地球科学进展 ›› 2013, Vol. 28 ›› Issue (5): 529 -536. doi: 10.11867/j.issn.1001-8166.2013.05.0529

海底科学观测 上一篇    下一篇

北阿拉伯海的光纤海洋观测网络:成功、挑战和机遇
王展坤 1,Steven DiMarco 1,Stephanie Ingle 2, Leila Belabbassi 2   
  1. 1. 美国德克萨斯农工大学海洋系, 德克萨斯 大学站 77843;
    2. 美国灯塔研究与开发股份有限公司, 德克萨斯 休斯顿 77060
  • 收稿日期:2013-04-07 修回日期:2013-04-11 出版日期:2013-05-10
  • 基金资助:

    灯塔海洋观测计划“阿曼海的物理海洋研究”(编号:455568-00003)资助.

A Cabled Oceanographic Monitoring Network in the Northern Arabian Sea: Success, Challenges and Opportunities

Wang Zhankun 1,Steven DiMarco 1,Stephanie Ingle 2, Leila Belabbassi 2   

  1. 1.Department of Oceanography, Texas A & M University, College Station, Texas, 77843, USA;
    2.Lighthouse R&D Enterprises, Inc., Houston, TX, 77060, USA
  • Received:2013-04-07 Revised:2013-04-11 Online:2013-05-10 Published:2013-05-10

2005年夏,一个先进的海洋观测网络--包括实时的光纤海洋观测系统和内部存储的自动化观测系统--被投放在了阿曼海和北阿拉伯海并运行至今。在2010年初,其中的自动化观测系统被升级到了新的深水光纤观测系统。这个海洋观测网络是在阿曼农业和渔业部的资助下,由美国的Lighthouse R&D公司设计、开发、安装和维护的。这两个观测系统作为一个整体已经连续工作了7年半多的时间。所采集数据包括海流、温度、盐度、压力、溶解氧和浊度等。该海区是一个多水团的汇合区,波斯湾的高盐水和阿拉伯海的低盐水在这里汇合并蔓延南下到印度洋。对采集的数据研究表明,这一观测网络对研究该区域的物理和生物过程具有重要价值。在此,我们将系统介绍整个观测网络,并简要阐述已经完成和接近完成的四个研究主题:1)对阿拉伯海有记载以来最强的热带气旋古怒的海洋响应的研究;2)阿曼海北部的季节性缺氧现象的季节及年际变化和成因分析;3)深海声散射层的时空演变;4)阿曼海和北阿拉伯海的高温高盐现象的成因。该观测网络采集的长期的、连续的时间序列对这一地区的海洋动力研究,水文的季节性变化,及气候的长期变化等研究都有很大帮助。此外,如果观测网络可以完成25年的设定观测目标,这将对验证和改进海洋环流模式和海气耦合模式都有重要意义。

 An ocean observatory—Consisting of a realtime, cabled system in the Sea of Oman and an internallyrecording, autonomous mooring system upgraded in 2010 to a cabled system in the northern Arabian Sea—was installed in 2005. Lighthouse R & D Enterprises designed and installed and now operates and maintains the systems with permission from the Oman Ministry of Agriculture and Fisheries Wealth. The two systems have collected a continuous sevenyear time series record of current velocities, temperature, pressure, salinity, dissolved oxygen, and turbidity in a region where several water masses converge and subsequently spread southward to the Indian Ocean. The systems have provided new insights into physical and biological oceanographic processes of the northwestern Indian Ocean, which is strongly affected by monsoonal winds, along with lessons learned and best practices in the operation and application of ocean observatories to ocean science. In this presentation, we show four recent studies on the scientific highlights resulting from the data collected by the two systems with supporting data from other sources. The topics of those four studies include: ①The deepwater oceanic responses excited by the passage of Cyclone Gonu, the largestever recorded cyclone in the region; ② The seasonality associated with the upwelling of low oxygen water along the northern Oman coast and insights on the interannual variability of this process; ③ The temporal and spatial evolution of an acoustic backscatter layer; ④ The pulselike salinity/temperature events in the northeastern Arabian Sea and Sea of Oman. The observatory provides a longterm, timeseries data record useful for performing important scientific research related  ot  the general dynamical patterns of the region, quantifying seasonal variability of water column properties, and establishing a time series of sufficient duration to deduce the potential impacts of climate change. Furthermore, observations taken over the full, 25+ year lifetime of a typical cabled system will be extremely useful for evaluating numerical ocean circulation and coupled atmosphericoceanic models under various climate scenarios.

中图分类号: 

[1]Shanghai Center of Marine Science & Technology(Prepartory Office), State Key Laboratory of Marine Geology of Tongji University. China Seafloor Observation—Science and Technology[M]. Shanghai:Tongji University Press, 2011.[上海海洋科技研究中心(筹), 海洋地质国家重点实验室(同济大学).海底观测——科学与技术的结合[M]. 上海: 同济大学出版社, 2011.]

[2]Xu H, Zhang Y, Xu C, et al. Coastal seafloor observatory at Xiaoqushan in the East China Sea[J].Chinese Science Bulletin, 2011, 56(26): 2 839-2 845.

[3]DiMarco S F, Wang Z, Jochens A, et al. Cabled ocean observatories in Sea of Oman and Arabian Sea[J].Eos, Transactions American Geophysical Union, 2012, 93(31):301.

[4]Ingle S, Belabbassi L, du Vall K, et al. A 4000-meter-rated Deepwater Cabled Ocean Observing System: Lessons Learned from Two Years of Operation[R]∥IEEE Oceans, 2012: 1-5.

[5]Johns W E, Jacobs G A, Hindle J C, et al. Arabian Marginal Sea and Gulfs: Report of A Workshop Held at Stennis Space Center[R]. Technical Report 2000-01, University of Miami RSMAS, 2000.

[6]Shi W, Morrison J M, Bohm E, et al. Remotely sensed features in the USJGOFS Arabian Sea process study[J]. Deep-Sea Research   II, 1999, 46(8/9):1 551-1 575.

[7]Wang Z, DiMarco S F, Stssel M, et al. Oscillation responses to tropical Cyclone Gonu in northern Arabian Sea from a moored observing system[J]. Deep-Sea Research   I,2012, 64:129-145.

[8]Wang Z, DiMarco S F, Jochens A E, et al. High salinity events in the Northern Arabian Sea and sea of Oman[J]. Deep-Sea Research  I, 2013,74:14-24.

[9]Pous S, Carton X, Lazure P. Hydrology and circulation in the strait of Hormuz and the Gulf of Oman—Results from the GOGP99 Experiment: 2. Gulf of Oman[J]. Journal of Geophysical Research,2004, 109(C12): C12038,doi:10.1029/2003JC002145.

[10]Schott F A, Xie S P, McCreary Jr J P. Indian Ocean circulation and climate variability[J]. Review of Geophysics,2009, 47(1): RG1002,doi:10.1029/2007RG000245.

[11]Fritz H M, Blount C D, Albusaidi F B, et al. Cyclone Gonu storm surge in Oman[J]. Estuarine and Coastal Shelf Science, 2010, 86(1): 102-106.

[12]DiMarco S F, Al-Kharusi L, Wang Z, et al. Monsoon-driven seasonal hypoxia along the northern coast of Oman[J]. Continental Shelf Research, 2013, in revision.

[13]Flagg C, Smith S. On the use of the acoustic Doppler current profiler to measure zooplankton abundance[J]. Deep-Sea Research  I, 1989, 36: 455-474.

[14]Ressler P. Acoustic backscatter measurements with a 153 kHz ADCP in the northeastern Gulf of Mexico: Determination of dominant zooplankton and micronekton scatterers[J]. Deep-Sea Research  I, 2002, 49: 2 035-2 051.

[15]Gjster J. Abundance and production of lanternfish (Myctophidae) in the western and northern Arabian Sea[J]. Fiskeridirektoratets  Skrifter Serie Havunderskelser,1981, 17(6): 215-257.

[16]Wang Z, DiMarco S F, Al-Kharusi L H, et al. Temporal and spatial variability of vertically migrating scattering layers in the northern Arabian Sea[J].Deep-Sea Research I, 2013, submitted.

[1] 念达, 邓琪敏, 付遵涛. 相对湿度及其变化的年循环研究进展[J]. 地球科学进展, 2018, 33(7): 762-774.
[2] 张春灌, 袁炳强, 张国利. 最新全球重力数据库V23中陆域重力资料质量评估[J]. 地球科学进展, 2017, 32(1): 75-82.
[3] 薛亮,于卫东,宁春林,王辉武. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.
[4] 顾娟,李新,黄春林. 基于时序MODIS NDVI的黑河流域土地覆盖分类研究[J]. 地球科学进展, 2010, 25(3): 317-326.
[5] 柴琳娜,屈永华,张立新,梁顺林,王锦地. 基于自回归神经网络的时间序列叶面积指数估算[J]. 地球科学进展, 2009, 24(7): 756-768.
[6] 翟世奎,李怀明,于增慧,于新生. 现代海底热液活动调查研究技术进展[J]. 地球科学进展, 2007, 22(8): 769-776.
[7] 王浩;严登华;秦大庸;王建华. 近50年来黄河流域400 mm等雨量线空间变化研究[J]. 地球科学进展, 2005, 20(6): 649-655.
[8] 刘强;王跃思;王明星. 北京地区大气主要温室气体的季节变化[J]. 地球科学进展, 2004, 19(5): 817-823.
[9] 洪时中. 非线性时间序列分析的最新进展及其在地球科学中的应用前景[J]. 地球科学进展, 1999, 14(6): 559-565.
[10] 郑卓. 第四纪孢粉分析的时间序列与空间模型[J]. 地球科学进展, 1998, 13(3): 300-305.
阅读次数
全文


摘要