Guinea, ODP Leg 193)[J]. Journal of Volcanology and Geothermal Research, 2004, 130(1/2): 31-50.
[35] Kelley D S, Karson J A, Blackman D K, et al.An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N[J]. Nature, 2001, 412(6 843): 145-149.
[36] Charlou J L, Donval J P, Fouguet Y, et al.Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36° 14' N, MAR)[J]. Chemical Geology, 2002, 191(4): 345-359.
[37] Degens E T, Kulbicki G.Hydrothermal origin of metals in some East African rift lakes[J]. Mineralium Deposita, 1973, 8(4): 388-404.
[38] Tiercelin J J, Thouin C, Kalala T, et al.Discovery of sublacustrine hydrothermal activity and associated massive sulfides and hydrocarbons in the north Tanganyika trough, East African rift[J]. Geology, 1989, 17(11): 1 053-1 056.
[39] Anders M H.Constraints on North American Plate velocity from the Yellowstone hotspot deformation field[J]. Nature, 1994, 369(6 475): 53-55.
[40] White D E.Thermal springs and epithermal ore deposits[J]. Economic Geology, 1955, 50: 99-154.
[41] Ridler R H.Analysis of Archean volcanic basins in the Canadian Shield using the exhalite concept[J]. Bulletin of the Canadian Institute of Mining and Metallurgy, 1971, 64(714): 20.
[42] Boström K, Rydell H, Joensuu O.Langban: An exhalative sedimentary deposit?[J].Economic Geology, 1979, 74(5): 1 002-1 011.
[43] Edmond J M, Von Damm K L, Mcduff R E, et al. Chemistry of hot springs on the East Pacific Rise and their effluent dispersal[J]. Nature, 1982, 297(5 863): 187-191.
[44] Shearme S, Cronan D S, Rona P A.Geochemistry of sediments from the TAG hydrothermal field, M.A.R. at latitude 26°N[J]. Marine Geology, 1983, 51(3/4): 269-291.
[45] Hekinian R, Fevrier M, Avedik F, et al.East Pacific Rise near 13°N: Geology of new hydrothermal fields[J]. Science, 1983, 219(4 590): 1 321-1 324.
[46] Rona P A.Hydrothermal mineralization at seafloor spreading centers[J]. Earth-Science Reviews, 1984, 20(1): 1-104.
[47] Barrie C T.Volcanogenic massive sulfide occurrence model[J]. Economic Geology,2012, 107(5),doi:10.2113/congeo.107.5.1073.
[48] Skilling I P, White J D L, McPhie J. Peperite: A review of magma sediment mingling[J]. Journal of Volcanology and Geothermal Research, 2002, 114(1/2): 1-17.
[49] Wohletz K H.Water/magma interaction: Some theory and experiments on peperite formation[J]. Journal of Volcanology and Geothermal Research, 2002, 114(1/2): 19-35.
[50] Brown J D, Bell R B.How do you grade peperites?[J].Journal of Volcanology and Geothermal Research,2007, 159(4): 409-420.
[51] Nemeth K, Pecskay Z, Martin U, et al.Hyaloclastites, peperites and sofy-sediments deformation textures of a shallow subaqueous Miocene rhyolitc dome-crytodome comples, Palhaza, Hungary[J]. Geological Society, London (Special Publications), 2008, 302(1): 52-60.
[52] Ross P S, Peate I U, McClintock M K, et al. Mafic volcaniclastic deposits in flood basalt provinces: A review[J].Journal of Volcanology and Geothermal Research, 2005, 145(3/4): 281-314.
[53] Jerram D A, Single R T R, Hobbs W, et al. Understanding the offshore flood basalt sequence using onshore volcanic facies analogues: An example from the Faroe-Shetland basin[J]. Geological Magazine, 2009, 146(3): 353-367.
[54] Whitham A.The behaviour of subaerially produced pyroclastic flows in a subaqueous environment: Evidence from the Roseau eruption, Dominica, West Indies[J]. Marine Geology, 1989, 86(1): 27-40.
[55] Zheng Rongcai, Wen Huaguo, Fan Mingtao,et al.Lithological characteristics of sublacustine white smoke type exhalative rock of the Xiagou Formation in Jiuxi Basin[J]. Acta Petrologica Sinica, 2006, 22(12): 3 027-3 038.
[郑荣才, 文华国, 范铭涛, 等. 酒西盆地下沟组湖相白烟囱型喷流岩岩石学特征[J]. 岩石学报, 2006, 22(12): 3 027-3 038.]
[56] Jiao Xin, Liu Yiqun, Zhou Dingwu, et al.Progress of research on “white smoke type” exhalative hydrothermal rocks[J]. Advances in Earth Science, 2013, 28(2): 221-232.
[焦鑫, 柳益群, 周鼎武, 等.“白烟型”热液喷流岩研究进展[J]. 地球科学进展,2013, 28(2): 221-232.]
[57] Wan Congli, Jin Qiang, Zhai Qinglong.Effect of volcanicactivity on generation and evolution of hydrocarbon source rocks in Binnan area of Dongying Depression[J]. Journal of the University of Petroleum China(Edition of Natural Science), 2003, 27(3): 17-21.
[万从礼, 金强, 翟庆龙. 东营凹陷滨南地区水下火山喷溢对烃源岩形成及生烃演化的作用[J]. 石油大学学报:自然科学版, 2003, 27(3): 17-21.]
[58] Zhang Yan, Shu Ping, Wang Pujun, et al.Comparison between subaerial and subaqueous volcanic rocks and the reservoir significance—Taking Yingcheng Formation in Songliao Basin as example[J]. Journal of Jilin University (Earth Science Edition), 2007, 37(6): 1 259-1 265.
[张艳, 舒萍, 王璞珺, 等. 陆上与水下喷发火山岩的区别及其对储层的影响——以松辽盆地营城组为例[J]. 吉林大学学报:地球科学版, 2007, 37(6): 1 259-1 265.]
[59] Shan Xuanlong, Li Jiyan, Chen Shumin, et al.Subaquatic volcanic eruptions in continental facies and their influence on high quality source rocks shown by the volcanic rocks of a faulted depression in Northeast China[J]. Science in China(Series D), 2014, 44(12): 2 637-2 644.
[单玄龙, 李吉焱, 陈树民, 等. 陆相水下火山喷发作用及其对优质烃源岩形成的影响: 以松辽盆地徐家围子断陷营城组为例[J]. 中国科学:D辑, 2014, 44(12): 2 637-2 644.]
[60] Houghton B F, Wilson C J N. Avesicularity index for pyroclastic deposits[J]. Bulletin of Volcanology, 1989, 51: 451-462.
[61] White J D L, Riggs N R. Eruptive process, effects and deposits of the 1996 and the ancient basaltic phreatomagmatic eruptions in Karymskoye lake, Kamchatka, Russia[J]. Special Publication Number 30 of the International Association of Sedimentolgists, 2009, 30(4): 35-60.
[62] White V R, Castillo R P, Neal R C, et al.Phreatomagmatic eruptions on the Obtong Java Plateau: Chemical and isotopic relationship to Ontong Java Plateau basalts[J]. Geological Society, 2004, 229(1): 307-323.
[63] Pederson G K, Surlyk F.Dish structures in Eocene volcanic ash layers, Denmark[J].Sedimentology, 1977, 24(4): 581-590.
[64] Trofimovs J, Sparks R S J, Talling P J. Anatomy of a submarine pyroclastic flow and associated turbidity current: July 2003 dome collapse, Soufrière Hills Volcano, Montserrat, West Indies[J]. Sedimentology, 2008, 55(3): 617-634.
[65] Di Capua A, Groppelli G.Emplacement of Pyroclastic Density Currents (PDCs) in a deep-sea environment: The Val d’Aveto Formation case (Northern Apennines, Italy)[J]. Journal of Volcanology and Geothermal Research, 2016, 328(1): 1-8.
[66] Kokelaar B P.Fluidization of wet sediments during the emplacement and cooling various igneous bodies[J]. Journal of Geological Society, London, 1982, 139(1): 21-33.
[67] McClelland E A, Druitt T H. Palaeomagnetic estimates of emplacement temperatures of pyroclastic deposits on Santorini, Greece[J]. Bulletin of Volcanology, 1989, 51(1): 16-27.
[68] Mutti E, Tinterri R, Benevelli G, et al.Deltaic, mixed and turbidite sedimentation of ancient foreland basins[J]. Marine and Petroleum Geology, 2003, 20(6/8): 733-755.
[69] Cas R A F, Wright J V. Subaqueous pyroclastic flows and ignimbrites: An assessment[J]. Bulletin of Volcanology, 1991, 53(5): 357-380.
[70] Sohn Y K, Son M, Jeong J O, et al.Eruption and emplacement of a laterally extensive, crystal-rich, and pumice-free ignimbrite (the Cretaceous Kusandong Tuff, Korea)[J]. Sedimentary Geology, 2009, 220(3/4): 190-203.
[71] Sparks R S J, Sigursdsson H, Carey S N. The entrance of pyroclastic flows into the sea, II. Theoretical considerations on subaqueous emplacement and weldins[J].Journal of Volcanology and Geothermal Research, 1980, 7(1): 87-96.
[72] Wadsworth F B, Vasseur J, von Aulock F W, et al. Nonisothermal viscous sintering of volcanic ash[J]. Journal of Geophysics Research, 2014, 119(12): 8 792-8 804.
[73] Von Aulock F W, Wadsworth F B, Lavallée Y, et al. Sintering of Glass in Hydrous Atmospheres and Its Implication for Welding of Volcanic Deposits[C]. San Francisco: American Geophysical Union, 2014.
[74] Zhu Guohua, Zhang Jie, Yao Genshun, et al.Sedimentary Volcanic Dust Tuff, An important kind of rock storing hydrocarbon resources: Disscusion on the lithology of Middle Permian Lucaogou oil-bearing rocks in the North of Xinjiang[J]. Marine Origin Petroleum Geology, 2014, 19(1): 1-7.
[朱国华, 张杰, 姚根顺, 等. 沉火山尘凝灰岩: 一种赋存油气资源的重要岩类——以新疆北部中二叠统芦草沟组为例[J]. 海相油气地质, 2014, 19(1): 1-7.]
[75] Jin Mengqi.Preliminary Research on Carbonate Exhalative Rocks in Lucaogou Formation in Permian, North of Bogda Mountains, Xinjiang[D]. Xi’an: Northwest University, 2012.
[靳梦琪. 新疆博格达山北缘二叠系芦草沟组碳酸质喷爆岩初步研究[D]. 西安: 西北大学, 2012.]
[76] Folk R L.Petrology of Sedimentary Rocks[M]. Austin, TX:Hemphill’s Book Store, 1968.
[77] Boggs S Jr.Petrology of Sedimentary Rocks[M]. New York:Macmillan Pub. Co, 1992.
[78] Dunham R J.Classification of carbonate rocks according to depositional texture[M]∥Ham W E, ed. Classification of Carbeonate Rocks. A Symposium. Denver: American Association of Petroleum Geologists, 1962: 108-121.
[79] Mount J.Mixed siliciclastic and carbonate sediments: A proposed first-order textural and compositional classification[J]. Sedimentology, 1985, 32(3): 435-442.
[80] Zuffa G G.Hybrid arenites: Their composition and classification[J]. Journal of Sedimentary Petrology, 1980, 50(1): 21-29.
[81] Xie S C, Pancost D R, Wang Y B, et al.Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis[J]. Geology, 2010, 38(5): 447-450.
[82] Brazelton J W, Schrenk O M, Kelley S D, et al.Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem[J]. Applied and Environmental Microbiology, 2006, 72(9): 6 257-6 270.
[83] Niu Yaoling, Gong Hongmei, Wang Xiaohong, et al.Some key problems on the petrogenesis of seafloor basalts, abyssal peridotites and geodynamics—A non-traditional isotope approach[J]. Advances in Earth Science, 2017, 32(2): 111-127.
[牛耀龄, 龚红梅, 王晓红, 等. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.]
[84] Jiao Nianzhi, Li Chao, Wang Xiaoxue.Response and feedback of marine carbon sink to climate change[J]. Advances in Earth Science, 2016, 31(7): 668-681.
[焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.]
[1] 李向东. 复合流沉积特征的谱系研究现状及其理论框架[J]. 地球科学进展, 2021, 36(4): 375-389.
[2] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
[3] 常玉光, 白万备, 齐永安, 孙凤余, 王敏. 豫西寒武纪叠层石微生物化石组合及其沉积环境[J]. 地球科学进展, 2014, 29(4): 456-463.
[4] 高红灿,郑荣才,魏钦廉,陈发亮,陈 君,朱登锋,刘 云. 碎屑流与浊流的流体性质及沉积特征研究进展[J]. 地球科学进展, 2012, 27(8): 815-827.
阅读次数
全文


摘要