Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (9): 919-925    DOI: 10.11867/j.issn.1001-8166.2017.09.0789
综述与评述     
高原切变线与高原低涡相互作用的研究现状与展望
李国平1, 李山山1, 黄楚惠2
1.成都信息工程大学大气科学学院,四川 成都 610225;
2.四川省气象台,四川 成都 610072
Research Status and Prospect of the Interaction Between Tibetan Plateau Shear Line and Tibetan Plateau Vortex
Li Guoping1, Li Shanshan1, Huang Chuhui2
1.School of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,China;
2.Sichuan Meteorological Observatory, Chengdu 610072, China
 全文: PDF  HTML
摘要: 高原低涡、高原切变线是高原及周边地区一类常见的天气组合系统,对高原以及我国东部的灾害性天气有重要影响。回顾了高原低涡、高原切变线的研究历史和当前研究所取得的成果,重点探讨了高原切变线与高原低涡的关系以及相互作用机理等科学问题。根据高原切变线及其与高原低涡关系的最新研究成果和相关理论、方法的发展应用趋势,提出这一研究领域值得关注的几个研究新方向。由于目前对这2类高原低值天气系统之间关系的理论认识分歧仍较大,两者相互作用进而引发高影响天气过程的物理机理尚不清楚。因此,对这一科学问题的探究不仅对推动青藏高原天气动力学的理论发展有重要科学意义,也可为高原灾害性天气分析预报的应用实践提供指导。
关键词: 变形高原切变线高原低涡切变相互作用    
Abstract: The Tibetan Plateau Shear Line (TPSL) is usually accompanied by the Tibetan Plateau Vortex (TPV) and this phenomenon is one of the assembled weather systems over the Tibetan Plateau (TP) and its surrounding areas. This assembled system plays a very important role in the high impact weather process in the TP and East China. We reviewed the research history and progress of TPVs and TPSLs, and mainly discussed the relationship and interaction mechanism of them. According to the latest research achievement of TPSLs and its relationship with TPVs, the development and application trends of related theory and methods, we proposed several notable new research directions in the field of this study. It is not clear for the relationship and the physical mechanism of the interaction between TPSLs and TPVs as well as some high impact weather initiated by them currently. Therefore, this research work is really quite important for theoretical development of weather dynamics of the TP, and is expected to provide a theoretical guide for severe weather analysis and forecast over the TP and its neighborhood.
Key words: Shear    Interaction.    Tibetan Plateau vortex    Deformation    Tibetan Plateau shear line
收稿日期: 2017-02-05 出版日期: 2017-09-20
ZTFLH:  P458  
基金资助: 国家自然科学基金项目“高原切变线与高原低涡相互作用的动力学机理研究”(编号:41675057)资助
作者简介: 李国平(1963-),男,重庆人,教授,主要从事高原山地气象学、天气动力学研究.E-mail:liguoping@cuit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李山山
黄楚惠
李国平

引用本文:

李国平, 李山山, 黄楚惠. 高原切变线与高原低涡相互作用的研究现状与展望[J]. 地球科学进展, 2017, 32(9): 919-925.

Li Guoping, Li Shanshan, Huang Chuhui. Research Status and Prospect of the Interaction Between Tibetan Plateau Shear Line and Tibetan Plateau Vortex. Advances in Earth Science, 2017, 32(9): 919-925.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.09.0789        http://www.adearth.ac.cn/CN/Y2017/V32/I9/919

[1] Luo Siwei. The Researches of Several Synoptic Systems of Tibetan Plateau and Nearby Areas[M]. Beijing: China Meteorological Press, 1992: 14-25.
[罗四维. 青藏高原及其邻近地区几类天气系统的研究[M]. 北京:气象出版社, 1992: 14-25.]
[2] Yu Shuhua. An analysis of impact of the heavy rain in upper reaches of the Yangtze River on the flood peak of the river in 1998[J]. Meteorological Monthly , 2000, 26(1): 56-57.
[郁淑华. 长江上游暴雨对 1998 年长江洪峰影响的分析[J]. 气象, 2000, 26(1): 56-57.]
[3] Yang Keming, Bi Baogui. On flood-causing torrential rainfall in the upstream district of Changjiang River in 1998[J]. Meteorological Monthly , 2001, 27(8): 9-14.
[杨克明,毕宝贵. 1998 年长江上游致洪暴雨的分析研究[J]. 气象, 2001,27(8):9-14.]
[4] Yu Shuhua, Gao Wenliang. Observational analysis on the movement of vortices before/after moving out the Tibetan Plateau[J]. Acta Meteorologica Sinica , 2006, 64(3): 392-399.
[郁淑华,高文良. 高原低涡移出高原的观测事实分析[J].气象学报,2006,64(3):392-399.]
[5] Zhou Yushu, Deng Difei. Analysis method of equivalent isobaric geopotential on σ coordinate and its application to a vortex in the Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences , 2012, 36(1): 47-62.
[周玉淑, 邓涤菲. 等 σ 面相当重力位势分析方法及其对高原低涡个例的检验应用[J]. 大气科学, 2012, 36(1): 47-62.]
[6] Li Guoping. Dynamic Meteorology of the Tibetan Plateau (The Second Edition)[M]. Beijing: China Meteorological Press, 2007.
[李国平. 青藏高原动力气象学(第二版)[M].北京:气象出版社,2007.]
[7] Li Guoping, Zhao Fuhu, Huang Chuhui, et al . Analysis of 30-year climatology of the Tibetan Plateau vortex in summer with NCEP reanalysis data[J]. Chinese Journal of Atmospheric Sciences , 2014, 38(4): 756-769.
[李国平,赵福虎,黄楚惠,等. 基于NCEP资料的近30年夏季青藏高原低涡的气候特征[J].大气科学, 2014,38(4):756-769.]
[8] Li Guoping, Lu Huiguo, Huang Chuhui, et al . A climatology of the surface heat source on the Tibetan Plateau in summer and its impacts on the formation of the Tibetan Plateau vortex[J]. Chinese Journal of Atmospheric Sciences , 2016, 40(1): 131-141.
[李国平,卢会国,黄楚惠,等. 青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响[J].大气科学,2016,40(1):131-141.]
[9] Ye Duzheng, Gao Youxi. Qinghai-Xizang Plateau Meteorology[M]. Beijing: Science Press, 1979: 122-126.
[叶笃正,高由禧.青藏高原气象学[M]. 北京:科学出版社,1979:122-126.]
[10] Lhasa Group of Tibetan Plateau Meteorology Research. Research of 500 mb Vortex and Shear Lines over the Tibetan Plateau in Summer[M]. Beijing: Science Press, 1981.
[青藏高原气象科学研究拉萨会战组. 夏半年青藏高原500毫巴低涡切变线的研究[M]. 北京:科学出版社,1981.]
[11] Zhang Jijia, Zhu Baozhen, Zhu Fukang, et al . Advances of Tibetan Plateau Meteorology[M]. Beijing: Science Press, 1988.
[章基嘉, 朱抱真, 朱福康, 等. 青藏高原气象学进展[M]. 北京: 科学出版社, 1988.]
[12] Li L, Zhang R, Wen M. Diagnostic analysis of the evolution mechanism for a vortex over the Tibetan Plateau in June 2008[J]. Advances in Atmospheric Sciences , 2011,28(4):797-808.
[13] Li L, Zhang R,Wen M. Diurnal variation in the occurrence frequency of the Tibetan Plateau vortices[J]. Meteorology and Atmospheric Physics , 2014,125:135-144.
[14] Li L, Zhang R, Wen M, et al . Effect of the atmospheric heat source on the development and eastward movement of the Tibetan Plateau vortices[J]. Tellus A ,2014, 66:24 451, doi:10.3402/tellusa.v66.24451.
[15] Xu Xiangde, Zhao Tianliang, Lu Chungu, et al . Characteristics of the water cycle in the atmosphere over the Tibetan Plateau[J]. Acta Meteorologica Sinica , 2014,72(6): 1 079-1 095.
[徐祥德, 赵天良, Lu Chungu, 等. 青藏高原大气水分循环特征[J]. 气象学报, 2014,72(6): 1 079-1 095.]
[16] He Guangbi, Gao Wenliang, Tu Nini. The observational analysis of shear line and low vortex over the Tibetan Plateau in summer from 2000 to 2007[J]. Plateau Meteorology , 2009, 28(3): 549-555.
[何光碧,高文良,屠妮妮.2000—2007年夏季青藏高原低涡切变线观测事实分析[J].高原气象,2009,28(3):549-555.]
[17] Yu Shuhua, Gao Wenliang, Peng Jun. Statistical analysis of shear line activity in Qinghai-Xizang Plateau and its influence on rainfall in China in recent 13 years[J]. Plateau Meteorology , 2013, 32(6): 1 527-1 537.
[郁淑华, 高文良, 彭骏. 近13年青藏高原切变线活动及其对中国降水影响的若干统计[J]. 高原气象, 2013,32(6):1 527-1 537.]
[18] He Guangbi, Shi Rui. Analysis on evolution characteristics of three plateau shear lines and their effect on precipitation[J]. Plateau Meteorology , 2014, 33(3): 615-625.
[何光碧,师锐.三次高原切变线过程演变特征及其对降水的影响[J].高原气象,2014,33(3):615-625.]
[19] Li Shanshan, Li Guoping. Diagnostic analysis based on wet Q-vector of a shear line with rain on the east side of Qinghai-Xizang Plateau under the saddle pattern circulation background field[J]. Plateau Meteorology , 2017, 36(2):317-329.
[李山山,李国平.一次鞍型场环流背景下高原东部切变线降水的湿Q矢量诊断分析[J].高原气象,2017,36(2):317-329.]
[20] Tu Nini, He Guangbi. Case analysis on two low vortexes induced by Tibetan Plateau shear line[J]. Plateau Meteorology , 2010, 29(1): 90-98.
[屠妮妮,何光碧.两次高原切变线诱发低涡活动的个例分析[J].高原气象,2010,29(1):90-98.]
[21] Yu Shuhua, Gao Wenliang, Peng Jun, et al . Observational facts of sustained departure plateau vortexes[J]. Journal of Meteorological Research , 2014, 28(2):296-307.
[22] Chen Lianshou, Luo Zhexian. A preliminary study of the dynamics of eastward shifting cyclonic vortices[J]. Advances in Atmospheric Sciences , 2003, 20(3):323-332.
[23] Peng Xindong, Cheng Linsheng. A case numerical study on the evolution of the plateau east-side low vortex and shear line I—Analysis and diagnosis[J]. Journal of Lanzhou University ( Natural Sciences ), 1992, 28(2): 163-168.
[彭新东,程麟生.高原东侧低涡切变线发展的个例数值研究I——分析和诊断[J].兰州大学学报:自然科学版,1992,28(2): 163-168.]
[24] Peng Xindong, Cheng Linsheng. A case numerical study on the evolution of the low vortex and shear line on the east side of the plateau II—Mesoscale numerical simulation[J]. Journal of Lanzhou University ( Natural Sciences ), 1994, 30(1): 124-131.
[彭新东,程麟生.高原东侧低涡切变线发展的个例数值研究II——中尺度数值模拟[J].兰州大学学报:自然科学版,1994,30(1):124-131.]
[25] Liu Zhiyuan, Roebbe P J. Vortex-driven sensitivity in deformation flow[J]. Journal of the Atmospheric Sciences , 2008, 65(12):3 819-3 839.
[26] Zhou Jin. Characteristics Analysis and Numerical Simulation of the Southwest Vortex Rainstorm on the Horizontal Shear Line[D]. Qingdao: Ocean University of China, 2015.
[周瑾.水平切变线上西南涡暴雨的特征分析和数值模拟[D].青岛: 中国海洋大学,2015.]
[27] Gao Shouting. The instability of the vortex sheet along the shear line[J]. Advances in Atmospheric Sciences , 2000, 17(4):525-537.
[28] Gao Shouting, Zhou Yushu. The instability of the vortex sheet along the horizontal shear line[J]. Acta Meteorologica Sinica , 2001, 59(4): 393-404.
[高守亭, 周玉淑. 水平切变线上涡层不稳定理论[J]. 气象学报, 2001, 59(4): 393-404.]
[29] Luo Zhexian, Liu Chongjian. An investigation into axisymmetrization of a vortex embedded in horizontal shearing currents[J]. Journal of Geophysical Research , 2007, 112(D6) :151-156.
[30] Shen Xinyong, Ding Yihui, Zhao Nan. Properties and stability of a meso-scale line-form disturbance[J]. Advances in Atmospheric Sciences , 2006, 23(2): 282-290.
[31] Gao Shouting, Yang Shuai, Xue Ming, et al . Total deformation and its role in heavy precipitation events associated with deformation-dominant flow patterns[J]. Advances in Atmospheric Sciences , 2008, 25(1):11-23.
[32] Schmidt J M, Cotton W R. Interactions between upper and lower tropospheric gravity waves on squall line structure and maintenance[J]. Journal of the Atmospheric Sciences , 1990, 47(10):1 205-1 222.
[33] Thompson R L, Mead C M, Edwards R. Effective storm-relative helicity and bulk shear in supercell thunderstorm environments[J]. Weather and Forecasting , 2007, 22(1):102-115.
[34] Kalashnik M V, Lominadze D G, Chagelishvili G D. Linear dynamics of perturbations in flows with constant horizontal shear[J]. Fluid Dynamics , 2005, 40(6):854-864.
[35] Kalashnik M V, Mamatsashvili G R, Chagelishvili G D, et al . Linear dynamics of non-symmetric perturbations in geostrophic horizontal shear flows[J]. Quarterly Journal of the Royal Meteorological Society , 2006, 132(2):505-518.
[36] Mechoso C R, Sinton D M. Instability of baroclinic flows with horizontal shear along topography[J]. Journal of Physical Oceanography , 1981, 11(6):813-821.
[37] Poulin F J. The linear stability of time-dependent baroclinic shear[J]. Journal of Physical Oceanography , 2010, 40(3):568-581.
[38] Lott F, Plougonven R, Vanneste J. Gravity waves generated by sheared three-dimensional potential vorticity anomalies[J]. Journal of the Atmospheric Sciences , 2010, 67(1):2 134-2 151.
[39] Conzemius R J, Moore R W, Montgomery M T, et al . Mesoscale convective vortex formation in a weakly sheared moist neutral environment[J]. Journal of the Atmospheric Sciences , 2007, 64(5):1 443-1 465.
[40] Olafsd’ottir E I, Olde Daalhuis A B, Vanneste J. Inertia-gravity-wave radiation by a sheared vortex[J]. Journal of Fluid Mechanics , 2008, 596(4):169-189.
[41] Harnik N, Heifetz E, Umurhan O M, et al . A buoyancy-vorticity wave interaction approach to stratified shear flow[J]. Journal of the Atmospheric Sciences , 2008, 65(8):2 615-2 630.
[42] Ryglicki D R. An analysis of a barotropically unstable, high Rossby number vortex in shear[J]. Journal of the Atmospheric Sciences , 2015, 72(5):2 152-2 177.
[43] Buban M S, Ziegler C L. The formation of small-scale atmospheric vortices via baroclinic horizontal shearing instability[J]. Journal of the Atmospheric Sciences , 2015, doi:10.1175/JAS-D-14-0355.1.
[44] Li Ziliang, Wan Jun. Stability of the nonlinear waves on the horizontal shear line of wind with the geostrophic momentum approximation[J]. Acta Meteorologica Sinica , 1995, 53(3): 289-298.
[李子良,万军.准地转动量近似下风速切变线上的波动[J].气象学报,1995,53(3): 289-298.]
[45] Li Guoping, Lu Jinghua. Some possible solutions of nonlinear internal inertial gravity wave equations in the atmosphere[J]. Advances in Atmospheric Sciences , 1996, 13 (2): 244-252.
[46] Chen Gong, Li Guoping. Dynamic and numerical study of waves in the Tibetan Plateau vortex[J]. Advances in Atmospheric Sciences , 2014, 31(1):131-138.
[47] Zhang Pengfei, Li Guoping, Fu Xiouhua, et al . Clustering of Tibetan Plateau vortices by 10~30-day intraseasonal oscillation[J]. Monthly Weather Review , 2014, 142(1):290-300.
[48] Li Shanshan, Li Guoping. The evolution process and mechanism analysis of a plateau vortex and plateau shear line[J]. Chinese Journal of Atmospheric Sciences , 2017, 41(4):713-726, doi:10.3878/j.issn.1006-9895.1611.16179"> doi:10.3878/j.issn.1006-9895.1611.16179.
[李山山,李国平. 一次高原低涡与高原切变线演变过程与机理分析[J].大气科学,2017,41(4):713-726,doi:10.3878/j.issn.1006-9895.1611.16179"> doi:10.3878/j.issn.1006-9895.1611.16179.]
[49] Yao Xiuping, Sun Jianyuan, Kang Lan, et al . Advances on research of shear convergence line over Qinghai-Xizang Plateau[J]. Plateau Meteorology , 2014, 33(1): 294-300.
[姚秀萍,孙建元,康岚,等.高原切变线研究的若干进展[J].高原气象,2014,33(1):294-300.]
[50] Shi Rui, He Guangbi. Contrast analysis on background circulation of plateau shear line moving out and not moving out of the Tibetan Plateau[J]. Plateau Meteorology , 2011, 30(6): 1 453-1 461.
[师锐,何光壁. 移出与未移出高原的高原切变线背景环流对比分析[J].高原气象, 2011, 30(6): 1 453-1 461.]
[51] Institute of Plateau Meteorology of China Meteorological Adminstration in Chengdu. The Tibetan Plateau Vortex and Shear Line Yearbook (1998-2015)[M]. Beijing: Science Press, 2017.
[中国气象局成都高原气象研究所.青藏高原低涡切变年鉴(1998—2015)[M].北京:科学出版社,2017.]
[52] Li Guoping. Precipitation Science of the Vortex[M]. Beijing: China Meteorological Press, 2016.
[李国平.低涡降水学[M].北京:气象出版社,2016.]
[1] 卢龙飞, 张锐, 徐杰, 焦念志. 病毒对海洋细菌代谢的影响及其生物地球化学效应[J]. 地球科学进展, 2018, 33(3): 225-235.
[2] 马巍, 穆彦虎, 谢胜波, 毛云程, 陈敦. 青藏高速公路修筑对冻土工程走廊的热力影响及环境效应[J]. 地球科学进展, 2017, 32(5): 459-464.
[3] 黎伟标, 刘昊亚, 方容. 大气对海洋中尺度涡响应的研究进展[J]. 地球科学进展, 2017, 32(10): 1039-1049.
[4] 张强, 张红丽, 张良, 岳平. 论我国夏季风影响过渡区及其陆—气相互作用问题[J]. 地球科学进展, 2017, 32(10): 1009-1019.
[5] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[6] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
[7] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(8): 922-939.
[8] 唐亚明, 冯卫, 李政国. 黄土滑塌研究进展[J]. 地球科学进展, 2015, 30(1): 26-36.
[9] 李春. “风应力强迫下北太平洋副热带环流与大气环流耦合调整的过程与机理”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1064-1066.
[10] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[11] 杨秋明,宋娟,李熠,谢志清,黄世成,钱玮. 全球大气季节内振荡对长江流域持续暴雨影响的研究进展[J]. 地球科学进展, 2012, 27(8): 876-884.
[12] 赵栋梁. 海洋飞沫及其对海—气相互作用影响的研究进展[J]. 地球科学进展, 2012, 27(6): 624-632.
[13] 李海龙,万力,焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展, 2011, 26(7): 685-694.
[14] 李丽敏,刘祥文,谢战军.  大陆下地壳麻粒岩的流变学研究进展[J]. 地球科学进展, 2011, 26(3): 275-285.
[15] 高抒. 长江三角洲对流域输沙变化的响应:进展与问题[J]. 地球科学进展, 2010, 25(3): 233-241.