地球科学进展 ›› 2013, Vol. 28 ›› Issue (2): 262 -268. doi: 10.11867/j.issn.1001-8166.2013.02.0262

所属专题: IODP研究

IODP研究 上一篇    下一篇

地球系统中生物成因硫化物矿物:类型、形成机制及其与生命起源的关系
许恒超,彭晓彤 *   
  1. 同济大学 海洋地质国家重点实验室,上海 200092
  • 收稿日期:2013-01-16 修回日期:2013-01-28 出版日期:2013-02-10
  • 通讯作者: 彭晓彤(1973-),男,湖南涟源人,研究员,主要从事生物矿化研究.E-mail:xtpeng@tongji.edu.cn E-mail:xtpeng@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目“高温中性热泉环境中Fe(II)的微生物氧化机制研究”(编号:41172309);国家高技术研究发展计划重点项目“大洋钻探站位调查关键技术研究”(编号:2008AA093001)资助.

Biogenic Sulfides in the Earth System:Type, Formation Mechanism and Relationship with the Origin of Life

Xu Hengchao, Peng Xiaotong   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2013-01-16 Revised:2013-01-28 Online:2013-02-10 Published:2013-02-10

作为生物矿物一种十分重要的类型,生物成因硫化物矿物形成于多种海水和淡水环境中。它们是自然界硫和金属元素循环中的关键一环,并有可能在地球早期生命起源中扮演了重要的角色。现代环境中形成的生物成因硫化物矿物与多种生命过程有着十分密切的联系,微生物和大型生物均可直接或间接地影响生物成因硫化物矿物的形成。重点从生物成因硫化物矿物类型、参与生物矿化的有机体、生物成因硫化物矿物形成机制以及硫化物矿物与生命起源的关系等几个方面综述了生物成因硫化物矿物研究的最新进展。

Biogenic sulfides, an important type of biogenic minerals, are commonly form  in sea water and fresh water environment. They are actively involved in metal and sulfur biogeochemical cycles, and also may play a role in the origin of life on the early Earth. In modern natural settings, biogenic sulfides are closely associated with the activities of various organisms. Both microorganism and macrofauna can control or induce the formation of biogenic sulfides. Here, we review the latest research progresses in biogenic sulfides, related organisms, formation mechanism and relationship with the origin of life on the Earth.

中图分类号: 

[1]Edwards K J, Mccollom T M, Konishi H, et al. Seafloor bioalteration of sulfide minerals: Results from in situ incubation studies[J]. Geochimica et Cosmochimica Acta,2003, 67(15): 2 843-2 856.



[2]Pósfai M, Dunin-Borkowski R E. Sulfides in biosystems[J]. Reviews in Mineralogy and Geochemistry, 2006, 61(1): 679-714.



[3]Berner R A. Modeling atmospheric O2 over Phanerozoic time[J]. Geochimica et Cosmochimica Acta, 2001, 65(5): 685-694.



[4]Canfield D E, Habicht K S, Thamdrup B. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 2000, 288(5 466): 658-661.



[5]Keim C N, Abreu F, Lins U, et al. Cell organization and ultrastructure of a magnetotactic multicellular organism[J]. Journal of Structural Biology, 2004, 145(3): 254-262.



[6]Suzuki Y, Kopp R E, Kogure T, et al. Sclerite formation in the hydrothermal-vent[J]. Earth and Planetary Science Letters, 2006, 242(1/2): 39-50.



[7]Pósfai M, Buseck P R, Bazylinski D A, et al. Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers[J]. Science, 1998, 280(5 365): 880-883.



[8]Pósfai M, Buseck P R, Bazylinski D A, et al. Iron sulfides from magnetotactic bacteria; structure, composition, and phase transitions[J]. American Mineralogist,1998, 83(11/12 Part 2): 1 469-1 481.



[9]Peng X, Zhou H, Yao H, et al. Ultrastructural evidence for iron accumulation within the tube of Vestimentiferan Ridgeia piscesae[J]. Biometals, 2009, 22(5): 723-732.



[10]Labrenz M, Druschel G K, Thomsen-Ebert T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J]. Science, 2000, 290(5 497): 1 744-1 747.



[11]Moreau J W, Webb R I, Banfield J F. Ultrastructure, aggregation-state, and crystal growth of biogenic nanocrystalline sphalerite and wurtzite[J]. American Mineralogist, 2004, 89(7): 950-960.



[12]Zbinden M, Le Bris N, Comp E Re P, et al. Mineralogical gradients associated with alvinellids at deep-sea hydrothermal vents[J]. Deep Sea Research Part I, 2003, 50(2): 269-280.



[13]Zbinden M, Martinez I, Guyot F, et al. Zinc-iron sulphide mineralization in tubes of hydrothermal vent worms[J]. European Journal of Mineralogy, 2001, 13(4): 653-658.



[14]Faivre D, Schu-ler D. Magnetotactic bacteria and magnetosomes[J]. Chemical Reviews,2008, 108(11): 4 875-4 898.



[15]Simmons S L, Sievert S M, Frankel R B, et al. Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond[J]. Applied and Environmental Microbiology, 2004, 70(10): 6 230-6 239.



[16][JP2]Bazylinski D A, Frankel R B. Magnetosome formation in prokaryotes[J]. Nature Reviews Microbiology,2004,2(3):217-230.[JP]



[17]Mann S, Sparks N C H, Frankel R B, et al. Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium[J]. Nature, 1990, 343: 258-261.



[18]Frankel R B, Bazylinski D A. Biologically induced mineralization by bacteria[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 95-114.



[19]Muyzer G, Stams A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology, 2008, 6(6): 441-454.



[20]Fortin D, Southam G, Beveridge T J. Nickel sulfide, iron-nickel sulfide and iron sulfide precipitation by a newly isolated Desulfotomaculum species and its relation to nickel resistance[J]. FEMS Microbiology Ecology, 1994, 14(2): 121-132.



[21]Donald R, Southam G. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite[J]. Geochimica et Cosmochimica Acta, 1999, 63(13/14): 2 019-2 023.



[22]Rickard D, Morse J W. Acid Volatile Sulfide (AVS)[J]. Marine Chemistry,2005, 97(3/4): 141-197.



[23]Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10): 752-764.



[24]Kashefi K, Lovley D R. Extending the upper temperature limit for life[J]. Science, 2003, 301(5 635): 934.



[25]Maginn E J, Little C T S, Herrington R J, et al. Sulphide mineralisation in the deep sea hydrothermal vent polychaete,Alvinella pompejana: Implications for fossil preservation[J]. Marine Geology, 2002, 181(4): 337-356.



[26]Van Dover C L, Humphris S E, Fornari D, et al. Biogeography and ecological setting of Indian Ocean hydrothermal vents[J]. Science, 2001, 294(5 543): 818-823.



[27]Waren A, Bengtson S, Goffredi S K, et al. Ecology: A hot-vent Gastropod with iron sulfide dermal sclerites[J]. Science , 2003,302(5 647): 1 007-1 008.



[28]Goffredi S K, War E N A, Orphan V J, et al. Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean[J]. Applied and Environmental Microbiology, 2004, 70(5): 3 082-3 090.



[29]Schoonen M A A. Mechanisms of sedimentary pyrite formation[J].



Geological Society of America Special Papers, 2004,379: 117-134.



[30]Rickard D, Luther Iii G W. Metal sulfide complexes and clusters[J]. Reviews in Mineralogy and Geochemistry, 2006, 61(1): 421-504.



[31]Gilbert P, Abrecht M, Frazer B H. The organic-mineral interface in biominerals[J]. Reviews in Mineralogy and Geochemistry, 2005, 59(1): 157-185.



[32]Zhou Huaiyang, Li Jiangtao, Peng Xiaotong. Seafloor hydrothermal system and the origin of life[J].Chinese Journal of Nature, 2009,(4): 207-212.[周怀阳,李江涛,彭晓彤. 海底热液活动与生命起源[J]. 自然杂志, 2009,(4): 207-212.]



[33][JP2]Schoonen M, Smirnov A, Cohn C. A perspective on the role of minerals in prebiotic synthesis[J]. Ambio, 2004, 33(8): 539-551.[JP]



[34]Cody G D. Geochemical connections to primitive metabolism[J]. Elements,2005, 1(3): 139-143.



[35]Beinert H, Hdm R H, Münck E. Iron-sulfur clusters nature’s modular, multipurpose structures[J]. Science, 1997, 277(5 326): 653-659.



[36]Wchtershuser G. Evolution of the first metabolic cycles[J]. Proceedings of the National Academy of Sciences, 1990, 87(1): 200-204.



[37]Wchtershuser G. Pyrite formation, the first energy source for life: A hypothesis[J]. Systematic and Applied Microbiology, 1988, 10(3): 207-210.



[38]Russell M J,Hall A J.The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front[J].Journal of the Geological Society,1997,154(3):377-402.



[39]Huber C, Wchtershuser G. Activated acetic acid by carbon fixation on (Fe, Ni) S under primordial conditions[J]. Science, 1997, 276(5 310): 245-247.



[40]Schoonen M A A, Xu Y, Bebie J. Energetics and kinetics of the prebiotic synthesis of simple organic acids and amino acids with the FeS-H2S/FeS2 redox couple as reductant[J]. Origins of Life and Evolution of Biospheres, 1999, 29(1): 5-32.



[41][JP2]Cody G D, Boctor N Z, Brandes J A, et al. Assaying the catalytic potential of transition metal sulfides for abiotic carbon fixation 1[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2 185-2 196.

[1] 陈顺,彭晓彤,周怀阳,李江涛,吴自军. 深海热液环境中的铁氧化菌及其矿化[J]. 地球科学进展, 2010, 25(7): 746-752.
[2] 李为,刘丽萍,曹龙,余龙江. 碳酸盐生物沉积作用的研究现状与展望[J]. 地球科学进展, 2009, 24(6): 597-605.
[3] 王晓红,毅民. 海绵骨针特性及其仿生学研究[J]. 地球科学进展, 2006, 21(10): 1008-1013.
[4] 冯军;李江海;牛向龙. 现代海底热液微生物群落及其地质意义[J]. 地球科学进展, 2005, 20(7): 732-739.
[5] 党宏月;宋林生;李铁刚;秦蕴珊. 海底深部生物圈微生物的研究进展[J]. 地球科学进展, 2005, 20(12): 1306-1313.
[6] 付伟;周永章;杨志军;张澄博;杨小强;何俊国;杨海生;罗春科. 现代海底热水活动的系统性研究及其科学意义[J]. 地球科学进展, 2005, 20(1): 81-088.
[7] 李江海;牛向龙;冯军. 海底黑烟囱的识别研究及其科学意义[J]. 地球科学进展, 2004, 19(1): 17-025.
[8] 岳梅;赵峰华;朱银凤;丛志远;任德贻. 硫化物矿物氧化反应动力学实验研究[J]. 地球科学进展, 2004, 19(1): 47-054.
[9] 王将克,钟月明,廖金风,常弘. 关于生命起源研究的问题及其主攻方向的探讨[J]. 地球科学进展, 1995, 10(2): 196-201.
[10] 戴永定. 生物矿物学的发展与展望[J]. 地球科学进展, 1993, 8(4): 17-22.
[11] 罗斌杰. 生物地质化学研究动态[J]. 地球科学进展, 1990, 5(1): 5-11.
阅读次数
全文


摘要