地球科学进展 ›› 2017, Vol. 32 ›› Issue (9): 996 -1005. doi: 10.11867/j.issn.1001-8166.2017.09.0996

所属专题: 青藏高原研究——青藏科考

研究论文 上一篇    

岩石圈三维结构模型综合与可视化——以青藏高原东缘为例
ZhangXiaoshuang 1( ), LiuJie 1 , 2 , *( )   
  1. 1. 中山大学 地球科学与工程学院,广东 广州 510275
    1. 广东省地质过程与矿产资源探查重点实验室,广东 广州 510275
  • 收稿日期:2017-04-04 修回日期:2017-07-20 出版日期:2017-09-20
  • 通讯作者: LiuJie E-mail:zhangxsh5@mail2.sysu.edu.cn;liujie86@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目“青藏高原东缘地壳变形方式及其动力学的数值模拟”(41574087)

Data Assimilation and Three-dimensional Visualization of Lithospheric Structures of the Eastern Margin of the Tibetan Plateau

  1. 1. School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, China
    1. Guangdong Provincial Key Laboratory of Geological Processes and Mineral Resources Survey, Guangzhou 510275, China
  • Received:2017-04-04 Revised:2017-07-20 Online:2017-09-20 Published:2017-09-20
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Numerical modelling of crustal deformation and dynamics in the east margin of Tibetan Plateau”(41574087)

随着现代地球物理探测技术高速发展,三维结构数据的获取成为趋势;数据的多样化及其显示需求使地球科学数据三维可视化面临诸多挑战。以川西地区为例,给出一套岩石圈尺度三维结构模型的综合可视化方案。数据包括深度100km内地震波速度、中上地壳断层几何形态和地表高程数据。①对该地区高密度流动地震台阵所获取的速度结构数据进行规则网格插值,将其转化为RAW格式文件;②对主要活动断裂地表延伸形态进行数值化并根据倾角向下延伸,将其转化为VTK格式;③同时考虑地表地形起伏且同样处理为VTK格式。利用开源软件Paraview实现浅部地质资料与深部速度结构数据融合;进而通过Paraview的体绘制功能对综合模型进行突出S波低速体、突出特定界面等可视化处理,使三维模型内部结构特征得以直观显现。提出的综合可视化方案弥补了以二维平面与剖面为主的地球物理数据显示方式在承载现今所能采集到的三维数据时存在的明显不足,为更好地展示和挖掘地球物理数据特征提供新的途径。

Various three-dimensional (3D) geophysical and geological data are increasingly available with the advanced technology in the recent years. New challenges emerge frequently in visualizing 3D data due to data variety and the specific display requirement. In this study, we presented a solution of the data assimilation and visualization of lithospheric structures in the eastern margin of the Tibetan Plateau. Three typical datasets were assimilated in the model: ①seismic velocity to the depth of 100 km, ②fault geometry in the upper-and mid-crust and ③topographical data on the surface. The S and P wave velocities in the study area obtained from a high-density portable seismic array were interpolated into regular blocks of the size of 1 km×1 km×2 km and written in RAW format. The major active faults were digitalized and their 3D geometry was generalized by using striking and trending angles, and then organized into unstructured VTK format. The surface topographical DEM data were also converted into unstructured VTK format. In order to integrate and visualize the data, an open source multi-platform software package Paraview was used. It offered various visualization schemes; in particular, volume rendering technique provided stunning static/dynamic images of the structures and highlighted the anomalies in the 3D space. This solution can be applied to other types of 3D geophysical and geological data.

Fig 1 The three-dimensional structural model of the lithosphere to 100 km depth in the eastern margin of the Tibetan Plateau
(a) S-wave velocity distribution display in Paraview, rendering function is not used; (b) S-wave velocity structure overlapped with the shallow fault data, rendering function makes the distribution of velocity anomalies visible; (c) S-wave velocity structure overlapped with the shallow faults and surface elevation. Faults are labeled as: ①Longquanshan Fault, ②Yingjing-Mabian Fault, ③Longmenshan Fault, ④Xianshuihe-Xiaojiang Fault, ⑤Xiaojinhe Fault
Fig 2 Visualization using volume rendering for the three-dimensional S-wave velocity in the eastern margin of the Tibetan Plateau
(a) Screenshot of volume rendering of S-wave velocity of the whole model; (b) Screenshot of volume rendering of the model that the top 10 km is removed, showing the distribution of S-wave low velocity body in the middle crust; (c) A screenshot viewing from the northern bottom of the model, showing the clear difference of S-wave velocity between the eastern and western parts of the model
Fig 3 S-wave velocity values in the range of 4.0 to 4.2 km/s
(a)A bird’s-eye view; (b)A view from northwest
Fig 4 An example of transfer function
The height of the polyline corresponds to the transparency of the specific color in the horizontal color legend
Fig 5 Screenshot of volume rendering of S-wave velocity overlapped with faults
(a)Top view of the model that the uppermost 10 km is removed; (b) Top view of the model that the uppermost 24 km is removed. Note (a) and (b) use different color maps and transfer functions
[1] Zhao Dapeng, Kanamori H.The 1994 Northridge earthquake: 3-D crustal structure in the rupture zone and its relation to the aftershock locations and mechanisms[J]. Geophysical Research Letters, 1995, 22(7): 763-766, doi: 10.1029/94GL03222.
[2] Gao Haiying, Shen Yang.Upper mantle structure of the Cascades from full-wave ambient noise tomography: Evidence for 3D mantle upwelling in the back-arc[J]. Earth and Planetary Science Letters, 2014, 390: 222-233, doi: 10.1016/j.epsl.2014.01.012.
[3] Liu Qiyuan, Robert D, Li Yu, et al.Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nature Geoscience, 2014, 7(5): 361-365, doi: 10.1038/NGEO2130.
[4] Cui Huihui, Zhou Yuanze, Shi Yaolin, et al.Seismic detection of a low-velocity anomaly under the stagnant slab beneath the eastern north China Craton with P-wave triplication[J].Chinese Journal of Geophysics, 2016, 59(4): 1 309-1 320,doi:10.6038/cjg20160413.
[崔辉辉, 周元泽, 石耀霖,等. 华北克拉通东部滞留板块下方低速异常的地震三重震相探测[J]. 地球物理学报, 2016, 59(4):1 309-1 320, doi:10.6038/cjg20160413.]
[5] Yu Yong, Chen Yongshun, Jian Hanchao, et al.SKS wave splitting study of the transition zone at the central portion of the North China Craton[J].Chinese Journal of Geophysics, 2016, 59(1): 141-151. doi: 10.6038/cjg20160111.
[于勇, 陈永顺, 菅汉超,等.华北克拉通中部过渡带SKS波分裂研究:鄂尔多斯东南角的局部软流圈绕流[J].地球物理学报, 2016, 59(1):141-151, doi:10.6038/cjg20160111.]
[6] Xiang Jie, Chen Jianping, Hu Bin, et al.3D metallogenic prediction based on 3D geological-geophysical model: A case study in Tongling mineral district of Anhui[J].Advances in Earth Science, 2016, 31(6): 603-614, doi:10.11867/j.issn.1001-8166.2016.06.0603.
[向杰, 陈建平, 胡彬,等. 基于三维地质—地球物理模型的三维成矿预测——以安徽铜陵矿集区为例[J]. 地球科学进展, 2016, 31(6): 603-614. ]
[7] Liu Xiangjun, Zhu Honglin, Liang Lixi.Digital rock physics of sandstone based on micro-CT technology[J].Chinese Journal Geophysics, 2014, 57(4): 1 133-1 140, doi: 10.6038/cjg20140411.
[刘向君, 朱洪林, 梁利喜. 基于微CT技术的砂岩数字岩石物理实验[J]. 地球物理学报, 2014, 57(4): 1 133-1 140, doi: 10.6038/cjg20140411.]
[8] Ding Weilong, Chen Minzhi, Cheng Zhijun.Design and implementation of modeling system for visual plant organ[J].Journal of Zhejiang University of Technology, 2009, 37(3): 295-299,310.
[丁维龙, 陈敏智, 程志君. 植物器官可视化建模系统的设计与实现[J].浙江工业大学学报, 2009, 37(3):295-299,310.]
[9] Nakasone Arturo, Prendinger Helmut, Holland Simon,et al.AstroSim: Collaborative visualization of an astrophysics simulation in second life[J].IEEE Computer Graphics and Applications, 2009, 29(5): 69-81, doi: 10.1109/MCG.2009.79.
[10] Ding Wenlong, Wang Xinghua, Hu Qiujia, et al.Progress in tight sandstone reservoir fractures research[J].Advances in Earth Science, 2015, 30(7): 737-750.
[丁文龙, 王兴华, 胡秋嘉,等. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750.]
[11] Liu Qiyuan, Chen Jiuhui, Li Shuncheng, et al.The MS 8.0 Wenchuan Earthquake: Preliminary results from the Western Sichuan mobile seismic array observations[J].Seismology and Geology,2008, 30(3):584-596.
[刘启元, 陈九辉, 李顺成,等. 汶川MS 8.0地震:川西流动地震台阵观测数据的初步分析[J]. 地震地质, 2008, 30(3):584-596.]
[12] Liu Jing, Zhang Zhihui, Wen Li, et al.The MS 8.0 Wenchuan Earthquake co-seismic rupture and its tectonic implications—An out-of-sequence thrusting event with slip partitioned on multiple faults[J].Acta Geologica Sinica,2008, 82(12):1 707-1 722.
[刘静, 张智慧, 文力,等. 汶川8级大地震同震破裂的特殊性及构造意义——多条平行断裂同时活动的反序型逆冲地震事件[J]. 地质学报, 2008, 82(12):1 707-1 722.]
[13] Xu Xiwei, Zhang Peizhen, Wen Xueze, et al.Features of active tectonics and recurrence behaviors of strong earthquakes in the Western Sichuan Province and its adjacent regions[J]. Seismology and Geology,2005,(3): 446-461.
[徐锡伟, 张培震, 闻学泽,等. 川西及其邻近地区活动构造基本特征与强震复发模型[J].地震地质, 2005,(3): 446-461.]
[14] Zhang Peizhen.The tectonic deformation, strain distribution and deep dynamic processes in the eastern margin of the Tibetan Plateau[J]. Science in China (Series D),2008, 38(9): 1 041-1 056.
[张培震. 青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程[J]. 中国科学:D辑, 2008, 38(9): 1 041-1 056.]
[15] Avila L S, Barre S, Blue R, et al.The VTK User’s Guide[M]. New York: Kitware, 2010.
[16] Guo Xiaoyu, Gao Rui, Randy Keller G, et al.Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range[J].Earth and Planetary Science Letters,2013,379:72-80,doi:10.1016/j.epsl.2013.08.005.
No related articles found!
阅读次数
全文


摘要