Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (10): 1175-1185    DOI: 10.11867/j.issn.1001-8166.2014.10.1175
研究论文     
EnKF同化的背景误差协方差矩阵局地化对比研究
韩培, 舒红, 许剑辉
1.武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430079; 2.武汉大学苏州研究院,江苏 苏州 215123
A Comparative Study of Background Error Covariance Localization in EnKF Data Assimilation
Han Pei, Shu Hong, Xu Jianhui
1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079,China; 2.SuZhou Institute of Wuhan University, Suzhou 215123,China
 全文: PDF(12544 KB)   HTML
摘要:

在集合数据同化中,背景场误差的协方差估计特别重要。通常有限个成员的集合在估计背景误差协方差矩阵时会引入伪相关,从而造成协方差被低估、滤波发散。虽然协方差膨胀的经验性方法能一定程度缓解协方差被低估的问题,但不能消除协方差的伪相关问题。因此,结合EnKF方案探讨2种消除伪相关的局地化方法(协方差局地化方法和局地分析方法),分析这2种局地化方法对背景误差协方差矩阵、增益矩阵、集合转换矩阵以及同化结果的影响。实验结果表明:局地化方法不仅能消除背景误差协方差矩阵的伪相关,还可以增加背景误差协方差矩阵的秩;在“弱”同化强度下,2种局地化方法的增益矩阵和集合转换矩阵相等;随着同化强度的增大,增益矩阵和集合转换矩阵的差异会变大;在不同的同化强度下,2种局地化方法各具特色,相对而言,协方差局地化方法在更新集合均值和集合扰动上具有较强的鲁棒性。研究结论有助于背景场误差协方差的精细分析和估计。

关键词: EnKF协方差局地化伪相关局地分析    
Abstract:

In ensemble data assimilation, the estimate of background error covariance is particuarly important. In general, the use of a finite ensemble size for estimating the background error covariance matrix easily introduces spurious correlations, which leads to the underestimation of covariance and filter divergence. Covariance inflation is an empirical method of correcting the underestimation of background error covariance, but it does not help to solve the problem of long-range spurious correlations. Therefore, based on the EnKF scheme, we explored two localization methods to eliminate the spurious correlations, which were the covariance localization method and the local analysis method. We analyzed their impacts on the background error covariance matrix, gain matrix, ensemble transform matrices and data assimilation results. The experimental results have been obtained. That is, the localization method not only can remove the spurious covariance in the background error covariance matrix, but also can increase the rank of the matrix. In a “weak” assimilation, the gain matrix and ensemble transform matrices of two methods are very close, but the differences of the gain matrix and ensemble transform matrices become more evident with the increase of assimilation strength. Under the different strength of assimilation, two localization methods have their own characteristics, and relatively the covariance localization method has stronger robustness on the update of ensemble mean and ensemble anomalies. This study is very helpful for the fine analysis and estimate of the background error covariance.

Key words: EnKF    Covariance localization    Spurious correlations.    Local analysis
收稿日期: 2014-06-16 出版日期: 2014-10-20
:  P237  
基金资助:

江苏省苏州市科技计划项目“气象观测数据分析的时空统计软件”(编号:SYG201319); 国家自然科学基金项目“时空交互的统计建模”(编号:41171313)资助

作者简介: 韩培(1989-),女,湖北孝感人,硕士研究生,主要从事遥感数据同化研究. E-mail: 1129143892@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
舒红
许剑辉
韩培

引用本文:

韩培, 舒红, 许剑辉. EnKF同化的背景误差协方差矩阵局地化对比研究[J]. 地球科学进展, 2014, 29(10): 1175-1185.

Han Pei, Shu Hong, Xu Jianhui. A Comparative Study of Background Error Covariance Localization in EnKF Data Assimilation. Advances in Earth Science, 2014, 29(10): 1175-1185.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.10.1175        http://www.adearth.ac.cn/CN/Y2014/V29/I10/1175

[1] Jianwen, Qin Sixian. The research status review of data assimilation algorithm[J]. Advances in Earth Science, 2012, 27(7): 747-757.[马建文,秦思娴.数据同化算法研究现状综述[J].地球科学进展,2012, 27(7): 747-757.]
[2] G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research: Oceans (1978-2012), 1994, 99(C5): 10 143-10 162.
[3] Chunhui, Zhang Lifeng, Guan Jiping, et al. Development and application of ensemble-variational data assimilation methods [J]. Advances in Earth Science, 2013,28(6):648-656.[熊春晖, 张立凤, 关吉平, 等. 集合—变分数据同化方法的发展与应用[J]. 地球科学进展, 2013, 28(6): 648-656.]
[4] R. Localization in the Ensemble Kalman Filter[D]. London: University of Reading, 2008.
[5] Yanhua, Zhang Shuwen, Mao Lu, et al. An evaluation of simulated and estimated land surface states with two different models[J]. Advances in Earth Science, 2013,28(8):913-922.[刘彦华, 张述文, 毛璐, 等. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.]
[6] T M, Whitaker J S, Snyder C. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter[J]. Monthly Weather Review, 2001, 129(11): 2 776-2 790.
[7] J L, Anderson S L. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts[J]. Monthly Weather Review, 1999, 127(12): 2 741-2 758.
[8] J L. An ensemble adjustment Kalman filter for data assimilation[J]. Monthly Weather Review, 2001, 129(12): 2 884-2 903.
[9] P, Bertino L. Relation between two common localisation methods for the EnKF[J]. Computational Geosciences, 2011, 15(2): 225-237.
[10] P R, Sakov P, Corney S P. Impacts of localisation in the EnKF and EnOI: Experiments with a small model[J]. Ocean Dynamics, 2007, 57(1): 32-45.
[11] G. Data Assimilation: The Ensemble Kalman Filter (2nd)[M].Dordrecht: Springer, 2009.
[12] I. Bemerkungen zur theorie der beschrnkten bilinearformen mit unendlich vielen vernderlichen[J]. Journal für die Reine und Angewante Mathematiek, 1911,140: 1-28.
[13] G, Van Leeuwen P J, Evensen G. Analysis scheme in the ensemble Kalman filter[J]. Monthly Weather Review, 1998, 126(6):1 719-1 724.
[14] J S, Hamill T M. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review, 2002, 130(7):1 913-1 924.
[15] P, Oke P R. A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters[J]. Tellus A, 2008, 60(2): 361-371.
[16] C H, Etherton B J, Majumdar S J. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects[J]. Monthly Weather Review, 2001, 129(3): 420-436.
[17] R A, Johnson C R. Matrix Analysis[M]. New York: Cambridge University Press, 1985.
[18] G. Sampling strategies and square root analysis schemes for the EnKF[J]. Ocean Dynamics, 2004, 54(6): 539-560.
[19] G, Cohn S E. Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(554): 723-757.
[1] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[2] 于文涛, 李静, 柳钦火, 曾也鲁, 尹高飞, 赵静, 徐保东. 中国地表覆盖异质性参数提取与分析[J]. 地球科学进展, 2016, 31(10): 1067-1077.
[3] 李大治, 晋锐, 车涛, 高莹, 耶楠, 王树果. 联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究*[J]. 地球科学进展, 2014, 29(2): 295-305.
[4] 栾海军,田庆久,余 涛,胡新礼,黄彦,刘李,杜灵通,魏曦. 定量遥感升尺度转换研究综述[J]. 地球科学进展, 2013, 28(6): 657-664.
[5] 李峰,李柏,吴蕾,杨荣康,邢毅,黄兴友,肖辉,王斌. WMO第八届阳江国际探空比对辅助遥感综合试验[J]. 地球科学进展, 2012, 27(8): 916-924.
[6] 马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.
[7] 摆玉龙, 李新, 韩旭军. 陆面数据同化系统误差问题研究综述[J]. 地球科学进展, 2011, 26(8): 795-804.
[8] 吴炳方,蒙继华,李强子. 国外农情遥感监测系统现状与启示[J]. 地球科学进展, 2010, 25(10): 1003-1012.
[9] 吴炳方,蒙继华,李强子,张飞飞,杜鑫,闫娜娜. “全球农情遥感速报系统(CropWatch)”新进展[J]. 地球科学进展, 2010, 25(10): 1013-1022.
[10] 田苗,王鹏新,孙威. 基于地表温度与植被指数特征空间反演地表参数的研究进展[J]. 地球科学进展, 2010, 25(7): 698-705.
[11] 李新,摆玉龙. 顺序数据同化的Bayes滤波框架[J]. 地球科学进展, 2010, 25(5): 515-522.
[12] 韩旭军,李新. 非线性滤波方法与陆面数据同化[J]. 地球科学进展, 2008, 23(8): 813-820.
[13] 苏理宏,李小文,黄裕霞. 遥感尺度问题研究进展[J]. 地球科学进展, 2001, 16(4): 544-548.
[14] 董庆,郭华东,王长林. 多波段多极化合成孔径雷达的海洋学应用[J]. 地球科学进展, 2001, 16(1): 93-97.
[15] 刘国祥,丁晓利,陈永奇,李志林,郑大伟. 极具潜力的空间对地观测新技术——合成孔径雷达干涉[J]. 地球科学进展, 2000, 15(6): 734-740.